河南省中考数学真题模拟试卷答题卡
- 格式:doc
- 大小:241.50 KB
- 文档页数:2
绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。
数学 第1页(共6页) 数学 第2页(共6页) 数学 第3页(共6页)
学校__________________班级__________________姓名__________________准考证号__________________
﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍密﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍封﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍线﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 19.(9分)
20.(9分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 准考证号:
数学第4页(共
6页)
数学第5页(共6页)数学第6页(共6页)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
21.(10分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
22.(10分)23.(11分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!。
2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
2019年郑州市第六十三中学第三次模拟考试班级:姓名:数学试卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)1.52-的绝对值是()A.52B.25C.25-D.52-2. “十三五”期间,河南将安排40.27亿元资金支持郑州大学、河南大学“双一流”建设.数据“40.27亿”用科学记数法表示为()A.4.027×103B.0.402 7×103 C.4.027×109D.0.402 7×10103. 如图是一个长方体挖去一部分后得到的几何体,该几何体的左视图是()A.B.C.D.4. 下列计算正确的是()A.a2+2a=3a3B.(-2a3)2=4a5 C.(a+2)(a-1)=a2+a-2D.(a+b)2=a2+b25. 如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.95°第5题图第8题图第9题图6. 下列调查,适合用普查方式的是()A.了解一批炮弹的杀伤半径B.了解中央电视台《新闻联播》的收视率C.了解长江中鱼的种类D.了解某班学生某次数学测试成绩7.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=8. 如图,依据尺规作图的痕迹,计算∠α的度数为()A.68°B.56°C.45°D.54°9. 《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出他在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,他的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺10. 如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(每小题3分,共15分)11. 计算:301()(20192--+=__________.12. 如图,AD∠BE∠CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,若23ABBC=,DE=6,则EF=___________.ABCab12标杆竹竿l2FEDCBAl1正面ABC P第12题图 第14题图 第15题图 13. 已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表所示:x … -5 -4 -3 -2 -1 … y…-8-31…14. 如图,四边形ABCD 为矩形,以点A 为圆心,以AD 长为半径画弧,交AB 的延长线于点E ,连接BD ,若AD =4,AB =2,则图中阴影部分的面积为________.15.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点P 是边AC 上一动点,把△ABP 沿直线BP 折叠,使得点A 落在图中点A′处,当△AA′C 是直角三角形时,则线段CP 的长是_________.三、解答题(本大题共8个小题,满分75分)16. (8分)先化简,再求值.222122a a a a a a +-⎛⎫+÷ ⎪-⎝⎭,其中其中a 是方程x 2+3x =0的解.17. (9分)郑州市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.调查测试成绩分组表 A 组:90≤x ≤100 B 组:80≤x <90 C 组:70≤x <80 D 组:60≤x <70 E 组:x <60 请你根据图中提供的信息解答以下问题: (1)参加调查测试的学生为______人; (2)将条形统计图补充完整;(3)本次调查测试成绩的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2 600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.18. (9分)如图,AB 是∠O 的直径,且AB =6,C 是∠O 上一点,D 是的中点,过点D 作∠O 的切线,与AB 、AC 的延长线分别交于点E 、F ,连接AD .(l)求证:AF ∠EF ; (2)填空:∠当BE = 时,点C 是AF 的中点; ∠当BE = 时,四边形OBDC 是菱形.19. (9分)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520 km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数)参考数据:(sin67°≈1213;cos67°≈513;tan67°≈125;3≈1.73)20.(9分)如图,一次函数y =2x -1与反比例函数 在第一象限相交于点A ,与x 轴相交于点B ,与y 轴相交于点C ,且AB =3BC . (1)求点A 的坐标及反比例函数的解析式.(2)现以点A 为中心,把线段AC 逆时针旋转90°得到AC′.请直接写出C′的坐标,并判断C′是否在已知的双曲线上.30°东67°ABC200180160140人数/人120100806040200调查测试成绩条形统计图调查测试成绩扇形统计图20%35%10%E DBCA k y x =21.(10分)为了美化环境,建设宜居郑州,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y (元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元. (1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?22. (10分)已知,在△ABC 中,AB =AC ,点D 为边AC 上一动 点,∠BDE =∠A 且DB =DE ,连接BE ,EC ,其中AD k EC=.问题发现:(1)如图1,若∠A =60°,∠BCE 与∠A 有怎样的数 量关系?k 的值为多少?直接写出答案.类比探究:如图2,若32AB BC =,点D 在AC 的延长线上,∠BCE 与∠A 有怎样的数量关系?k 的值为多少?请说明理由.拓展应用:如图3,在Rt △ABC 中,∠BAC =90°,AB =AC =10,D 为AC 上一点,以BD 为边,在如图所示位置作正方形BDEF ,点O 为正方形BDEF 的对称中心,且OA =22,请直接写出DE 的长.23. (11分)如图,抛物线y =ax 2+bx -2的对称轴是直线x =1,与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD ∠x 轴于点D ,交直线BC 于点E .(1)求抛物线解析式.(2)若点P 在第一象限内,当OD =4PE 时,求四边形POBE 的面积.(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M ,N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.2019年郑州市第六十三中学第三次模拟考试数学答题卡A B CO xy图1ED CBA图2EDC BA 图3FE D BAOABCO xy备用图AB CDO xy EP 注意事项1.答题前,考生务必先认真核对条形码上的姓名、准考证号、考场号、座位号,无误后将本人姓名、准考证号填在相应位置。
2020河南省九年级数学中考模拟试题含答案注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟. 2.请用黑色水笔把答案直接写在答题卡上,写在试题卷上的答案无效.一、选择题 (每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母 涂在答题卡上.1.下列各数中,最小的数是 A .3 B .32 C .2p D .23-2.据报道,中国工商银行2015年实现净利润2 777亿元.数据2 777亿用科学计数法表示为A .2.777×1010B .2.777×1011C .2.777×1012D .0.2777×10133.下列计算正确的是 A .822-=B .2(3)-=6C .3a 4-2a 2=a 2D .32()a -=a 54.如图所示的几何体的俯视图是5.某班50名同学的年龄统计如下:年龄(岁) 12 13 14 15 学生数(人)123206该班同学年龄的众数和中位数分别是A .6 ,13B .13,13.5C .13,14D .14,14A B CD(第4题)6.如图,AB ∥CD ,AD 与BC 相交于点O ,若AO =2,DO =4,BO =3,则BC 的长为 A . 6 B .9 C .12 D .157.如图所示,点D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论中不一定...正确的是A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D .弧AC = 弧BC8.从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是A .1B .45C .34D . 129.如图,CB 平分∠ECD ,AB ∥CD ,AB 与EC 交于点A . 若∠B =40°,则∠EAB 的度数为A .50°B . 60°C . 70°D .80°10.如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm/s 的速度沿A →C →B 运动,到达B 点即停止运动,PD ⊥AB 交AB 于点D .设运动时间为x (s ),△ADP 的面积为y (cm 2),则y 与x(第6题)OABCDD (第7题)PAB CDABCD(第10 题)(第9题)EAC DB二、填空题( 每小题3分,共15分) 11.计算:327-︱-2︱= .12.如图,矩形ABCD 中,A B =2 cm ,BC =6cm ,把△ABC 沿对角线AC 折叠,得到△AB’C ,且B’C 与AD 相交于点E ,则AE 的长为 cm .13.如图,Rt △ABC 中,∠B =90°, AB = 6,BC = 8,且,将Rt △ABC 绕点C 按顺时针方向旋转90°,得到Rt △A’B’C ,则边AB 扫过的面积(图中阴影部分)是 . 14.已知y =-14x 2-3x +4(-10≤x ≤0)的图象上有一动点P ,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为 . 15.如图,在Rt △ABC 中,∠B =90°,BC =2 AB = 8,点D ,E 分别是边BC ,AC 的中点,连接DE .将△EDC 绕点C 按顺时针方向旋转,当△EDC 旋转到A ,D ,E 三点共线时,线段BD 的长为 . 三、解答题:(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:1()2a a ++÷3(2)2a a -++, 请从-1,0,1中选取一个合适的数作为a 的值代入求值.(第12 题)A BCB'B'AD CBE(第13 题)(第15 题)ABCED17.(9分)如图,点A ,B ,C 分别是⊙O 上的点,∠B = 60°,AC = 3,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP =AC .(1)求证:AP 是⊙O 的切线;(2)求PD 的长.18.(9分)2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A ,B ,C ,D 四类,其中A 类表示“非常了解”,B 类表示“比较了解”,C 类表示“基本了解”,D 类表示 “不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次调查中,一共抽查了 名学生; (2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D 类部分所对应扇形的圆心角的度数为 ; (4)如果这所学校共有初中学生1500名,请你估算该校初中学生对二战历史“非常了解”和“比较了解”的学生共有多少名?.(第17 题)ADP C BO20903021图图15%30%ABCD人数1008060402019.(9分)如图所示,某教学活动小组选定测量小山上方某信号塔PQ 的高度,他们在A处测得信号塔顶端P 的仰角为45°,信号塔低端Q 的仰角为31°,沿水平地面向前走100米到处,测得信号塔顶端P 的仰角为68°.求信号塔PQ 的高度.(结果精确到0.1米.参考数据:sin68°≈ 0.93,cos68° ≈ 0.37,tan68°sin31°≈ 0.52,cos31°≈0.86)20.(9分)如图,已知矩形OABC 中,OA =3,AB=4,双曲线y =kx(x > 0)与矩形两边AB ,BC 分别交于D ,E ,且BD =2AD .(1)求k 的值和点E 的坐标;(2)点P 是线段OC 上的一个动点,是否存在点P ,使∠点P 的坐标;若不存在,请说明理由.21.(10分)“五一”期间,甲、乙两家商店以同样价格销售相同的商品,它们的优惠方案分别为:甲店,一次性购物中超过200元后的价格部分打七折;乙店,一次性购物中超过500y元.(1)求甲商店购物时y 1与x 之间的函数关系; (2)两种购物方式对应的函数图象如图所示,求交点C 的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.22.(10分)问题背景:已知在△ABC 中,边AB 上的动点D 由A 向B 运动(与A ,B 不重合),同时点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点,求AC HF的值.(1)初步尝试 如图(1),若△ABC 是等边三角形,DH ⊥AC ,且点D 、E 的运动速度相等,小王同学发现可以过点D 作DG ∥BC 交AC 于点G ,先证GH =AH ,再证GF =CF , 从而求得AC HF的值为 .(2)类比探究如图(2),若△ABC 中,∠ABC =90°,∠ADH =∠BAC =30°,且点D ,E 的运动速度31,求AC HF的值.(3)延伸拓展如图(3)若在△ABC 中,AB =AC ,∠ADH =∠BAC =36°,记BC AC=m ,且点D 、E 的运动速度相等,试用含m 的代数式表示AC HF的值(直接写出果,不必写解答过程).图(3)HFEDCBA 图(2)HFEDC B A图(1)GH F A BC ED23.(11分)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.lyx POCB A九年级数学模拟二参考答案及评分标准一、选择题二、填空题 三、解答题16.解:原式=2212a a a +++÷2432a a -++=2(1)2a a ++·2(1)(1)a a a ++-=11a a +-.………………………………5分∵当a 取±1时,原式无意义, ………………………………6分 ∴当a =0时,∴原式=0101+-=-1 ………………………………8分 17.(1)证明:连接OA .∵∠B =60°,∴∠AOC =2∠B=120°.又∵在△AOC 中,OA =OC , ∴∠ACP =∠CAO =12(180°-∠AOC )=30°. ∴∠AOP =2∠ACP =60°. ∴AP =AC ,∴∠P =∠ACP =30°. ∴∠OAP =180°-∠AOP -∠P =90°, 即OA ⊥AP .∴AP 是⊙O 的切线.………………………………5分 (2)连接AD .∵CD 是⊙O 的直径,∴∠CAD =90°. 在Rt △ACD 中,∵AC =3,∠ACP =30°, ∴AD =AC ·tan ∠ACP =3 由(1)知∠P =∠ACP =30°,ADPC BO∴∠PAC =180°-∠P -∠ACP =120°. ∴∠PAD =∠PAC -∠CAD =30°.∴∠P =∠PAD =30°.∴PD =AD =3.………………………………9分18.解:(1)一共抽查了 200 名学生; ………………………………2分(2)补全条形统计图如图所示: ………………………………4分 (3)D 类部分所对应扇形的圆心角的度数为36°;(注:若填36,不扣分)……6分 (4)30901500900200+?. ………………………………9分19.解:延长PQ 交直线AB 于点M ,则∠PMA =90°,设PM 的长为x 米,根据题意, 得∠PAM =45°,∠PBM =68°,∠QAM =31°,AB =100,∴在Rt △PAM 中,AM =PM =x .BM =AM -AB =x -100, ………………2分在Rt △PBM 中,∵tan ∠PBM =PMBM, 即tan68°=100xx -.解得x ≈ 167.57.∴AM =PM ≈ 167.57.………………………………5分 在Rt △QAM 中,∵tan ∠QAM =QMAM, ∴QM =AM ·tan ∠QAM =167.57×tan31°≈100.54. ………………8分 ∴PQ =PM -QM =167.57-100.54≈67.0(米).因此,信号塔PQ 的高度约为67.0米. ………………………………9分602090301图类型人数10080604020QP20.解:(1)∵四边形OABC为矩形,且OA=3,AB=4,∴OC= AB=4,AB∥OC,即AB∥x轴.∵点D在AB上,且BD=2 AD,BD+AD= AB=4,∴AD=433AB=.∴点D的坐标为(43,3).∵点D在双曲线y=kx上,∴k=3×43=4.………3分又∵点E在BC上,∴点E的横坐标为4.把x=4代入y=4x中,得y=1.∴点E的坐标为(4,1).………5分(2)假设存在满足题意的点P的坐标为(m,0).则OP=m,CP=4-m.由(1)知点E(4,1),∴CE=1.∵∠APE=90°∴∠APO+∠EPC=90°.∵∠APO+∠OAP=90°,∴∠OAP=∠EPC.又∵∠AOP=∠PEC=90°,∴△AOP∽△PCE.∴OA OPCP CE=,即341mm=-.解得m=1或m=3.经检验,m=1或m=3为原方程的两个根.∴存在这样的点P,其坐标为(1,0)或(3,0).………9分21.解:(1)根据题意,得当0 ≤x ≤ 200时,y1=x;当x > 200时,y1=200+0.7(x-200)=0.7 x+60.综上所知,甲商店购物时y1与x之间的函数关系式为y1=﹛x(0 ≤x ≤ 200);0.7 x+60(x > 200).………………………………4分(2)由图象可知,交点C的横坐标大于500,当x﹥500时,设乙商店购物时应付金额为y2元,则y2=500+0.5(x-500)=0.5 x+250.由(1)知,当x﹥500时,y1=0.7 x+60.由于点C是y1与y2的交点,∴令0.7 x+60=0.5 x+250.yxPEDCA BOyx OCBA500200解得x=950,此时y1=y2=725.即交点C的坐标为(950,725).………………………………8分(3)结合图像和(2)可知:当0 ≤x ≤ 200或x=950时,选择甲、乙两家商店购物费用相同;当200<x<950时,选择甲商店购物更优惠;当x﹥950时,选择乙商店购物更优惠.………………………………10分22.解:(1)2………………………………2分(2)如图(1)过点D作DG∥BC交AC于点G,则∠ADG=∠ABC=90°.∵∠BAC=∠ADH=30°,∴AH=DH,∠GHD=∠BAC+∠ADH=60°,∠HDG=∠ADG-∠ADH=60°,∴△DGH为等边三角形.∴GD=GH =DH =AH,AD=GD·tan60°=3GD.由题意可知,AD=3CE.∴GD=CE.∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF.∴△GDF≌△CEF.∴GF=CF.GH+GF=AH+CF,即HF=AH+CF,∴HF=12AC=2,即2ACHF=.………………………………8分(3)ACHF=1mm+.………………………………10分提示:如图(2),过点D作DG∥BC交AC于点G,易得AD=AG,AD=EC,∠A GD=∠ACB.在△ABC中,∵∠BAC=∠ADH=36°,AB=AC,∴AH=DH,∠ACB=∠B=72°,∠GHD=∠HAD+∠ADH=72°.∴∠AGD=∠GHD=72°.∵∠GHD=∠B=∠HGD=∠ACB,∴△ABC∽△DGH.∴BC GHmAC DH==,GHFEDC BA图(1)GHFEDCBA图(2)∴GH =mD H =mA H .由△ADG ∽△ABC 可得GDBC BCm AD AB AC ===. ∵DG ∥BC ,∴FG GDGDm FC ECAD===.∴FG =mFC . ∴GH +FG =m (AH +FC )=m (AC -HF ), 即HF =m (AC -HF ).∴AC HF =1m m+. 23.(1)抛物线的解析式为y =x 2+2x -3.……………分 (2)如图,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q . ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°. ∵∠PMB =90°, ∴∠PBM +∠BPM =90°. ∴∠BPM =∠NBQ .又∵∠BMP =∠BNQ =90°,PB =NB , △BPM ≌△NBQ .∴PM =BQ .∵抛物线y =x 2+2x -3与x 轴交于点A (1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0).∴BQ =2.∴PM =BQ =2. ∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2.将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3. 解得x 1=-12,x 2=-12(舍去).∴此时点P 的坐标为(-12,-2).………………………………7分 (3)存在.如图,连接AC .可设点P 的坐标为(x ,y )(-3﹤x ﹤0), 则y =x 2+2x -3.∵点A (1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3.即点C (0,-3). ∴OC =3.由(2)可知 S 四边形PBAC =S △BPM +S 四边形PMOC +S △AOCQ N Ml y xPOCBA=12BM·PM+12(PM+OC)·OM+12OA·OC=12(x+3)(-y)+12(-y+3)(-x)+12×1×3=-32y-32x+32.将y=x2+2x-3代入可得S四边形PBAC=-32(x2+2x-3)-32x+32=-32(x+32)2+758.∵-32﹤0,-3﹤x﹤0,∴当x=-32时,S四边形PBAC有最大值758.此时,y=x2+2x-3=-154.∴当点P的坐标为(-32,-154)时,四边形PBAC的面积最大,最大值为758.………………………………11分。
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
中考考前最后一卷【河南卷】数 学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列四个数中,最小的是( ) A .1B .0C .1-D .2-2.如图是一个全封闭的物体,则它的俯视图是( )A .B .C .D .3.到2020年5月12日为止全球新冠肺炎的确诊人数累计为4255725人,将数据4255725用科学记数法表示为( ) A .54.25572510⨯ B .64.25572510⨯C .74.25572510⨯D .84.25572510⨯ 4.下列计算正确的是( )A .330y x -=B .336x x x +=C .32311472x y x y y ÷=D .()22224xy x y -=5.如图所示,12l l //,三角板ABC 如图放置,其中90B ∠=︒,若140∠=︒,则2∠的度数是( )A .40︒B .50︒C .60︒D .306.关于x 的一元二次方程20x x m ++=有实数根,则m 的取值范围是 ( ) A .m ≥14-B .m ≤14-C .m ≥14D .m ≤147.如图,OC 交双曲线ky x=于点A ,且:5:3OC OA =,若矩形ABCD 的面积是8,且//AB x 轴,则k 的值是( )A .18B .50C .12D .20098.如图,在▱ABCD 中,以点B 为圆心,适当长度为半径作弧,分别交AB ,BC 于点F ,G ,再分别以点F ,G 为圆心,大于12FG 长为半径作弧,两弧交于点H ,作射线BH 交AD 于点E ,连接CE ,若AE =10,DE =6,CE =8,则BE 的长为( )A .B .C .D .9.如图,在ABC ∆中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则AOB ∠的度数为( )A .100︒B .120︒C .130︒D .150︒10.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )数学试题第3页(共30页)数学试题第4页(共30页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.计算2192-⎫⎛--=⎪⎝⎭__________.12.如图,地上画了两个半径分别为1m和3m的同心圆.假设用小石子投中圆形区域上的每一点是等可能的(若投中圆的边界或没有投中圆形区域,则重投1次),任意投掷小石子一次,则投中白色小圆的概率为__________.13.如图,在△ABC中,∠B=90°,AB3,将AC沿AE折叠,使点C与点D重合,且DE⊥BC,则AE= ______ .14.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为AB的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_______cm2.15.如图,Rt ABC△,90ACB∠=︒,3AC=,4BC=,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处,两条折痕与斜边AB分别交于点E、F,则线段B F'的长为________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:1-222442a ab b a ba ab a b+++÷--,其中a、b满足(22b+1=0a+.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校50名同学,并将调查的结果进行收集,整理,绘制成如图(表)的频数分布表和频数分布直方图:a.零花钱数额的频数分布表零花钱数额(元)0≤x<3030≤x<6060≤x<9090≤x<120120≤x<150频数4m20n2bc.零花钱数额在90≤x<120这一组的为:90,90,91 ,93 ,95,100 ,100 ,105根据以上信息,回答下列问题:(1)表中m的值为,n的值为;(2)请补全频数分布直方图;(3)该校共有学生2800人,若零花钱数额超过100元(含100)的视为“零花钱较多”,请估计该校学生中“零花钱较多”的人数.18.(9分)如图1,芜湖临江桥是一座集合交通、休闲为一体的景观桥梁.桥塔线条流畅、圆润,灵感来源于鱼、米造型,象征着芜湖“鱼米之乡”的历史地位.小华是一个数学爱好者,他打算用学过的知识测量一下桥塔AB (如图2)的高度,桥塔不远处有一观光楼,CD 他开始站在观光楼上进行观测,观测时的仰角ADE ∠为41.4︒,回到观光楼下面进行再次观测,发现角度变化了,仰角ACB ∠为45︒,若他两次观测的高度相差9米(即9CD =),试求桥塔的高. (参考数据:41.40.88 ,tan ︒≈结果保留整数)19.(9分)如图,AB 为O 的直径,C 为半圆上一动点,过点D 作O 的切线l 的垂线BD ,垂足为D ,BD 与O 交于点E ,连接,,,OC CE AE AE 交OC 于点F .(1)求证:CDE EFC ≌; (2)若4AB =,连接AC .①当AC =__________时,四边形OBEC 为菱形; ②当AC =__________时,四边形EDCF 为正方形.20.(9分)某商店销售A 、B 两种品牌的书包,已知购买1个A 品牌书包和2个B 品牌书包共需550元;购买2个A 品牌书包和1个B 品牌书包共需500元. (1)求这两种品牌书包的单价;(2)某商店对这两种品牌的书包给出优惠活动:A 种品牌的书包按原价的八折销售,B 种品牌的书包10个以上超出部分按原价的五折销售.①设购买x 个A 品牌书包的费用为y 1元,购买x 个B 品牌书包的费用为y 2元,请分别求出y 1,y 2与x 的函数关系式;②学校准备购买同一种品牌的书包,如何选择购买更省钱?21.(10分)已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围.22.(10分)如图1,在ABC 中,4cm AB AC ==,6cm BC ,点D 是BC 边上的一个动点(不与B ,C 重合),以AD 为边作ADE B ∠=∠,交AC 边于点E .设BD x =,AE y =.今天我们将根据学习函数的经验,研究函数值y 随自变量x 的变化而变化的规律. 下面是某同学做的一部分研究结果,请你一起参与解答: (1)自变量x 的取值范围是 ; (2)通过计算,得到x 与y 的几组值,如下表:(3)在如图2所示的平面直角坐标系中,画出该函数的大致图象; (4)根据图象,请写出该函数的一条性质.23.(11分)背景:一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E 、A 、D 在同一条直线上),小组讨论后,提出了下列三个问题,请你帮助解答:(1)如图2,将正方形AEFG 绕点A 按逆时针方向旋转,则BE 与DG 的数量关系为___________,位置关系为___________.(直接写出答案)(2)如图3,把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,4AE =,8AB =,将矩形AEFG 绕点A 按顺时针方向旋转,求BE 与DG 的数量关系和位置关系;(3)在(2)的条件下,小组发现:在旋转过程中,22DE BG +的值是定值,请求出这个定值.(直接写出答案)数学试题 第7页(共30页) 数学试题 第8页(共30页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………17.(9分)18.(9分)19.(9分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!中考考前最后一卷【河南卷】数学·答题卡第Ⅰ卷(请用2B 铅笔填涂)第Ⅱ卷请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!二、填空题(每小题3分,共15分)11.____________________ 12.____________________ 13.____________________14.____________________ 15.____________________三、解答题(本大题共8小题,共75分)16.(8分)一、选择题(每小题3分,共30分) 1.[ A ] [ B ] [ C ] [ D ] 2.[ A ] [ B ] [ C ] [ D ] 3.[ A ] [ B ] [ C ] [ D ] 4.[ A ] [ B ] [ C ] [ D ]5.[ A ] [ B ] [ C ] [ D ]6.[ A ] [ B ] [ C ] [ D ]7.[ A ] [ B ] [ C ] [ D ]8.[ A ] [ B ] [ C ] [ D ]9.[ A ] [ B ] [ C ] [ D ] 10.[ A ] [ B ] [ C ] [ D ]姓 名:__________________________ 准考证号:贴条形码区考生禁填: 缺考标记违纪标记以上标志由监考人员用2B 铅笔填涂选择题填涂样例:正确填涂错误填涂 [×] [√] [/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。
2020年许昌市九年级二摸数学试卷数学·答题卡请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!姓名:__________________________准考证号:贴条形码区考生禁填:缺考标记违纪标记以上标志由监考人员用2B铅笔填涂选择题填涂样例:正确填涂错误填涂[×] [√] [/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。
2.选择题必须用2B铅笔填涂;填空题和解答题必须用0.5 mm黑色签字笔答题,不得用铅笔或圆珠笔答题;字体工整、笔迹清晰。
3.请按题号顺序在各题目的答题区域内作答,超出区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
注意事项一、选择题(每小题3分,共30分)1 [A] [B] [C] [D]2 [A] [B] [C] [D]3 [A] [B] [C] [D]4 [A] [B] [C] [D]5 [A] [B] [C] [D]6 [A] [B] [C] [D]7 [A] [B] [C] [D]8 [A] [B] [C] [D]9 [A] [B] [C] [D]10 [A] [B] [C] [D]二、填空题(共15分)11. ________________ 12. ________________13. ________________ 14. ________________15. ________________三、解答题(共75分)16.(8分)17.(9分)DC BA18.(9分)19.(9分)图 2EDCBA请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!20.(9分)xy图 1BAO xyDB'O'A'图 2O21.(10分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!22.(10分)图 1GFECBA(D)DAB CEFG图 2备用图ACB23.(11分)xyMDCBOAxy备用图A O BC。
河南省中考数学模拟测试卷-附参考答案与解析一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中选出符合题目的一项)1. −3的绝对值是( )C. 3D. ±3A. −3B. −132. 2023年3月30日郑州市人民公园第二十六届郁金香花展盛大开幕,据了解,本次花展共展出郁金香31个品种10万余株,采取全园分布,让游人闻着浓郁的花香,漫步于花田小径间,体验“人在花中走,如在画中游”的美妙感受.数据“10万”用科学记数法表示为( )A. 10×104B. 10×105C. 1×104D. 1×1053. 郑州是华夏文明的重要发祥地,是三皇五帝活动的腹地,是中华文明的轴心区,市政府开展了“游郑州知华夏”活动.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中与“郑”字所在面相对的面上的汉字是( )A. 知B. 华C. 夏D. 游4. 某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,将收集的数据绘制成了如图所示的扇形统计图,若该校有2000名学生,则参加爱心捐助活动的学生人数为( )A. 200B. 300C. 400D. 5005. 如图,一副三角尺按如图所示的方式放置,若AB//CD,则∠α的度数为( )A. 75°B. 90°C. 105°D. 120°6. 一元二次方程x2−2x+3=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根7. 凸透镜成像的原理如图所示,AG//l//HC.若缩小的实像是物体的23,则物体到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为(焦点F1和F2关于O点对称)( )A. 32B. 23C. 2D. 128. 如图,已知点A(2,a)在反比例函数y1=4√ 3x的图象上,过点A作AB⊥x轴,垂足为B,连接OA,将△AOB沿OA翻折,点B的对应点B′恰好落在y2=kx(k≠0)的图象上,则k的值为( )A. √ 3B. −√ 3C. 2√ 3D. −2√ 39. 如图,在平面直角坐标系中边长为2的等边三角形AOP在第二象限,OA与x轴重合,将△AOP绕点O顺时针旋转60°,得到△A1OP1,再作△A1OP1关于原点O的中心对称图形,得到△A2OP2,再将△A2OP2绕点O顺时针旋转60°,得到△A3OP3,再作△A3OP3关于原点O的中心对称图形,得到△A4OP4,以此类推⋯⋯,则点P2023的坐标是( )A. (1,√ 3)B. (−1,−√ 3)C. (2,0)D. (−2,0)10. 已知抛物线y=x2−2mx+m2−9(m为常数)与x轴交于点A,B点P(m+1,y1),Q(m−3,y2)为抛物线上的两点,则下列说法不正确的是( )A. y有最小值为m2−9B. 线段AB的长为6C. 当x<m−1时,则y随x的增大而减小D. y1<y2二、填空题(本大题共5小题,共15.0分)11. 写出一个比0大且比3小的无理数:______ .12. 方程3x+2−1x=0的解为______ .13. 对一批运动鞋进行抽检,统计合格的运动鞋的数量,得到合格运动鞋的频数表如下:抽取双数(双)20406080100200300合格频数1738557596189286合格频率0.850.950.920.940.960.950.95估计出厂的1500双运动鞋中次品大约有______ 双.14. 某校无人机社团的同学用无人机测量学校旗杆的高度,组员操作无人机飞至离地面高度为25米的A处时,则测得旗杆BC的顶端B的俯角为45°,然后操控无人机水平方向飞行20米至旗杆另一侧D处时,则测得旗杆BC的顶端B的俯角为30°,已知A,B、C、D在同一平面内,则旗杆的高度为______ 米.15. 黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的√ 5−12倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知AB=√ 5+12,则阴影部分的面积为______ .三、解答题(本大题共8小题,共75.0分。
2023年3月河南省九年级中考数学第二次基础摸底考试卷注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟.2.木试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.12023的相反数是()A.2023B.2023- C.12023 D.12023-2.2022年11月4口,第五届中国国际进口博览会在上海开幕,河南展区亮点十足,首台河南造“移动的快递柜”开进博览会.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“移”字所在面相对的面上的汉字是()A.的B.快C.递D.柜3.如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为O .若40AOC ∠=︒,则BOE ∠的度数为()A.120︒B.130︒C.140︒D.150︒4.下列运算结果正确的是()A.2232x x -= B.22(2)4x x +=+ C.326x x x⋅=93=5.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,E 为BC 的中点,连接OE ,60ABC ∠=︒,23BD =,则OE =()A.1B.3C.2D.236.关于x 的一元二次方程210ax x -+=(a 为常数)有实数根,那么a 满足()A.0a ≠ B.14a ≤且0a ≠ C.14a <且0a ≠ D.14a <7.调查学校篮球社䌶成员的年龄,得到数据结果如下表,则该社团成员年龄的众数是()年龄/岁1112131415人数357848.《五经算术》提到:“中数若,万万变之.……万万仅曰兆,万万兆曰京也.”即1兆1=万1⨯万1⨯亿,1京1=万1⨯万1⨯兆,则1京等于()A.1210B.1610C.2410D.32109.如图,在平面直角坐标系中,边长为2的正八边形ABCDEFGH 的中心与原点O 重合,//AH x 轴,交y 轴于点M .将OMH △绕点O 顺时针旋转,每次旋转45︒,则第2023次旋转结束时,点H 坐标为(,)m n ,则m n +与0的关系是()A.0m n +<B.0m n += C.0m n +> D.无法确定10.现在一般家庭都会安装燃气报警器,用以防止一氧化碳泄露带来的危害.其中一种燃气报警器核心部件是气敏传感器(图1中的1R ),1R 的阻值随空气中一氧化碳质量浓度(3g/m )的变化而变化(如图2),空气川一氧化碳体积浓度(ppm )与一氧化碳质量浓度(3g/m )的关系见图3.下列说法不正确的是()信息窗*空气中的一氧化碳质量浓度达到30.8g/m 时,然气报警器报警*一氧化碳休积浓度(ppm)=一氧化碳质量浓度(3g/m )3100.870⨯⨯*一氧化㨏质量浓度(3g/m )=一氧化碳体积㳖度3(ppm) 1.15010-⨯⨯图1图2图3A.空气中一氧化碳质量浓度越大,1R 的阻值越小B.当一氧化碳质量浓度30g/m =时,i R 的阻值为60ΩC.当空气中一氧化碳体积浓度是522(ppm)时,燃气报警器为非报警状态D.当120R =Ω时,燃气报警器为报警状态二、填空题(每小题3分,共15分)11.请写出一个y 随x 增大而减小的一次函数表达式______.12.不等式组2124x x -<⎧⎨>⎩的解集为______.13.一个不透明的口袋中有四张完全相同的卡片,上面依次写有“行”“走”“信”“阳”.随机取出一张卡片后不放回,再随机摸取一张,则两次取出卡片汉字能组成“信”“阳”的概率为______.14.图1是以AB 为直径的半圆形纸片,8AB =,沿着垂直于AB 的半径OC 学开,将扇形OAC 沿AB 向右平移至扇形O A C ''',如图2,其中O '是OB 的中点,O C ''交\overparen BC 于点F ,则图中阴影部分的面积为______.15.如图,在矩形ABCD 中,43BA =,4AD =,EP 是ABD △的中位线,将AEP △绕点A 在平面内自由旋转,当B 、P 、E 三点在同一条直线上时,BE 的长为______.三、解答题(本大题共8个小题,共75分)16.(1)计算:101tan 603120232-⎛⎫-︒+- ⎪⎝⎭;(2)化简:111a a a ⎛⎫⎛⎫-÷+ ⎪ ⎪⎝⎭⎝⎭.17.工商局质检员从某公司9月份生产的A 、B 型扫地机器人中各随机抽取10个,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g ),并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格8085x ≤<,良好8595x ≤<,优秀95x ≥),下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94.抽取的A 、B 型扫地机器人除尘量统计表抽取的B 型扫地机器人除尘量扇形统计图型号平均数中位数方差“优秀”等级所占百分比A 90a 26.6b B90903030%根据以上信息,解答下列问题:(1)填空:a =______,b =______,m =______.(2)某月该公司生产A 型扫地机器人共1200台,估计该月A 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量要好?请说明理由(写出一条理由即可).18.如图,反比例函数(0)ky x x =>的图象经过点(3,1)A ,过点A 作AC x ⊥轴,垂足为C ,连接OA .(1)求反比例函数的表达式;(2)请用无刻度的直尺和圆规作出线段OA的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段OC、OA与(2)中所作的垂直平分线分别交于B、D两点,连接AB.求ABC△的周长.19.中原福塔(FU Tower),又名“河南广播电视塔”,由桅杆和主体两部分构成.其位于作国河南省郑州市管城回族区航海东路与机场高速交汇处,在已建成的世界企钢结构电视塔中高度居于第一位,2018年中原福塔获首批河南省砳学旅游示范基地.如图,小明在点E处测得桅杆底部B的仰角为30︒,然后他沿射线EC行走了173米到达D处,在D处测得桅杆顶部A的仰角为53︒.已知桅杆高120米,请依据相关数据求中原福塔(AC)的高度.(结果保留整数,参考数据:4sin535︒≈,3cos535︒≈,4tan533︒≈3 1.73≈)20.胡辣汤是河南传统早餐,中国北方早餐中常见的汉族传统汤类名吃,起源于河南省漯河市北舞渡镇与周口市西华县逍遥镇,特点是微辣,营养丰富,味道上口,十分适合早点进餐.某便利店试销甲、乙两种口味的胡辣汤料包.已知购进甲种料包的金额是600元,购进乙种料包的金额是400元,购进甲种料包的数量比乙种料包的数量少25袋,甲种料包的单价是乙种料包单价的2倍.(1)甲、乙两种料包的单价分别是多少元?(2)由于口碑甚佳,该便利店准备再次购进甲、乙两种料包共200袋,且制定甲、乙两种料包的售价分别为13元和7元,若进货总金额不超过1150元,请问如何进货才能获得最大利润,最大利润是多少元?21.现有一人工喷泉,人下喷泉有一个竖直的喷水枪AB,喷水枪为A,喷水口A距地面2m,喷出水流的轨迹是抛物线.水流在距AB水平距离1m处达到最高,最高点距地面8 m3,建立如图所示的平面直角坐标系,并设抛物线的表达x为2()y a x h k=-+,其中(m)x是水流距喷水枪的水平距离,(m)y是水流距地面的高度.(1)求抛物线们表达式;(2)在线段BC 上到喷水枪AB 水平距离为2m 处放置一雕塑景观,为避免该雕塑景观被水流淋到,雕塑景观的高度应小于多少米?22.在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“杜杆”,推动“杜杆”带动磨盘转动,将粮食磨碎.如图,AB 为O 的直径,AC 是O 的一条弦,D 为BC 的中点,过点D 的切线交AB 延长线于点F ,交AC 延长线于点E ,连接DA .(1)求证:290F EAD ∠+∠=︒;(2)若63DA DF ==,求BF 的长.23.综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断矩形ABCD 中,在BC 边上找到中点E ,沿AE 将ABE △折叠得到AFE △,点F 在矩形ABCD 内部,延长AF 交CD 于点G .根据以上操作:(1)写出图1AEG △覆盖区域内一个90︒的角______.(2)GF 与GC 的数量关系是______.(2)迁移探究将图1的矩形ABCD 改为平行四边形,其它条件不变,如图2,(1)中GF 与GC 的数量关系是否仍然成立?请说明理由.(3)拓展应用现有一矩形ABCD ,(1)ADk k AB =>,根据(1)的操作判断,若G 恰好是CD 的中点,直接写出k 的值.2023年河南省九年级基础摸底考试数学试卷(一)参考答案1-5DBBDA6-10BBCCD11.1y x =-+(答案不唯一)12.23x <<13.1614.8233π-15.351+或35116.解:(1)原式233110=+--=;(2)原式22111(1)(1)111a a a a a a a a a a a a a a ⎛⎫--+⎛⎫=-÷+=⨯==- ⎪ ⎪++⎝⎭⎝⎭.17.解:(1)在83,84,84,88,89,89,95,95,95,98中,位于中间位置的两个数为89,89,故中位数为(8989)289+÷=,∴中位数89a =,A 型扫地机器人“优秀”等级的有4台,故“优秀”等级所占百分比为41040%÷=;10台B 型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占150%30%20%--=,即20m =;故答案为:89,40%,20;(2)该月A 型扫地机器人“优秀”等级的台数120040%480⨯=(台);(3)A 型号扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A 型号扫地机器人除尘量“优秀”等级所占百分比>B 型号扫地机器人“优秀”等级所占百分比(理由不唯一)18.解:(1)将(3,1)A 代入反比例函数y (0)kx x =>,解得:313k =⨯=,∴反比例函数的表达式为3y (0)x x =>.(2)如下图.(3)由垂直平分线性质可知:AB OB =,故ABC △周长314AB BC AC OB BC AC OC AC =++=++=+=+=.19.解:由题意可知:120AB =米,173DE =米.设AC a =米,则(120)BC a =-米,在Rt BCE △中,30BEC ∠=︒,33(120)CE BC a ∴==-米,在Rt ACD △中,53ADC ∠=︒,3tan ACDC aADC ∴=-∠,DE CE CD =- ,33(120)1734a a --=,∴解得388a ≈.答:中原福塔(AC )的高度约为388米.20.解:(1)设乙种料包的单价为x 元,则甲种料包的单价为2x 元,依题意得:400600252x x -=,解得:4x =,经检验,4x =是原方程的解,则28x =,答:甲种料包的单价为8元,乙种料包的单价为4元.(2)设购进甲种料包m 袋,则购进乙种料包(200)m -袋,依题意得:84(200)1150m m +-≤,解得:87.5m ≤,设利润为W ,依捛题意得:(138)(74)(200)2600W m m m =-+-⨯-=+,20k => ,故当87m =时能获得最大利润,2600774W m =+=(元),20087113-=(袋),答:购进87袋甲种料包,113袋乙种料包,获最大利润为774元.21.解:(1)由题意得:抛物线顶点坐标为81,3⎛⎫ ⎪⎝⎭,故抛物线解析式为28(1)3y a x =-+,将点(0,2)A 代入该解析式,可得:282(01)3a =-+,解得:23a =-,故抛物线表达式为228(1)33y x =--+.(2)当2x =时,228(21)233y =--+=,故雕塑景观的高度应小于2米.22.解:(1)连接OD ,D 为BC 的中点,BAD CAD ∴∠=∠,又OD OA = ,ODA OAD ∴∠=∠,ODA CAD ∴∠=∠,//OD AE ∴,EF 与O 相切于点D ,90E DDF ∴∠=∠=︒,290F EAD F FAE ∴∠+∠=∠+∠=︒.(2)DA DF = ,F DAF ∴∠=∠,又由(1)知:290F EAD ∠+∠=︒,30F DAF DAE ∴∠=∠=∠=︒,6OD ∴=,12OF =,6BF OF OB ∴=-=.23.解:(1)①AEG ∠(或AFE ∠或GFE ∠).②GF GC =.(2)成立.理由:证明:如图,连接FC ,E 是BC 的中点,EB EC ∴=,将ABE △沿AE 折叠后得到AFE △,AFE B ∴∠=∠,EF EB =,EF EC ∴=,EFC ECF ∴∠=∠,四边形ABCD 为平行四边形,B D ∴∠=∠,180ECD D ∠=︒-∠,180180180EFG AFE B D ∠=︒-∠=︒-∠=︒-∠,ECD EFG ∴∠=∠,EFG EFC ECG ECF ∴∠-∠=∠-∠,GFC GCF ∴∠=∠,∴=,即(1)中的结论仍然成立;GF GC2.(3。
2022年河南省郑州市中考数学模拟试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(每小题3分,共30分)1.﹣的相反数是()A.B.C.D.2.据河南省统计局发布的信息,2021年我省对外贸易取得新突破,全年全省进出口总值8208.1亿元,创河南省进出口规模历史新高,数据“8208.1亿”用科学记数法表示为()A.0.82081×1012B.82081×107C.8.2081×1011D.8.2081×1053.下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球4.如图,在△ABC中,AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°5.下列各式计算正确的是()A.2a2+3a2=5a4B.(﹣2ab)3=﹣6ab3C.(3a+b)(3a﹣b)=9a2﹣b2D.a3•(﹣2a)=﹣2a36.关于x的一元二次方程x2+(2﹣k)x﹣k=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.现有四张分别标有数字﹣3,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上所标的数字都是非负数的概率为()A.B.C.D.8.为了解新冠肺炎疫情防控期间,学生居家进行“线上学习”情况,某班进行了某学科单元基础知识“线上测试”,其中抽查的10名学生的成绩如图所示,对于这10名学生的测试成绩,下列说法正确()A.中位数是95分B.众数是90分C.平均数是95分D.方差是159.如图,在▱OABC中,边OC在x轴上,点A(1,),点C(3,0).按以下步骤作图:分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于E,F两点;作直线EF,交AB于点H;连接OH,则OH的长为()A.B.C.2D.210.如图1,点A是⊙O上一定点,圆上一点P从圆上一定点B出发,沿逆时针方向运动到点A,运动时间是x(s),线段AP的长度是y(cm).图2是y随x变化的关系图象,则点P的运动速度是()A.1cm/s B.cm/s C.cm/s D.cm/s二、填空题(每小题3分,共15分)11.计算:()﹣1﹣|﹣2|=.12.如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x的取值范围是.13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.14.如图,矩形ABCD和矩形CEFG,AB=1,BC=CG=2,CE=4,点P在边GF上,点Q在边CE上,且PF=CQ,连接AC和PQ,M,N分别是AC,PQ的中点,则MN的长为.15.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,∠BCD=45°,AB=BD =6,E为AD上一动点,连接BE,将△ABE沿BE折叠得到△FBE,当点F落在平行四边形的对角线上时,OF的长为.三、解答题(共8个小题,共75分)16.(8分)如果m2﹣4m﹣6=0,求代数式(+1)÷的值.17.为了解某市八年级数学期末考试情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据随机抽取甲乙两所学校的各20名学生的数学成绩进行分析(满分为100分):甲91 89 77 86 71 31 97 93 72 91 81 92 85 85 95 88 88 90 4491乙84 93 66 69 76 87 77 82 85 88 90 88 67 88 91 96 68 97 5988整理、描述数据按如表数据段整理、描述这两组数据分析数据分段学校30≤x≤39 40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100甲 1 1 0 0 3 7 8乙0 0 1 4 2 8 5 两组数据的平均数、中位数、众数、方差如表:统计量平均数中位数众数方差学校甲81.85 a b268.43乙c86 88 115.25 经统计,表格中a=;b =;c=;得出结论(1)若甲学校有600名八年级学生,估计这次考试成绩80分以上人数为;(2)可以推断出学校学生的数学水平较高,理由为:.(至少从两个不同的角度说明推断的合理性)18.如图1,点A、B是双曲线y=(k>0)上的点,分别经过A、B两点向x轴、y轴作垂线段AC、AD、BE、BF,AC和BF交于点G,得到正方形OCGF(阴影部分),且S=1,△AGB的面积为2.阴影(1)求双曲线的解析式;(2)在双曲线上移动点A和点B,上述作图不变,得到矩形OCGF(阴影部分),点A、B在运动过程中始终保持S=1不变(如图2),则△AGB的面积是否会改变?说明理阴影由.19.如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=21米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,sin53°≈,cos53°≈,tan53°≈)(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.(结果精确到0.1米)20.阅读下面材料,并按要求完成相应的任务:阿基米德是古希腊的数学家、物理学家.在《阿基米德全集》里,他关于圆的引理的论证如下:命题:设AB是一个半圆的直径,并且过点B的切线与过该半圆上的任意一点D的切线交于点T,如果作DE垂直AB于点E,且与AT交于点F,则DF=EF.证明:如图①,延长AD与BT交于点H,连接OD,OT.∵DT,BT与⊙O相切∴……,①∴BT=DT∵AB是半⊙O的直径,∠ADB=90°,②在△BDH中,BT=DT,得到∠TDB=∠TBD,可得∠H=∠TDH,∴BT=DT=HT.又∵DE∥BH,∴,∴又∵BT=HT,∴DF=EF.任务:(1)请将①部分证明补充完整;(2)证明过程中②的证明依据是;(3)如图②,△BED是等边三角形,BE是⊙O的切线,切点是B,D在⊙O上,CD⊥AB,垂足为C,连接AE,交CD于点F,若⊙O的半径为2,求CE的长.21.某校为改善教师的办公环境,计划购进A,B两种办公椅共100把.经市场调查:购买A种办公椅2把,B种办公椅5把,共需600元;购买A种办公椅3把,B种办公椅1把,共需380元.(1)求A种,B种办公椅每把各多少元?(2)因实际需要,购买A种办公椅的数量不少于B种办公椅数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其它因素),实际付款总金额按市场价九折优惠.请设计一种购买办公椅的方案,使实际所花费用最省,并求出最省的费用.22.在平面直角坐标系xOy中,已知抛物线y=x2+(a﹣1)x﹣2a,其中a为常数,点A(﹣4,2a﹣4)在此抛物线上.(1)求此时抛物线的解析式及点A的坐标;(2)设点M(x,y)为抛物线上一点,当﹣3≤x≤2时,求纵坐标y的最大值与最小值的差;(3)已知点P(﹣2,﹣3),Q(2,﹣3)为平面直角坐标系内两点,连接PQ.若抛物线向上平移c个单位(c>0)的过程中,与线段PQ恰好只有一个公共点,请直接写出c 的取值范围.23.在△ABC中,AB=AC=2,∠BAC=90°,将边AB绕点A逆时针旋转至AB′,记旋转角为α.分别过A,C作直线BB′的垂线,垂足分别是E,F,连接B′C交直线AF 于点Q.(1)如图1,当α=45°时,△AEF的形状为;(2)当0°<α<360°时,①(1)中的结论是否成立?如果成立,请就图2的情形进行证明;如果不成立,请说明理由;②在旋转过程中,当四边形AECF为平行四边形时,请直接写出CF的长.2022年河南省郑州市中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.解:的相反数是,故选:D.2.解:8208.1亿=820810000000=8.2081×1011.故选:C.3.解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是长方形,故选项B不合题意;C.俯视图是圆,主视图是三角形,故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.4.解:∵AC=CB,∠C=40°,∴∠BAC=∠B=(180°﹣40°)=70°,∵AD=AE,∴∠ADE=∠AED=(180°﹣70°)=55°,∵GH∥DE,∴∠GAD=∠ADE=55°,故选:C.5.解:A、原式=5a2,不符合题意;B、原式=﹣8a3b3,不符合题意;C、元素师=9a2﹣b2,符合题意;D、原式=﹣2a4,不符合题意,故选:C.6.解:∵Δ=b2﹣4ac=(2﹣k)2﹣4×(﹣k)=k2+4>0,∴方程总有两个不相等的实数根.故选:A.7.解:根据题意列表如下:0 2 ﹣1 ﹣30 ﹣﹣﹣(2,0)(﹣1,0)(﹣3,0)2 (0,2)﹣﹣﹣(﹣1,2)(﹣3,2)﹣1 (0,﹣1)(2,﹣1)﹣﹣﹣(﹣3,﹣1)﹣3 (0,﹣3)(2,﹣3)(﹣1,﹣3)﹣﹣﹣所有等可能的情况有12种,其中两张卡片的数字都是非负数的情况有2种,则P(两个都是非负数)==.故选:A.8.解:A、中位数是90分,错误;B、众数是90分,正确;C、平均数==91,错误;D、方差=[2(85﹣91)2+5(90﹣91)2+2×(95﹣91)2+(100﹣91)2]=19,错误;故选:B.9.解:连接HC,过A点作AM⊥x轴于M,如图,∵OM=1,AM=,OC=3,∴OA==2,∴tan∠AOM==,∴∠AOM=60°,∵四边形ABCD为平行四边形,∴∠B=∠AOM=60°,BC=OA=2,由作法得EF垂直平分BC,∴HC=HB,∴△HBC为等边三角形,∴BH=2,∴AH=1,∴H点的坐标为(2,),∴OH==.故选:B.10.解:从图2看,当x=1时,y=AP=2,即此时A、O、P三点共线,则圆的半径为AP=1,当x=0时,AP=AB===,故OA⊥OB,则点P从点B走到A、O、P三点共线的位置时,此时x=1,走过的了角度为90°,则走过的弧长为×2π×r=,故点P的运动速度是÷1=(cm/s),故选:C.二、填空题(每小题3分,共15分)11.解:原式=2﹣(2﹣)=2﹣2+=.故答案为:.12.解:根据题意得:1<1﹣2x<2,解得:﹣<x<0,则x的范围是﹣<x<0,故答案为:﹣<x<013.解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.14.解:连接CF,交PQ于R,延长AD交EF于H,连接AF,如图所示:则四边形ABEH是矩形,∴HE=AB=1,AH=BE=BC+CE=2+4=6,∵四边形CEFG是矩形,∴FG∥CE,EF=CG=2,∴∠RFP=∠RCQ,∠RPF=∠RQC,FH=EF﹣HE=2﹣1=1,在Rt△AHF中,由勾股定理得:AF===,在△RFP和△RCQ中,,∴△RFP≌△RCQ(ASA),∴RP=RQ,∴点R与点M重合,∵点N是AC的中点,∴MN是△CAF的中位线,∴MN=AF=×=.故答案为:.15.解:如图1中,当点F落在BD上时,点F与D重合.∵四边形ABCD是平行四边形,∴OB=OD=BD=3,即OF=3.如图2中,当点F落在AC上时,设BE交AC于点J.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∵BA=BD=6,∴∠BAD=∠BDA=45°,∴∠ABD=90°,∴AO===3,∵BA,BF关于BE对称,∴BF=BA,BE⊥AF,∴AJ=JF,∵•AB•OB=•OA•BJ,∴BJ==,∴OJ===,∴AJ=JF=AO﹣OJ=3﹣=,∴OF=FJ﹣OJ=﹣=,综上所述,满足条件的OF的值为3或.故答案为:3或.三、解答题(共8个小题,共75分)16.解:原式====(m﹣1)(m﹣3)=m2﹣4m+3,∵m2﹣4m﹣6=0,∴m2﹣4m=6,∴原式=6+3=9.17.解:将甲学校20名学生数学成绩重新排列如下:31、44、71、72、77、81、85、85、86、88、88、89、90、91、91、91、92、93、95、97,所以甲学校20名学生数学成绩的中位数a==88,众数b=91,乙学校20名学生数学成绩的平均数c=×(84+93+66+69+76+87+77+82+85+88+90+88+67+88+91+96+68+97+59+88)=81.95;故答案为:88、91、81.95;(1)若甲学校有600名八年级学生,估计这次考试成绩80分以上人数为600×=450(人),故答案为:450人;(2)可以推断出甲学校学生的数学水平较高,理由为:两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.故答案为:甲,两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.18.解:(1)∵四边形OCGF是正方形,∴OC=CG=GF=OF,∠CGF=90°,=1,∵OC2=S阴影∴OC=CG=GF=OF=1,∴点A的横坐标为1,点B纵坐标为1.∵点A、B是双曲线y=上的点,∴点A的纵坐标为y=,点B横坐标为x=,∴AC=k,BF=k,∴AG=k﹣1,BG=k﹣1.∵∠AGB=∠CGF=90°,=AG•BG=2=2,∴S△AGB解得k=3(取正值).∴反比例函数的解析式为y=;(2)点A、B在运动过程中△AGB的面积保持不变.理由如下:设矩形OCGF的边OC=m.=OC•OF=1,∴OF=.∵S阴影∴点A的横坐标为m,点B纵坐标为.∵点A、B是双曲线y=上的点,∴点A的纵坐标为y=,点B横坐标为.∴AC=,BF=3m.又FG=OC=m,CG=OF=,∴AG=AC﹣CG=﹣=,BG=BF﹣FG=3m﹣m=2m,∴S=AG•BG=••2m=2.△AGB∴点A、B在运动过程中△AGB的面积保持不变.19.解:(1)如图,过点B作BM⊥AE,BN⊥CE,垂足分别为M、N,由题意可知,∠CBN=45°,∠DAE=53°,i=1:,AB=10米,AE=21米.∵i=1:==tan∠BAM,∴∠BAM=30°,∴BM=AB=5(米),即点B距水平地面AE的高度为5米;(2)在Rt△ABM中,∠BAM=30°,∴BM=AB=5(米)=NE,AM=AB=5(米),∴ME=AM+AE=(5+21)米=BN,∵∠CBN=45°,∴CN=BN=ME=(5+21)米,∴CE=CN+NE=(5+26)米,在Rt△ADE中,∠DAE=53°,AE=21米,∴DE=AE•tan53°≈21×=28(米),∴CD=CE﹣DE=5+26﹣28=5﹣2≈6.7(米),即广告牌CD的高度约为6.7米.20.解:(1)如图,连接OD,OT,∴∠ODT=∠OBT=90°,在Rt△ODT和Rt△OBT中,,∴Rt△ODT≌Rt△OBT(HL);(2)直径所对的圆周角是直角;故答案为:直径所对的圆周角是直角.(3)如图,连接OD,CE,∵△BED是等边三角形,∴∠EBD=60°,∵BE是⊙O的切线,∴∠EBA=90°,∴∠DBA=30°,∴∠DOC=60°,∵OD=OA,∴△ODA为等边三角形,∵OD=2,CD⊥AB,∴OC=OA=1,DC=,∴=BE,∵OB=2∴BC=3,在Rt△EBC中,由勾股定理得,CE=.21.解:(1)设A种办公椅x元/把,B种办公椅y元/把,依题意得:,解得:.答:A种办公椅100元/把,B种办公椅80元/把.(2)设购买A种办公椅m把,则购买B种办公椅(100﹣m)把,依题意得:m≥3(100﹣m),解得:m≥75.设实际所花费用为w元,则w=[100m+80(100﹣m)]×0.9=18m+7200.∵k=18>0,∴w随m的增大而增大,∴当m=75时,w取得最小值,最小值=18×75+7200=8550,此时100﹣m=25.答:当购买75把A种办公椅,25把B种办公椅时,实际所花费用最省,最省的费用为8550元.22.解:(1)把点A(﹣4,2a﹣4)代入抛物线解析式y=x2+(a﹣1)x﹣2a,得2a﹣4=(﹣4)2﹣4(a﹣1)﹣2a.解得a=3.∴抛物线的解析式为y=x2+2x﹣6.点A的坐标为(﹣4,2).(2)∵抛物线的对称轴为直线,且﹣3≤x≤2.∴当x =﹣1时,y 最小=﹣7.∵当x =﹣3时,y =﹣3;当x =2时,y =2, ∴y 最大=2.∴点M 纵坐标y 的最大值与最小值的差为:y 最大﹣y 最小=2﹣(﹣7)=9. (3)由题意可知,PQ ∥x 轴.抛物线开口向上,对称轴为直线x =﹣1,抛物线顶点坐标为(﹣1,c ﹣7), 当抛物线顶点落在PQ 上时,c ﹣7=﹣3, 解得c =4,满足题意.把Q (2,﹣3)代入y =x 2+2x ﹣6+c 得﹣3=4+4﹣6+c , 解得c =﹣5,把P (﹣2,﹣3)代入y =x 2+2x ﹣6+c 得﹣3=4﹣4﹣6+c , 解得c =3,∴0<c <3满足题意,综上所述,0<c <3或c =4.23.解:(1)结论:△AEF 是等腰直角三角形. 理由:如图1中,∵∠ABC =90°,∠BAB ′=45°,∴∠CAB′=90°﹣45°=45°,∵AB=AB′=AC,∴∠ABB′=∠AB′B=∠AB′C=∠ACB′=67.5°,∴∠CB′F=180°﹣2×67.5°=45°,∵CF⊥BF,∴∠FCB′=∠FB′C=45°,∴FB′=FC,∵AC=AB′,∴AF垂直平分线段CB′,∴∠AFB′=∠AFC=45°,∵AE⊥EF,∴∠EAF=∠EFA=45°,∴EA=EF,∴△AEF是等腰直角三角形.故答案为:等腰直角三角形;(2)①结论成立.理由:如图2中,∵AB=AC=AB′,∴∠BB′C=∠BAC=45°,∵CF⊥BF,∴∠FCB′=∠FB′C=45°,∴FB′=FC,∵AC=AB′,∴AF垂直平分线段CB′,∴∠QFB′=∠QFC=45°,∴∠AFE=∠QFB′=45°,∵AE⊥EF,∴∠EAF=∠EFA=45°,∴EA=EF,∴△AEF是等腰直角三角形;(3)如图3中,连接EC,设AC交EF于点O.当四边形AECF是平行四边形时,AO=OC=1,在Rt△ABO中,OB===,∵AE⊥OB,∴•AB•AO=•BO•AE,∴AE==.。
2024年河南省中考数学复习模拟试卷(一)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.(共10题;共30分)1.(3分)绝对值小于4的所有整数的和是( )A.4B.8C.0D.17 2.(3分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( )A.2B.C.D.1 3.(3分)根据最新数据统计,2018 年中山市常住人口已达到3260000 人.将3260000用科学记数法表示,下列选项正确的是( )A.3.26×105B.3.26×106C.32.6×105D.0.326×1074.(3分)如图,为的直径,弦于点E,于点F,,则为( )A.B.C.D.5.(3分)已知分式,,其中,则与的关系是( )A.B.C.D.6.(3分)如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是( )A.B.C.D.7.(3分)关于的一元二次方程的根的情况,下列说法正确的是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.与的值有关,无法确定8.(3分)一个不透明的袋子中放入三个除标号外其余均相同的小球,三个小球的标号分别是2,1,-1,随机从这个袋子中一次取出两个小球,取出的两个小球上数BK字之积为负数的概率是( )A.B.C.D.9.(3分)一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是( )A.k=2B.k=3C.b=2D.b=3 10.(3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P 不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.二、填空题(每小题3分,共15分)(共5题;共15分)11.(3分)下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系 .12.(3分)已知关于x,y的方程组给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数③a=1时,方程组的解也是方程的解;④和之间的数量关系是.其中正确的是 (填序号)13.(3分)某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是 .14.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交边BC于点D,E,F分别是AD,AC上的点,连接CE,EF.若AB=10,BC=6,AC=8,则CE+EF的最小值是 .15.(3分)如图,正方形网格中的△ABC,若小方格的边长都为1,则△ABC是 三角形.三、解答题(本大题共8个小题,共75分)(共8题;共75分)16.(10分)回答下列问题.(1)(5分)计算:.(2)(5分)解方程:.17.(9分)为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998根据以上信息,解答下列问题:(1)(3分)这个班共有男生 人,共有女生 人;(2)(3分)补全初二1班体育模拟测试成绩分析表;(3)(3分)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.18.(9分)一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A、B两处的两名公安人员想在距A、B相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点.19.(9分)如图,等腰Rt的直角顶点A在反比例函数的图象上.(1)(3分)已知,求此反比例函数的解析式;(2)(3分)先将点A绕原点O逆时针旋转90°,得到点E,再将点E向右平移1个单位得到点F,若点F恰好在正比例函数的图象上,求正比例函数的表达式.20.(9分)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线与河垂直,在过点S且与直线垂直的直线a上选择适当的点T,与过点Q且与垂直的直线b的交点为R.如果,,,求的长.21.(9分)一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东行为正,向西行为负,行驶里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)(3分)将最后一名乘客送到目的地,出租车在该商场的哪边?离商场有多远?(2)(3分)如果出租车每行驶100 km的油耗为10L,1L汽油的售价为7.2元,那么出租车在这天上午消耗汽油的金额是多少元?22.(10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)(5分)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)(5分)足球第一次落地点C距守门员多少米?23.(10分)如图,在菱形ABCD中,,将边AB绕点A逆时针旋转至,记旋转角为.过点D作于点F,过点B作BE⊥直线于点E,连接EF.【探索发现】(1)(3分)填空:当时,_ °;的值是_ ;(2)(3分)【验证猜想】当时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(4分)【拓展应用】在(2)的条件下,若,当是等腰直角三角形时,请直接写出线段EF的长.答案1.C2.C3.B4.C5.B6.C7.C8.C9.D10.D11.d-c=b-a12.①②③13.160°14.4.815.直角16.(1)解:原式(2)解:,.17.(1)20;25(2)解:甲的平均分为×(5+6×2+7×6+8×3+9×5+10×3)=7.9,女生的众数为8,补全表格如下:平均分方差中位数众数男生7.9287女生7.92 1.9988(3)解:可根据众数比较得出答案.从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.18.解:角平分线上的点到角两边的距离相等(即犯罪分子在∠MON的角平分线上,点P也在其上)线段垂直平分线上的点到线段两端点的距离相等(所以点P在线段AB的垂直平分线上).∴两线的交点,即点P符合要求.19.(1)解:如图,作AC⊥OB于C,∵△AOB是等腰直角三角形,OA=2,∴AC=OC=2,∴A(2,2),∵直角顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)解:∵A(2,2),∴将点A绕原点O逆时针旋转90°,得到点E(-2,2),再将点E向右平移1个单位得到点F(-1,2),∵点F恰好在正比例函数y=mx的图象上,∴2=-m,解得m=-2,∴正比例函数的表达式为y=-2x.20.解:由题意可知,,,设,∵,,,∴,,解得,经检验x=120是方程的解的长为.21.(1)解:9-8-5+6-8+9-3-7-5+10=(9+6+9+10)-(8+5+8+3+7+5)=34-36=-2(km).答:将最后一名乘客送到目的地,出租车在该商场的西边,离商场2 km;(2)解:|+9|+|-8|+|-5|+|+6|+|-8|+|+9|+|-3|+|-7|+|-5|+|+10|=70(km),×10×7.2= 50.4 (元).答:出租车在这天上午消耗汽油的金额是50.4元.22.(1)解:以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣,所以抛物线解析式为:y=﹣x2+x+1;(2)解:令y=0,则﹣x2+x+1=0,解得:x1=6﹣4 (舍去),x2=6+4 =12.8(米),所以,足球落地点C距守门员约12.8米.23.(1)30;(2)解:当时,(1)中的结论仍然成立.证明:如图,连接BD,∵,∴,,∴,∴,∵,∴,∴,即,∴,,∴,又∵,∴,∴.(3)解:的长为或.。
河南省2022年中考考前仿真模拟卷(四)数 学(本试题卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定位置。
2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米的黑色签字笔。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.已知四个数:2-,1-,0,1,其中最大的数是( ) A .2-B .1-C .0D .12.我国2020年国内生产总值大约101万亿元.数据“101万亿”用科学记数法表示为( ) A .1110110⨯B .1210110⨯C .141.0110⨯D .151.0110⨯3.将含30︒角的直角三角尺如图摆放,直线//a b ,若165∠=︒,则2∠的度数为( )A .45︒B .50︒C .55︒D .60︒4.下列运算正确的是( ) A 42± B .32522-C 3279-=-D .2363()a b a b -=-5.下列运算正确的是( )A .322a a a -=B .22222a a a +=C .22(2)4a a +=+D .23()3a b ab a -÷=-6.关于x 的一元二次方程2(2)0x k x k +--=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定7.某校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班平均得分( )A .9B .6.67C .9.1D .6.748.函数231(0)y ax ax a =++>的图象上有三个点分别为1(3,)A y -,2(1,)B y -,1(2C ,3)y ,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .213y y y <<C .321y y y <<D .1y ,2y ,3y 的大小不确定9.如图,在Rt ABC ∆中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D 、E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若2AC =,3CG =,则CF 的长为( )A .52B .2C .3D .7210.如图在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒23π个单位长度,则2019秒时,点P 的坐标是( )A .(2017,0)B .(2017,3)C .(2018,0)D .(2019,3)-二、填空题(每小题3分,共15分)11.计算:119()2-+= .12.已经点(2,1)P a a +-在平面直角坐标系的第四象限,则a 的取值范围是13.一个不透明的盒子中装有黑、白小球各两个,它们除颜色外无其它差别,从盒子中随机摸出一个小球,记下颜色不放回,然后摇匀后再随机摸出一个小球,则两次摸出的球都是白球的概率是 . 14.如图,在等腰Rt ABC ∆中,90ABC ∠=︒,2AB =,斜边AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与AB 、BC 相交,则图中的阴影部分的面积为 .(结果保留)π15.如图,矩形ABCD 中,10AB =,12BC =,M 为AB 中点,N 为BC 边上一动点,将MNB ∆沿MN 折叠,得到MNB '∆,则CB '的最小值为 .三、解答题(本大题共8个小题,共75分)16.(10分)先化简,再求值:222264(2)121a a a a a a -+--÷+++,其中a 满足2220a a --=.17.(9分)为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,10,10.(1)填写表:平均数(环)中位数(环)方差(环2)小华88 23小亮8 3(3)若小亮再射击2次、分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变)18.(9分)宝轮寺塔-中国四大回音建筑之一,位于三门峡市陕州风景区,始建于隋唐时期,因能发出“呱-呱”的声音而俗称“蛤蟆塔”.当地某校数学实践活动小组的同学们一起对该塔的高度()AB进行测量.因塔底部B无法直接到达,制定了如下的测量方案:先在该塔正前方广场地面C处测得塔尖A的仰角()∠为45︒,因广场面积有限,无法再向C点的正后方移动,故操控无人机飞到C点正上方10 ACB米的D处测得塔尖A的仰角为32︒,A,B,C,D四点在同一个平面内,求塔高()AB为多少米.(结果精确到0.1米,参考数据:sin320.53︒≈︒≈,tan320.62)︒≈,cos320.8519.(9分)某商店计划购进甲、乙两种商品,已知购进2件甲商品和1件乙商品共需100元,购进3件甲商品和2件乙商品共需180元.(1)求甲、乙两种商品的进价分别是多少元?(2)若商店以40元每件出售甲商品,90元每件出售乙商品,现购进甲、乙两种商品共100件,且甲商品的数量不少于乙商品数量的3倍,请你求出获利最大的进货方案,并求出最大利润.20.(9分)如图,在ABC ∆中,60B ∠=︒,O 是ABC ∆的外接圆,过点A 作O 的切线,交CO 的延长线于点M ,CM 交O 于点D . (1)求证:AM AC =;(2)填空:①若3AC =,MC = ;②连接BM ,当AMB ∠的度数为 时,四边形AMBC 是菱形.21.(9分)如图所示,反比例函数k y x=的图象经过格点(网格线的交点)P .(1)求反比例函数ky x=的解析式; (2)在图中用直尺和2B 铅笔画出两条直线(不写画法),要求这两条直线满足以下两个条件: ①这两条直线将图中所示矩形OCPA 面积四等分; ②每条直线至少经过图中所示矩形OCPA 边上的两个格点.例如,直线PO 和AC 能将矩形四等分,且直线PO 和AC 每一条直线至少经过矩形边上的两个格点.请再用两种方法解决这个问题.(3)①若直线1:l y kx b =+能将矩形OCPA 面积二等分,则用含k 的式子可以将b 表示为 ; ②若2k =,再增加一条直线2l 能将矩形面积四等分,求该直线2l 的解析式.22.(10分)如图,在平面直角坐标系中,抛物线2122y x x =+经过x 轴上的A 点,直线AB 与抛物线在第一象限交于点(2,6)B . (1)求直线AB 的函数解析式;(2)已知点Q 是抛物线的对称轴上的一个动点,当BOQ ∆的周长最小时,求BOQ ∆的面积; (3)若以点A ,O ,B ,N 为顶点的四边形是平行四边形,则点N 的坐标是 .23.(10分)如图1,ABC ∆和AMN ∆都是等腰直角三角形,ABC ∆固定不动,AMN ∆可以绕着点A旋转,旋转角为(0360)αα︒<<︒.(1)观察验证:当AMN ∆绕点A 旋转到如图2的位置时,求证:AMC ANB ∆≅∆;(2)问题探究:如图3,连接BM ,分别取MN 、BM 、BC 的中点O 、P 、Q ,连接OP 、PQ 、OQ ,猜想OPQ ∆的形状,并说明理由;(3)问题拓展:若5AC =,3AN =,在(2)的条件下,AMN ∆绕着点A 在自由旋转过程中,旋转角为(0360)αα︒<<︒,求出OPQ ∆面积的最大值.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
河南省2020年中考模拟数学试卷 (一)一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10123.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.28.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x﹣h﹣3)2+k+3=x+n的两根为.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,A级人数占本次抽取人数的百分比为%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.3.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°【分析】依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05;由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10.故选:C.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式进而得出不等式组的解集,进而得出答案.【解答】解:,解①得:x>﹣6,解②得:x≤13,故不等式组的解集为:﹣6<x≤13,在数轴上表示为:.故选:B.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.2【分析】判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.【解答】解:由得,∴A(2,3),由一次函数y=x+,令y=0,解得x=﹣2,∴(﹣2,0),∴S△AOB=OB•|y A|==3,AB==5,∵当OP⊥AB时,OP最小,∴S△AOB=AB•OP最小,∴×5OP最小=3∴OP最小=,故选:C.8.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN =∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE∽△FGC便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC=BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.【分析】分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.【解答】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=,①当P在OB上时,即0≤x≤1,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•OP=×2x(1﹣x)=﹣x2+x;②当P在OD上时,即1<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2﹣x):1,∴EF=4﹣2x,∴y=EF•OP==﹣x2+3x﹣2,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.根据题意可知符合题意的图象只有选项B.故选:B.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=0 .【分析】直接利用负指数幂的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣4+4=0.故答案为:0.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.【分析】用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图展示所有9种等可能的结果数,找出某一初三男学生同时选择篮球和立定跳远这两项的结果数,然后根据概率公式求解.【解答】解:用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d 分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图为:共有12种等可能的结果数,其中某一初三男学生同时选择篮球和立定跳远这两项的结果数为1,所以某一初三男学生同时选择篮球和立定跳远这两项的概率=.故答案为.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x ﹣h﹣3)2+k+3=x+n的两根为2或6 .【分析】根据函数与方程的关系及函数平移的规律,变形要求的方程,利用平移规律可解.【解答】解:由方程a(x﹣h﹣3)2+k+3=x+n得a(x﹣h﹣3)2+k=x+n﹣3①方程①可看作左边是二次函数y=a(x﹣h﹣3)2+k,右边是一次函数y=x+n﹣3根据平移知识,可知方程①相当于关于x的一元二次方程a(x﹣h)2+k=x+n②,左右两边都向右平移3个单位而方程②的两根为x1=﹣1,x2=3∴方程①的两根为x1=2,x2=6故答案为2或6.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.【分析】连接B1、B2、B3、B4点,显然它们共线且平行于AC1,依题意可知△B1B2C1与△C1AA1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AA2=1:2,所以B2C2:C2A=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S6的值,即可求解.【解答】解:解:连接B1、B2、B3、B4.∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴=×1×1=,=×2×1=1,=×3×1=,…==3,连接B1、B2、B3点,显然它们共线且平行于AA1易知S1=,∵B2B3∥AA2,∴△B2C2B3∽△A2C2A,∴=,∴S2==,同理可求,S3==,S4=×2=,S5==,S6==,∴S1+S2+S3+S4+S5+S6==,故答案为:.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=1或﹣.【分析】分两种情形:①如图1中,当∠DGF=90°时,作DH⊥BC于H.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.【解答】解:①如图1中,当∠DGF=90°时,作DH⊥BC于H.在Rt△ACB中,∵∠ACB=90°,AC=2,BC=4,∴AB===2,∵AD=DB,∴CD=AB=,∵DH∥AC,AD=DB,∴CH=BH,∴DH=DG=AC=1,∴CG=﹣1,∵DC=DB,∴∠DCB=∠B,∴cos∠DCB=cos∠B=,∴CE=CG÷cos∠DCB=﹣.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.易证四边形DKEH是正方形,可得EH=DH=1,∵CH=BH=2,∴CE=1,综上所述,满足条件的CE的值为1或﹣.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.【分析】根据分式的减法和除法可以化简题目中的式子,然后由方程a2+a﹣6=0可以求得a的值,然后将a的值代入化简后的式子即可解答本题,注意代入a的值必须使得原分式有意义.【解答】解:====,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式==.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1 时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB=60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50 名学生,A级人数占本次抽取人数的百分比为24 %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72 度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:1000×=80(人),答:该校D级学生有80人.19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)【分析】过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,求DE的问题就可以转化为求∠DBE的度数或三角函数值的问题.Rt△DCE中根据三角函数就可以求出CD的长.【解答】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景点C与景点D之间的距离约为4km.20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=;(2)不等式2x+6<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴>0∴S△BMN=|MN|×|y M|==(n﹣3)2+,∴n=3时,△BMN的面积最大,最大值为.21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?【分析】(1)首先设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,然后根据题意,即可得方程,解方程即可求得答案;(2)设至少需购进B种台灯x盏,然后由该商场销售这批台灯的总利润不少于1400元,即可得一元一次不等式35y+20(50﹣y)≥1400,解此不等式即可求得答案;(3)首先设该商场购进A种台灯m盏,由该商场预计用不多于2600元的资金购进这批台灯,可通过不等式组求得m的取值范围,然后求得该商场获得的总利润与该商场购进A种台灯的盏数的一次函数,由10<a<20,根据一次函数的增减性即可求得答案.【解答】解:(1)设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,由题意得:40x+65(50﹣x)=2500,解得:x=30,∴该商场购进A种台灯30盏,购进B种台灯20盏.(2)设购进B种台灯y盏,由题意得:35y+20(50﹣y)≥1400,解得:y≥,∴y的最小整数解为27,∴至少需购进B种台灯27盏;(3)设该商场购进A种台灯m盏,由题意得:40m+65(50﹣m)≤2600,解得:m≥26,∴26≤m30,设该商场获得的总利润为w元,则w=20m+(35﹣a)(50﹣m)=(a﹣15)m+1750﹣50a,∵10<a<20,∴当10<a≤15时,m=26,即购进A种台灯26盏,购进B种台灯24盏,该商场获得的总利润最大,当15<a<20时,m=30,即购进A种台灯30盏,购进B种台灯20盏,该商场获得的总利润最大.22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为 1 ;②∠DBE的度数为90°.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.【分析】(1)由直角三角形的性质可得∠ABC=45°,可得∠DBE=90°,通过证明△ACD ∽△BCE,可得的值;(2)通过证明△ACD∽△BCE,可得的值,∠CBE=∠CAD=60°,即可求∠DBE的度数;(3)分点D在线段AB上和BA延长线上两种情况讨论,由直角三角形的性质可证CM=BM=,即可求DE=2,由相似三角形的性质可得∠ABE=90°,BE=AD,由勾股定理可求BE的长.【解答】解:(1)∵∠ACB=90°,∠CAB=45°∴∠ABC=∠CAB=45°∴AC=BC,∠DBE=∠ABC+∠CBE=90°∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且∠CAB=∠CDE=45°,∴△ACD∽△BCE∴故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,且△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.【分析】(1)利用抛物线的对称性得到B(3,0),则设交点式为y=a(x+1)(x﹣3),把C(0,﹣3)代入求出a即可得到抛物线解析式,然后把解析式配成顶点式即可得到D 点坐标;(2)设P(m,m2﹣2m﹣3),先确定直线BC的解析式y=x﹣3,再确定E(1,﹣2),则可根据三角形面积公式计算出S△BDC=S△BDE+S△CDE=3,然后分类讨论:当点P在x轴上方时,即m>3,如图1,利用S=S△PAB+S△CAB=S△BCD得到2m2﹣4m=;当点P在x轴下方时,即1<m<3,如图2,连结OP,利用S=S△AOC+S△COP+S△POB=S△BCD得到﹣m2+m+6=,再分别解关于m的一元二次方程求出m,从而得到P点坐标;(3)存在.直线x=1交x轴于F,利用两点间的距离公式计算出BD=2,分类讨论:①如图3,EQ⊥DB于Q,证明Rt△DEQ∽Rt△DBF,利用相似比可计算出DQ=,则BQ=BD﹣DQ=;②如图4,ED′⊥BD于H,证明Rt△DEQ=H∽Rt△DBF,利用相似比计算出DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,则利用勾股定理可得x2+(2﹣)2=(﹣x)2,解得x=1﹣,于是BQ=BD﹣DH+HQ﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,利用①得结论可得EI=,BI=,而BE=2,则BG=BE﹣EG=2﹣,根据折叠性质得∠EQD=∠EQD′,则根据角平分线性质得EG=EI=,接着证明△BQG∽△BEI,利用相似比可得BQ=﹣,所以当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ 的重叠部分图形为直角三角形.【解答】解:(1)∵点A与点B关于直线x=1对称,∴B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得﹣3a=﹣3,解得a=1,∴抛物线就笑着说为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=(x﹣1)2﹣4,∴抛物线顶点D的坐标为(1,﹣4);(2)设P(m,m2﹣2m﹣3),易得直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣3,则E(1,﹣2),∴S△BDC=S△BDE+S△CDE=×3×(﹣2+4)=3,当点P在x轴上方时,即m>3,如图1,S=S△PAB+S△CAB=•3•(3+1)+•(3+1)•(m2﹣2m﹣3)=2m2﹣4m,∵S=S△BCD,∴2m2﹣4m=,整理得4m2﹣8m﹣15=0,解得m1=,m2=(舍去),∴P点坐标为(,);当点P在x轴下方时,即1<m<3,如图2,连结OP,S=S△AOC+S△COP+S△POB=•3•1+•3•m+•3•(﹣m2+2m+3)=﹣m2+m+6,∵S=S△BCD,∴﹣m2+m+6=,整理得m2﹣3m+1=0,解得m1=,m2=(舍去)∴P点坐标为(,),综上所述,P点坐标为(,)或(,);(3)存在.直线x=1交x轴于F,BD==2,①如图3,EQ⊥DB于Q,△DEQ沿边EQ翻折得到△D′EQ,∵∠EDQ=∠BDF,∴Rt△DEQ∽Rt△DBF,∴=,即=,解得DQ=,∴BQ=BD﹣DQ=2﹣=;②如图4,ED′⊥BD于H,∵∠EDH=∠BDF,∴Rt△DEQ=H∽Rt△DBF,∴==,即==,解得DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,∴x2+(2﹣)2=(﹣x)2,解得x=1﹣,∴BQ=BD﹣DQ=BD﹣(DH﹣HQ)=BD﹣DH+HQ=2﹣+1﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,由①得EI=,BI=,∵BE==2,∴BG=BE﹣EG=2﹣,∵△DEQ沿边EQ翻折得到△D′EQ,∴∠EQD=∠EQD′,∴EG=EI=,∵∠GBQ=∠IBE,∴△BQG∽△BEI,∴=,即=,∴BQ=﹣,综上所述,当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ的重叠部分图形为直角三角形.。
2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。
数学试题 第1页(共20页) 数学试题 第2页(共20页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________中考考前最后一卷【河南卷】数 学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.12-的相反数等于 A .2B .–2C .22D .–222.2020年是具有里程碑意义的一年,我们将全面建成小康社会,全面建设小康社会的基本标准包括:人均国内生产总值超过3000美元、城镇居民人均可支配收入1.8万元等十个方面.数据“1.8万元”用科学技术法表示为. A .1.8×103元B .1.8×104元C .0.18×105元D .18000元3.如图所示为一个几何体的三视图,那么这个几何体是A .B .C .D .4.下列计算正确的是 A .235x y xy += B .()2239m m +=+ C .()326xy xy =D .1055a a a ÷=5.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是年龄 13 14 15 16 人数23 41A .15,14.5B .14,15C .14,14.5D .15,156.关于x 的方程220--=x x k 有实数根,则k 的值的范围是 A .1k >-B .1k ≥-C .1k <-D .1k ≤-7.抛物线y =4(x +3)2+12的顶点坐标是 A .(4,12)B .(3,12)C .(﹣3,12)D .(﹣3,﹣12)8.如图,4×2的正方形的网格中,在A ,B ,C ,D 四个点中任选三个点,能够组成等腰三角形的概率为A .12B .13C .14D .19.某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元,求该小区新建1个地上停车位和1个地下停车位各需多少万元?设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,列二元一次方程组得 A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩10.如图①,在矩形ABCD 中,AB AD <,对角线,AC BD 相交于点O ,动点P 由点A 出发,沿AB BC CD →→向点D 运动.设点P 的运动路程为x ,AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AD 边的长为数学试题 第3页(共20页) 数学试题 第4页(共20页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .3B .4C .5D .6第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.计算:()2180.52----=___________________.12.一副直角三角板如上图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,则∠DBC =_____°.13.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____.14.⊙O 的半径OA =4,以OA 为直径作⊙O 1交⊙O 的另一半径OB 于点C ,当C 为OB 的中点时,图中阴影部分的面积S =________.15.如图,在长方形ABCD 中,点M 为CD 中点,将△MBC 沿BM 翻折至△MBE ,若∠AME =α,∠ABE =β,则α与β之间的数量关系为________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求代数式21a a -+÷(a ﹣1﹣31a +)的值,其中a =2sin60°﹣2tan45°. 17.(本小题满分9分)某校为了解学生对“防溺水”安全知识的掌握情况,从全校1500名学生中随机抽取部分学生进行测试,并将测试成绩(百分制,得分均为整数)进行统计分析,绘制了不完整的频数表和频数直方图.组别 成绩x (分) 频数(人)频率 A 组50≤x <6060.12B 组 60≤x <70 a 0.28C 组 70≤x <80 16 0.32D 组 80≤x <90 10 0.20E 组90≤x ≤10040.08由图表中给出的信息回答下列问题:(1)表中的a =__________;抽取部分学生的成绩的中位数在__________组;(2)把如图的频数直方图补充完整;(3)如果成绩达到80分以上(包括80分)为优秀,请估计该校1500名学生中成绩优秀的人数.18.(本小题满分9分)如图,一次函数y =x +b 的图象与反比例函数y =kx(k 为常数且k ≠0)的图象交于A (﹣1,a )、B 两点,与x 轴交于点C (﹣4,0). (1)求一次函数和反比例函数的表达式;(2)若点D 是第四象限内反比例函数图象上的点,且点D 到直线AC 的距离为2,求点D 的横坐标.数学试题 第5页(共20页) 数学试题 第6页(共20页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________19.(本小题满分9分)如图,在等腰PAD △中,PA PD =,B 是边AD 上一点,以AB 为直径的O 经过点P ,C 是O 上一动点,连接AC ,PC ,PC 交AB 于点E ,且60ACP ∠=︒.(1)求证:PD 是O 的切线;(2)连接OP ,PB ,BC ,OC ,若O 的直径是4,则:①当四边形APBC 是矩形时,求DE 的长; ②当DE =______时,四边形OPBC 是菱形.20.(本小题满分9分)如图,某天我国一艘海监船巡航到A 港口正西方的B 处时,发现在B 的北偏东60°方向,相距150海里处的C 点有一可疑船只正沿CA 方向行驶,C 点在A 港口的北偏东30°方向上,海监船向A 港口发出指令,执法船立即从A 港口沿AC 方向驶出,在D 处成功拦截可疑船只,此时D 点与B 点的距离为752海里. (1)求B 点到直线CA 的距离; (2)执法船从A 到D 航行了多少海里?21.(本小题满分10分)某商店销售1台A 型和3台B 型电脑的利润为550元,销售2台A 型和3台B型电脑的利润为650元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. ①求y 与x 的关系式;②该商店购进A 型、B 型各多少台,才能使销售利润最大? 22.(本小题满分10分)(1)(问题发现)如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为 (2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.23.(本小题满分11分)如图,抛物线y =ax 2+bx +c 经过点B (4,0),C (0,﹣2),对称轴为直线x =1,与x轴的另一个交点为点A .(1)求抛物线的解析式;(2)点M 从点A 出发,沿AC 向点C 运动,速度为1个单位长度/秒,同时点N 从点B 出发,沿BA 向点A 运动,速度为2个单位长度/秒,当点M 、N 有一点到达终点时,运动停止,连接MN ,设运动时间为t 秒,当t 为何值时,AMN 的面积S 最大,并求出S 的最大值;(3)点P 在x 轴上,点Q 在抛物线上,是否存在点P 、Q ,使得以点P 、Q 、B 、C 为顶点的四边形是平行四边形,若存在,直接写出所有符合条件的点P 坐标,若不存在,请说明理由.数学试题 第7页(共20页) 数学试题 第8页(共20页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………17.(9分)18.(9分)19.(9分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!中考考前最后一卷【河南卷】数学·答题卡第Ⅰ卷(请用2B 铅笔填涂)第Ⅱ卷请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 二、填空题(每小题3分,共15分)11.____________________ 12.____________________ 13.____________________14.____________________ 15.____________________三、解答题(共75分,解答应写出文字说明,证明过程或演算步骤)16.(8分)一、选择题(每小题3分,共30分) 1.[ A ] [ B ] [ C ] [ D ] 2.[ A ] [ B ] [ C ] [ D ] 3.[ A ] [ B ] [ C ] [ D ] 4.[ A ] [ B ] [ C ] [ D ]5.[ A ] [ B ] [ C ] [ D ]6.[ A ] [ B ] [ C ] [ D ]7.[ A ] [ B ] [ C ] [ D ]8.[ A ] [ B ] [ C ] [ D ]9.[ A ] [ B ] [ C ] [ D ] 10.[ A ] [ B ] [ C ] [ D ]姓 名:__________________________ 准考证号:贴条形码区考生禁填: 缺考标记违纪标记以上标志由监考人员用2B 铅笔填涂选择题填涂样例:正确填涂错误填涂 [×] [√] [/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。
河南中考数学真题模拟试卷
数学·答题卡
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 姓 名:__________________________ 准考证号:
贴条形码区 考生禁填: 缺考标记
违纪标记
以上标志由监考人员用2B 铅笔填涂
选择题填涂样例: 正确填涂
错误填涂[×] [√] [/]
1
.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。
2.选择题必须用2B 铅笔填涂;填空题和解答题必须用0.5 mm 黑色签字笔答题,不得用铅笔
或圆珠笔答题;字体工整、笔迹清晰。
3.请按题号顺序在各题目的答题区域内作答,超
出区域书写的答案无效;在草稿纸、试题卷上
答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
注意事项
一、选择题(每小题3分,共30分)
1 [A] [B] [C] [D]
2 [A] [B] [C] [D]
3 [A] [B] [C] [D]
4 [A] [B] [C] [D]
5 [A] [B] [C] [D]
6 [A] [B] [C] [D]
7 [A] [B] [C] [D]
8 [A] [B] [C] [D]
9 [A] [B] [C] [D] 10 [A] [B] [C] [D]
二、填空题(共15分) 11. ________________ 12. ________________ 13. ________________ 14. ________________
15. ________________
三、解答题(共75分)
16.(8分)
17.(9分) 类别人数不了解了解较少了解非常了解1815129630
10%了解较少
36%
不了解了解
24%非常了解
18.(9分) F O E D C B A
19.(9分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
20.(9分) 21.(10分)
x
y O 12345678123
45
6
78
910
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 22.(10分) 图(1)E D C
B A
图(2)E
D C B A
备用图
C
B A
23.(11分) x y x y
备用图
A B
C O P M O C B A。