Ti-Al系金属间化合物多孔材料的制备和性能
- 格式:pdf
- 大小:369.68 KB
- 文档页数:6
多孔材料的制备和性能调控多孔材料拥有独特的结构和性能,广泛应用于催化剂、吸附材料、传感器等领域。
然而,多孔材料的制备和性能调控一直是科学家们关注和研究的热点。
本文将从多孔材料的制备方法、性能调控策略以及应用前景等方面进行论述。
一、多孔材料的制备方法多孔材料的制备方法多种多样,其中常见的包括溶胶-凝胶法、共沉淀法、模板法和燃烧法等。
溶胶-凝胶法是一种常用的多孔材料制备方法。
通过将溶胶物质在溶剂中溶解形成溶胶,再通过凝胶化反应使之形成凝胶,最后通过干燥和煅烧等步骤得到多孔材料。
该方法成本低、操作简便,适用于制备种类多样的多孔材料。
共沉淀法是利用化学反应在溶液中共沉淀出多孔材料的方法。
通过合适的溶剂和沉淀剂,可以控制沉淀速度和颗粒大小,从而调控多孔材料的孔径和孔隙结构。
这种方法制备的多孔材料通常具有较好的孔隙结构和稳定性。
模板法是一种通过有机或无机模板来制备多孔材料的方法。
通过将溶胶物质浸渍到模板材料中,然后通过煅烧或溶解模板材料得到多孔材料。
模板法可以制备孔径较小、孔隙结构有序的多孔材料,适用于制备纳米级孔径的材料。
燃烧法是一种通过燃烧反应来制备多孔材料的方法。
通常将可燃性物质与原料混合,通过燃烧反应形成多孔材料。
燃烧法制备的多孔材料具有较大的比表面积和良好的热稳定性,常用于催化剂和吸附材料的制备。
二、多孔材料的性能调控策略多孔材料的性能可以通过调控其孔径、孔隙结构和比表面积等方面来实现。
一种常用的性能调控策略是材料合成过程中的添加剂控制。
通过添加表面活性剂、聚合剂或酸碱调节剂等,可以调控多孔材料的孔径大小、孔隙结构和孔道分布等。
另一种常用的性能调控策略是后处理方法。
在多孔材料制备完成后,通过煅烧、酸碱处理、氧化还原等方法,可以进一步调控多孔材料的结构和性能。
比如,通过煅烧可以提高多孔材料的热稳定性和孔道连通性;通过酸碱处理可以调节多孔材料的酸碱性质;通过氧化还原反应可以改变多孔材料的电导性能等。
此外,多孔材料的性能还可以通过复合材料的制备来实现。
多孔金属材料的制备方法及应用研究论文(通用)1、多孔金属材料的制备方法1.1铸造法铸造法分为熔融金属发泡法、渗流铸造法和熔模铸造法等.1.1.1熔融金属发泡法熔融金属发泡法包括气体发泡法和固体发泡法.此方法的关键措施是选择合适的增粘剂,控制金属粘度和搅拌速度,以优化气泡均匀性和样品孔结构控制的程度.此法主要用于制备泡沫铝、泡沫镁、泡沫锌等低熔点泡沫金属.对于熔融金属发泡法,当前研究较多的是泡沫铝.李言祥对泡沫铝的制备工艺、泡沫结构特点及气孔率方面进行了深入的实验研究;于利民等人根据采用此法生产泡沫铝在国内外泡沫金属的发展形势,总结并探讨了其制备工艺及优缺点.1)气体发泡法气体发泡法指的是向金属熔体的底部直接吹入气体的方法.为增加金属熔体的粘度,需要加入高熔点的固体小颗粒作为增粘剂,如Al2O3和SiC等.吹入的气体可选择空气或者像CO2等惰性气体.虽然设备简单、成本低,但孔隙尺寸和均匀程度难以控制.徐方明等用这种方法制备出了孔隙率为90!以上的闭孔泡沫铝;覃秀凤等介绍了该方法原理,并研究了增粘剂、发泡气体流量和搅拌速度等工艺参数对实验结果的影响.2)固体发泡法固体发泡法即向熔融金属中加入金属氢化物的方法. 发泡剂之所以为金属氢化物,是因为它会受热分解,生成的气体逐渐膨胀致使金属液发泡,然后在冷却的过程中形成多孔金属. 增粘剂主要选择Ca粉来调节熔体粘度,发泡剂一般为TiH2 . 采用同样的方法原理,可以通过向铁液中加入钨粉末和发泡剂的方式生成泡沫铁,但很少有相关的文献报道.Miyoshi T 等人采用这种方法制备出了泡沫铝.1.1.2渗流铸造法和熔模铸造法两种方法的相似之处在于都是将液态金属注入装有填料的模型中,构成多孔金属的复合体,然后通过热处理等的方式将杂质除去,经过冷却凝固得到终产物多孔金属;区别在于前者模型中填充的是固体可溶性颗粒(如NaCl、MgSO4等)或低密度中空球,后者铸模由无机或有机塑料泡沫(如聚氨酯)和良好的耐火材料构成.Covaciu M等用渗流铸造法制备了开孔型和闭孔型的多孔金属材料,John Banhart用熔模铸造法制备了多孔金属,详细研究了产品结构、性能及应用. 用渗流铸造法制备的多孔金属,其孔隙率小于80!,常用来制备多孔不锈钢及多孔铸铁、镍、铝等合金,虽然用这种方法制备的多孔金属孔隙尺寸得到准确控制,但成本较高. 熔模铸造法制备的多孔金属成本也很高,孔隙率比前者高,但产品强度低.1.2金属烧结法金属烧结法包括粉末烧结法、纤维烧结法、中空球烧结法、金属氧化物还原烧结法、有机化合物分解法等.1.2.1粉末烧结法粉末烧结法指的是金属粉末或合金粉末与添加剂按一定的配比均匀混合,压制成型,形成具有一定致密度的预制体,然后进行真空环境下高温烧结或钢模中加热的方式除去添加剂,最终得到多孔金属材料.此法可用来制备多孔铝、铜、镍、钛、铁、不锈钢等材料.通过粉末烧结法制备的多孔金属材料,其孔隙特性主要取决于采用的方法工艺和粉末的粒度.王录才等采用冷压、热压、挤压三种方式制备预制体,详细研究了铝在不同炉温下加热的发泡行为.根据所选添加剂的不同,粉末烧结法又分为粉末冶金法和浆料发泡法.两者选用的添加剂分别为造孔剂和发泡剂.造孔剂分为很多种,如NH4HCO3、尿素等. 陈巧富等用NH4HCO3作造孔剂,经过低温加热和高温烧结的方式制备出了多孔Ti-HA 生物复合材料,孔径范围100 ~500 μm,抗压强度高达20 MPa,可作为人体骨修复材料. 国外David C. D等用尿素作造孔剂制备出了具有一定孔隙率的泡沫钛; JaroslavCapek等以NH4HCO3为造孔剂,用粉末冶金法制备出了孔隙率为34 !~ 51!的多孔铁,并作出了多孔铁在骨科应用方面的设想.关于发泡剂的选择,TiH2或ZrH2常作发泡剂制备多孔铝、锌,而SrCO3常作为发泡剂制备多孔碳钢. 李虎等用H2O2作发泡剂,用浆料发泡法制备出了多孔钛,经过对其力学性能测试和碱性处理获得了有望成为负重骨修复的理想材料.1.2.2纤维烧结法纤维烧结法指金属纤维经过特殊处理后经过压制、成型、高温烧结的过程形成的多孔金属.运用这种方法制备的多孔金属材料,其强度高于烧结法.1.2.3中空球烧结法中空球烧结法指金属空心球粘结起来进行烧结,从而得到多孔金属材料的方法.常用来制备多孔镍、钛、铜、铁等,制得的金属兼具闭孔和开孔结构.其中金属空心球的制备方法是:用化学沉积或电沉积的方法在球形树脂表面镀一层金属,然后除去球形树脂.特别的是,多孔金属的孔隙尺寸可以通过调整空心球的方式来进行控制.1.2.4金属氧化物还原烧结法该方法旨在氧化气氛中加热金属氧化物获得多孔的、透气的、可还原金属氧化物烧结体,再在还原气氛中且低于金属的熔点温度下进行还原,从而得到开口的多孔金属. 这种方法可用来制备多孔镍、钼、铁、铜、钨等. 因为很难找到制备高孔隙率的多孔铁的方法,Taichi Murakami等用炉渣中的氧化物发泡,并采用氧化还原法制备出了多孔铁基材料.1.2.5有机化合物分解法将金属的草酸盐或醋酸盐等进行成型处理后,再在合适的气氛下加热烧结.如草酸盐分解反应式为Mx(COO)y→xM+YCO2式中:M为金属·金属的草酸盐分解释放CO2,在烧结体中形成贯通的孔隙.在制备过程中金属有机化合物可以成型后加热分解,再进行烧结.1.3沉积法此法是指通过采用物理或化学的方法,将金属沉积在易分解的且具有一定孔隙结构的有机物上,然后通过热处理方法或其他方法除去有机物,从而得到多孔金属.沉积法一般分为电沉积法、气相沉积法、反应沉积法等.1.3.1电沉积法该法是以金属的离子态为起点,用电化学的方法将金属沉积在易分解的且有高孔隙率三维网状结构的有机物基体上,然后经过焙烧使有机物材料分解或用其他的工艺将其除去,最终得到多孔金属. 具体操作步骤为:预处理、基体导电化处理、电镀、后续处理. 常用来制备多孔铜、镍、铁、钴、金、银等.国外Badiche X等用这种方法对泡沫镍的制备及性能进行了深入研究; 单伟根等电沉积法制备了泡沫铁,确定了基体的热解方式对泡沫铁的结构性能方面造成不同的影响,并且确定了最佳实验条件. Nina Kostevsek等研究了平板电极上和多孔氧化铝模板上的铁钯合金,并对二者的电化学沉积动力学进行了比较.1.3.2气相沉积法该法是在真空状态下加热液态金属,使其以气态的形式蒸发,金属蒸气会沉积在固态的基底上,待形成一定厚度的金属沉积层后进行冷却,然后采用热处理方法或化学方法去除基底聚合物,从而得到通孔泡沫金属材料.蒸镀金属可以为Al、Zn、Cu、Fe、Ti等.1.3.3反应沉积法反应沉积法,顾名思义指的是金属化合物通过发生反应,然后沉积在基体上的过程.具体操作环节是,首先将泡沫结构体放置在含有金属化合物的装置中,加热使金属化合物分解,分解得到的金属沉积在多孔泡沫基体上,然后进行烧结去除基底,得到多孔金属.通常情况下,金属化合物为羟基金属,在高温条件下发生分解反应,如制备多孔铁、镍等.2、多孔金属材料的性能及应用多孔金属材料可作为结构材料,也可作为功能材料. 同时结构决定性能,对于多孔金属而言,它的结构特点表现为气孔的类型( 开孔或闭孔) 、大小、形状、数量、分布、比表面积等方面. 多孔金属材料在航空航天、化学工程、建筑行业、机械工程、冶金工业等行业得到了广泛的应用,此外,在医学和生物领域也具有广阔的发展潜力. Qin Junhua等对多孔金属材料性能和用途两方面的研究进展做了重要阐述,并提出针对当前的形势,需要拓展多孔金属材料其他方面用途的必要性.2.1结构材料多孔金属材料具有比重小、强度高、导热性好等特点,常用作结构材料.可作汽车的高强度构件,如盖板等;可作建筑上的元件或支撑体,如电梯、高速公路的护栏等;也可作为航天工业上的支撑结构,如机翼金属外壳支撑体、光学系统支架,或用来制作飞行器等.最常用的是多孔铝.魏剑等提到了多孔金属材料可用来制作节能门窗、防火板材等,实现了其在建筑领域的应用价值.利用多孔金属材料的吸能性能,可制作能量吸收方面的材料,如缓冲器、吸震器等.最常见的是多孔铝.比如汽车的冲击区安装上泡沫铝元件,可控制最大能耗的变形;还有将泡沫铝填充入中空钢材中,可以防止部件承受载荷时出现严重的变形.与此同时,多孔铝兼具了吸音、耐热、防火、防潮等优势.2.2功能材料2.2.1过滤与分离材料根据多孔金属的渗透性,由多孔金属材料制作的过滤器可用来进行气-固、液-固、气-液、气-总第209期李欣芳,等:多孔金属材料的制备方法及应用研究13气分离.多孔金属的渗透性主要取决于孔的性质和渗透流体的性质.过滤器的原理是利用多孔金属的孔道对流体介质中粒子的阻碍作用,使得要过滤的粒子在渗透过程中得到过滤,从而达到净化分离的目的.铜、不锈钢、钛等多孔金属常用来制作金属过滤器,多孔金属过滤器被广泛应用于冶金、化工、宇航工业、环保等领域.在冶金工业中,通常用多孔不锈钢对高炉煤气进行除尘;回收流化床尾气中的催化剂粉尘;在锌冶炼中用多孔钛过滤硫酸锌溶液;熔融的金属钠所采用的是镍过滤器,此过程用于湿法冶炼钽粉等.在化工行业中,多孔不锈钢、多孔钛具有耐腐蚀性,常用作过滤器来进行过滤.比如一些无机酸或有机酸,如硝酸、亚硝酸、硼酸、96!硫酸、醋酸、草酸;碱、氢氧化钠;熔融盐;酸性气体,如硫化氢、气态氟化氢;一些有机物,如乙炔;此外,还有蒸汽、海水等.在宇航工业中,航空器的净化装置采用的是多孔不锈钢,制导舵螺中液压油和自动料管路中气体的净化也是采用这种材料,此外还可用于碳氢化合工艺中催化剂的回收.在环保领域里,主要是利用过滤器来净化烟气、废气及污水处理等方面.其中要实现气-气分离,需要对多孔材料的尺寸有更精准的要求,涉及到纳米多孔金属材料的制备工艺及其具有的性能等问题.奚正平等对洁净煤、高温气体净化、汽车尾气净化等技术作了具体的阐述,使用这些技术有利于缓解当前的环保问题.此外,医学上常用多孔钛可过滤氯霉素水解物,也可作为医疗器械中人工心肺机的发泡板等.2.2.2消音减震材料利用多孔金属材料的高孔隙率性能,可制作吸声材料.在吸声的作用上,通孔材料明显优于闭孔材料.通过改善声波的传播途径来达到消音的目的,这与多孔金属材料的材质和孔洞的结构密切相关.因为多孔钛还具有良好的耐高温、高速气流冲刷和抗腐蚀性能,所以被应用到燃气轮机排气系统等一些特殊的工作条件中,这种排气消声装置轻质、高效率、使用寿命长.段翠云等介绍了吸声材料的分类及应用,探讨了空气流阻和孔隙结构对吸声特性的影响. 王月等制备了孔径为2 ~ 7 mm,孔隙率为80!~90!,平均吸声系数为0. 4 ~ 0. 52 的泡沫铝,结果表明孔径越小,孔隙率、厚度越大,吸声性能越好. Ashby MF等在书中提到了利用泡沫金属的吸声性能可以生产消声器产品.利用多孔金属材料的抗冲击性,可用来制作减震材料.多孔金属的应力-应变(σ-ε)曲线可以分为三个阶段,即弹性变形阶段、脆性破碎阶段和紧实阶段,进而可以划分为三个区域.从曲线走势来分析,当多孔金属材料在受到冲击力时,应变滞后于应力,所以其在受到外界应力时首先变形的是它的骨架部分,随着外界应力的增大,骨架易发生破碎,当骨架受到挤压时,应变不再发生很大的变化.其中破碎阶段的起点为多孔材料的屈服强度.当受到外加载荷时,孔的变形和坍塌会消耗大量能量,从而使得在较低的应力水平上有效地吸收冲击能.中间部分区域表现出它的能量吸收能力,左边部分区域面积表现出它的抗冲击能力,面积越大,它所属的性能越好.2.2.3电极材料由于多孔金属材料具有高孔隙率、比表面积大等优点,因此常用来制作电极材料,常用的有多孔铅、镍等.刘培生等结合多孔金属电极的类型和特点,阐述了其制备工艺和性能强化的必要性,值得深思.多孔铅可用作铅酸电池中反应物的载体,可以填充更多的活性物质,减轻了电池重量,也可以用作良好的导电网络以降低电池内电阻.轻质高孔隙率的泡沫基板和纤维基板,与传统的烧结镍基板相比有明显的优势,前者有高能量密度、良好的耐过充放电能力、低成本,满足了氢镍、镉镍等二次碱性电池的技术要求.多孔镍在化学反应工程中用作流通性和流经型多孔电极,因为它除具有上述优点外,还可以促进电解质的扩散、迁移以及物质交换等.此外,它还可用作电化学反应器.袁安保等具体分析了镍电极活性物质的结构、性质以及热力学和动力学,而且研究了它的制备工艺及应用,对MH-Ni电池的开发具有重要意义.孔德帅等制备出了纳米多孔结构的镍基复合膜电极,结果表明,此复合膜在20A·g-1的冲放电流密度下,经过1000次充放电循环,电容保持率为94!.近年来,对锌镍电池的研究受到了国内外的热切关注,费锡明等针对锌镍电池制作技术的进展,阐述了当前面临的诸多问题并提出了相应的解决方案,为新型化学电池的进一步研究提供了重要线索.2.2.4催化载体材料泡沫金属韧性强、高传导、耐高温、耐腐蚀等性能,可制作催化载体材料.由于载体本身的比表面积较小,为增大金属载体与催化剂活性组分之间的结合力,需预先在载体上涂上一层氧化物.然后将催化剂浆料均匀涂抹在泡沫金属片的表面,经过压制成型,再将其置于高温环境中,可以使电厂废弃料得到有效妥善处理.2.2.5生物医学材料多孔钛及钛合金在医学上作为修复甚至替代骨组织的材料,需要具有较好的生物相容性,否则会使人体产生不良反应.而且要与需替代组织的力学性能相匹配.一般通过控制孔隙的结构和数量来调整多孔钛的强度和杨氏模量.多孔镁在生物降解和生物吸收上有很好的作用,也可作为植入骨的生物材料.此外,多孔金属材料具有良好的电磁波吸收性能,可以作电磁屏蔽材料;对流体流量控制有较高的精准度;具有独特的视觉效果,利润高,可以用作如珠宝、家具等装饰材料.3、多孔金属材料的研究现状及存在问题1)近些年来对多孔金属的研究多为低熔点、轻金属,其中研究最多的为泡沫铝.人们利用多孔金属的性能,将其运用到了实际生产和生活中,但对它的其他性能还有待研究和探索.多孔金属的研究范围、应用领域还需要进一步扩展,如多孔金属在催化领域、电化学领域或其他领域的应用等.2)在多孔金属材料的制备方法中,都存在孔隙在金属基体上的数量和分布等关键问题.孔径尺寸、孔隙率的可控性和孔隙分布的均匀性等性质,以及多孔金属的作用机制还需要进一步探究和完善.3)多孔金属材料作为冶金和材料科学的交叉领域,需要强化综合多方面的理论知识,而不是就单一方面进行研究.在多孔金属材料课题研究过程中,需要在理论分析的基础上,在实践过程中尽可能降低成本,避免材料的浪费,简化工艺,缩短工序.4)一些多孔金属材料的开发,还停留在实验室阶段,距工业中大规模生产和应用还存在着很大距离,需要研究者们共同努力,早日实现需求-设计-制备-性能-应用一体化.对金属多空材料的应用有着重要的作用,金属多孔材料是有着功能和结构双重属性的工程材料,尤其是在近些年的'发展过程中使其得到了较为广泛的应用。
多孔金属材料
多孔金属材料是一种具有特殊结构和性能的材料,其具有许多独特的优点,因
此在各个领域都有着广泛的应用。
多孔金属材料通常具有高度的孔隙率和较大的比表面积,这使得它们在吸附、过滤、隔热、隔声等方面具有独特的优势。
本文将介绍多孔金属材料的组成、制备方法以及应用领域。
多孔金属材料通常由金属颗粒或纤维通过一定的方法组装而成,其孔隙结构可
以精确控制,从而实现对材料性能的调控。
常见的多孔金属材料包括泡沫金属、多孔板、网状结构等。
这些材料具有高度的孔隙率和连通的孔隙结构,使得气体和液体可以在其中自由流动,具有优秀的过滤和吸附性能。
制备多孔金属材料的方法多种多样,常见的方法包括模板法、发泡法、粉末冶
金法等。
模板法是利用模板的空隙结构来制备多孔金属材料,可以通过模板的选择来控制孔隙结构和孔隙大小;发泡法是利用金属的发泡性质来制备多孔金属材料,可以实现大面积、连续生产;粉末冶金法是利用金属粉末的成型和烧结来制备多孔金属材料,可以实现复杂形状和微观结构的控制。
多孔金属材料在各个领域都有着广泛的应用。
在能源领域,多孔金属材料可以
作为催化剂载体、电极材料等,具有优异的传质性能和催化性能;在航空航天领域,多孔金属材料可以作为轻质结构材料、隔热隔烟材料等,具有优异的强度和耐高温性能;在生物医学领域,多孔金属材料可以作为植入材料、药物载体等,具有良好的生物相容性和生物活性。
总之,多孔金属材料具有独特的结构和性能,其制备方法多样,应用领域广泛。
随着材料科学的不断发展,相信多孔金属材料将会在更多领域展现出其独特的价值,为人类社会的进步做出更大的贡献。
多孔金属材料的制备方法及应用摘要:孔金属材料由于具有独特的综合性能,近年来逐渐成为研究热点。
科研水平的提高使一些多孔金属材料的孔隙率可以达到90%以上,但许多的多孔金属材料的制备仍然存在很大的挑战。
本文主要对多孔金属材料的几种制备方法和多孔金属材料的应用进行了介绍,并对今后的研究热点作了展望。
关键词:多孔金属材料;制备方法;应用引言:多孔金属材料是一类新型的金属材料,与传统金属材料和其他多孔材料相比在某些方面具有更佳的性能,且随着研究的发展,多孔金属材料的应用领域变得更加宽泛。
简要回顾了多孔金属材料的研究历史,重点综述了几种常用的多孔金属材料的制备方法及其适用性,并对多孔金属材料的应用领域作了介绍,最后展望了多孔金属材料的研究趋势。
1多孔金属材料的制备工艺铝合金在工业上广泛用于制造金属泡沫。
除了铝之外,钛、铁、锌、铜等材料也在工业上得到了应用,但与铝相比,它们的存在率仍然很低。
不同的应用需求对多孔金属材料的孔隙率要求不同,根据多孔金属材料加工产生孔隙时的金属的物质状态(固态、液态、气态或电离态)对各种制备工艺进行分类:固相法、液相法、沉积法。
1.1固相法固相法制备多孔金属材料是对固相金属进行烧结,且在此过程中金属始终保持固态,此工艺方法包含的种类较多,较容易制备大块的材料,该方法操作简单,得到的金属孔隙率高、分辨率高、孔隙分布均匀,缺点是得到的多孔金属材料强度低,常用于制备的多孔金属材料有铝、钛、不锈钢、铜、钼等。
通常固相法常用的制备方法主要有粉末烧结法、粉末发泡法、氧化还原烧结法、空心球烧结法等。
1.2液相法液相法制备多孔金属材料是在液态金属中获得孔隙结构或者是熔化含有气体发泡剂预制体释放气体,气体扩散获得孔隙结构,以此获得多孔金属材料。
该方法的优点是操作简单、成本低、孔隙率高,但不太适用于熔点高的材质。
受液态金属粘度的影响,所得到的多孔金属材料孔隙结构不均匀,力学性能较差,多适用于制备铝合金、钢、铜、青铜、黄铜等多孔金属材料。
铌铝金属间化合物制备的研究进展1.引言介绍铌铝金属间化合物的意义及相关研究现状2.铌铝金属间化合物制备方法(1)机械合金化法(2)热处理法(3)物理气相沉积法(4)化学气相沉积法(5)其他制备方法3.铌铝金属间化合物的性质研究(1)结构特征(2)物理性质(3)化学性质(4)力学性质4.铌铝金属间化合物的应用研究(1)高温结构材料(2)电池材料(3)红外探测材料(4)超导材料(5)其他领域的应用研究5.总结与展望总结现有研究成果,展望未来铌铝金属间化合物的发展方向和应用前景。
铌铝金属间化合物制备的研究进展随着材料科学的不断发展,新型的金属间化合物作为一种重要的材料,吸引了越来越多科学家的关注。
其中,铌铝金属间化合物具有一些良好的性质,比如高温强度高、氧化性能优良、硬度高等,已成为当今材料科学领域中的研究热点之一。
铌铝金属间化合物的制备方法主要有机械合金化法、热处理法、物理气相沉积法、化学气相沉积法等多种方法。
机械合金化法是目前最为成熟的铌铝金属间化合物制备方法之一,它利用球磨过程中固体混合物的反应,能够实现原位化合物的合成。
热处理法是一种将两种预制金属的混合物在高温下进行处理,使其形成化合物的方法。
物理气相沉积法和化学气相沉积法则是利用高温下气体分子的反应制备铌铝金属间化合物的方法,这些方法制备出的铌铝金属间化合物具有较为均匀的表面形貌和较高的结晶度。
除了这些制备方法之外,一些新的制备方法也陆续出现。
其中,以分子束外延生长法和反应热化学镀技术为代表的纳米级制备方法,已经成为了铌铝金属间化合物领域的前沿研究方向。
铌铝金属间化合物的性质研究也是该领域的一大热点之一,其具有良好的物理性质、化学性质、力学性质等。
铌铝金属间化合物的结构特征方面,硬球模型的理论研究表明,该化合物的3D晶体结构是由等电子正电子对形成的,具有配位数为12的多面体八方向体结构。
在物理性质方面,铌铝金属间化合物具有良好的热稳定性和电力学特性,这些特性使得其在高温结构材料、电池材料、红外探测材料、超导材料等多个领域都有着广泛的应用前景。
摘要Ti-Al合金是一类倍受人们关注的重要材料,由于它具有优异的物理性能,因此它在航空航天、汽车制造等领域有着广泛而重要的应用。
在Ti-Al合金的设计和应用中,往往需要对其有关力热性能和电子结构有较深入的了解和掌握,因此“Ti-Al金属间化合物的力热性能及其能带计算”论文具有重要的理论意义与价值。
本文针对Ti-Al合金中的TiAl、TiAl2、TiAl3、Ti3Al金属间化合物的有关力热性能和能带,采用基于密度泛函理论的第一性原理以及Materials Studio软件中的CASTEP软件包进行了理论计算。
在计算过程中,首先利用广义梯度近似(GGA)中的PBE方法,对晶体的结构进行了几何优化,得出了平衡晶格常数。
在此基础上,利用生成热和结合能相应的公式,计算得到了四种金属间化合物的生成热、结合能的具体数值。
利用广义梯度近似(GGA)中的PW91方法对Ti-Al合金的各个相的弹性系数进行计算。
以及对电子能带和电子态密度曲线进行了计算,并对计算结果进行了理论分析。
计算结果表明:在上述四种金属间化合物中,由生成热、结合能的计算结果比较得出,在Ti-Al合金的四个相中Ti3Al的合金化形成能力最强,而且结构也最稳定,通过对弹性系数的计算结果分析得出四种相的各种弹性系数,其中Ti3Al相呈韧性,且抗变形能力最强,刚性也最强,体现出良好的综合力学性能。
通过能带、态密度的计算与分析得出,上述四种合金都属于金属性材料,但是TiA13相的金属性较其另三种材料弱一些。
其结果与其他学者实验及理论研究的结果基本相符。
本文的计算结果为相关的理论及应用研究提供了有益的参考。
关键词:Ti-Al合金,密度泛函理论,第一性原理,热力性能,电子结构AbstractTi-Al alloy is one of the most important materials,which has been widely used because of its excellent physical properties.In the design and application of Ti-Al alloy, often need to have a deeper understanding and mastery of the relevant mechanical and thermal properties and electronic structure,Therefore,the paper has important theoretical significance and value in the calculation on mechanical and thermal propertiesand energy band of intermetallic compounds in Ti-Al.The mechanical and thermal properties and energy band of the intermetallic compounds TiAl,TiAl2,TiAl3and Ti3Al in the Ti-Al alloys were theoretically calculated based on density functional theory(DFT)and first principles,using the software package of CASTEP of Materials Studio.In the process of calculation,firstly,the crystal structure of GGA is optimized by using the PBE method in the generalized gradient approximation. On this basis,the formation enthalpy and cohesive energy of four kinds of intermetallic compounds were calculated by using the corresponding formulas of heat and energy.The elastic coefficient of each phase of Ti-Al alloy was calculated by the PW91method in the generalized gradient approximation(GGA).The electron energy band and electron state density curves are calculated,and the results are theoretically analyzed.The calculation results show that the compounds in the four kinds of metal,the heat of formation,the binding energy calculation results shows that the formation of the strongest in the four phase of Ti-Al alloy Ti3Al alloy,and the structure is the most stable,through the calculation of the elastic coefficient of the four phase of the analysis of various elastic coefficient.The Ti3Al phase is toughness,and anti deformation ability is the strongest, rigidity is also the strongest,shows good mechanical properties.Through the calculation and analysis of the energy band and the density of States,the above four kinds of alloys belong to metallic materials,but the metallicity of TiA13is weaker than that of the other three materials.These results are consistent with the conclusions given by other criteria.The results of this paper provide a useful reference for the relevant theoretical and applied research.Key words:Ti-Al alloy,density functional theory,first principle,thermal performance,electronic structure目录摘要 (I)Abstract (II)第1章绪论 (1)1.1钛铝合金的特点和研究现状 (1)1.1.1钛、铝的基本特点 (1)1.1.2钛合金的基本特点 (3)1.1.3钛铝合金的结构及分类 (4)1.1.4Ti-Al合金的研究与发现 (4)1.2Ti-Al合金的应用前景 (5)1.3本课题目的、意义与工作设想 (7)1.3.1本课题目的 (7)1.3.2选题意义 (7)1.3.3工作设想及目标 (8)第2章密度泛函理论及Materials Studio软件 (9)2.1多粒子体系的Schrdinger方程 (9)2.2玻恩-奥本海默近似 (10)2.3哈特利-福克近似 (10)2.4密度泛函理论 (12)2.4.1霍亨伯格—孔恩定理 (12)2.4.2孔恩-沈吕九方程 (13)2.5局域密度近似(LDA)和广义梯度近似(GGA) (13)2.5.1局域密度近似(LDA) (13)2.5.2广义梯度近似(GGA) (14)2.6常用赝势 (15)2.7第一性原理 (15)2.8Materials Studio计算软件 (15)第3章Ti-Al合金的力热性能的计算 (18)3.1计算方法 (18)3.2计算模型 (19)3.3力热性能计算结果与分析 (21)3.3.1平衡晶格常数 (21)3.3.2生成热与结合能 (22)3.3.3弹性性质计算结果与分析 (23)3.4小结 (24)第4章Ti-Al合金的电子结构的计算 (25)4.1TiAl合金的电子结构计算及其分析 (25)4.2TiAl2合金的电子结构计算及其分析 (27)4.3TiAl3合金的电子结构计算及其分析 (29)4.4Ti3Al合金的电子结构计算及其分析 (31)4.5小结 (33)第5章结论 (35)参考文献 (36)在学研究成果 (39)致谢 (40)第1章绪论1.1钛铝合金的特点和研究现状1.1.1钛、铝的基本特点钛作为一种重要的结构金属在上世纪五十年代得到了大力发展,钛合金因为具有耐高温、耐腐蚀性强、强度高等优异的物理性能,从而被许多国家广泛研究与应用。
多孔金属材料的制备方法及应用研究论文多孔金属材料是一种具有开放孔隙结构的金属材料,其具有较大的比表面积、高孔隙度和良好的传质性能。
多孔金属材料广泛应用于催化剂载体、过滤器、吸附剂、能源储存等领域。
本文将介绍多孔金属材料的制备方法,并综述其在不同领域的应用研究。
多孔金属材料的制备方法主要包括模板法、重浸渗法和自由空间滴定法等。
模板法是最常用的制备方法之一,其原理是利用模板物质的模板效应,在金属材料表面形成孔隙结构。
常用的模板物质包括硅胶、陶瓷和树脂等。
重浸渗法是将金属固体与液态金属浸渍剂接触,经过多次渗透后,形成多孔金属材料。
自由空间滴定法是将金属粉末悬浮液滴入高温容器中,通过控制滴定速度和温度,使金属粉末形成多孔结构。
多孔金属材料在催化剂载体领域具有广泛应用。
催化剂载体是催化剂的重要组成部分,能够提高催化反应的效率和选择性。
多孔金属材料具有高比表面积和较大的孔隙度,能够提供充足的反应活性位点和更好的传质性能,从而增强催化剂的催化活性。
研究表明,多孔铝合金材料可用作高性能汽车尾气催化剂载体,其孔隙结构能够提供更大的表面积和更好的热稳定性,从而提高汽车尾气催化剂的催化效率。
多孔金属材料在过滤器领域也有广泛的应用。
传统的过滤器材料如滤纸和滤布往往无法有效过滤微米级颗粒物。
多孔金属材料具有较大的孔隙度和高效的固液分离能力,能够有效过滤微米级颗粒物和悬浊液体。
研究表明,多孔不锈钢材料可用于水处理过滤器,其优良的固液分离性能能够有效去除水中的悬浊物和颗粒物,从而提高水的质量。
此外,多孔金属材料还应用于吸附剂和能源储存等领域。
多孔金属材料可以通过控制孔隙结构和表面化学性质,具有高效吸附和储存气体、液体和离子的能力。
研究表明,多孔铜材料可用于储氢材料,其高比表面积和可调控的孔隙结构能够提高氢气的吸附容量和释放速率,从而提高储氢材料的储氢性能。
综上所述,多孔金属材料通过不同的制备方法可以获得不同孔隙结构和性能,具有广泛的应用前景。