俄罗斯高超声速技术飞行试验计划_一_
- 格式:pdf
- 大小:487.62 KB
- 文档页数:8
世界各国高超声速武器发展现状高超声速武器是公认的未来必须发展的六大尖端武器之一,是指飞行速度超过5马赫的武器。
全球目前只有俄罗斯和中国列装。
美国在高超音速武器领域远远落后中俄。
美国国防部以及海、陆、空三军分别主导的7个高超音速武器项目全部失败,至今拿不出任何一款能进入实战部署的导弹。
被寄予厚望的AGM-183A高超音速空射导弹项目也迟迟没有进展。
俄罗斯是高超音速武器方面最先进的国家,截至目前已经列装了三款高超音速导弹,覆盖海、陆、空三维打击领域,包括全球唯一一款战略级“先锋”高超音速导弹,美国求而不得的高超音速空射导弹也在俄军中先一步服役,由米格-31战机搭载的“匕首”导弹能在2000公里外发起打击,末端速度可达7马赫。
印度、日本也在高超声速巡航导弹研制上取得进展,朝鲜频繁试射高超声速导弹。
美、英、澳、加拿大、瑞士等国重点推进高超声速飞机研制。
以上信息仅供参考,如有需要,建议查阅官方军事网站相关报道。
随着科技的快速发展,军事领域也在不断推进新型武器的研发与防御技术的创新。
临近空间高超声速武器作为一种尖端武器,具有高速、高机动、高打击能力等特点,给现有防御体系带来了严重挑战。
为了有效应对临近空间高超声速武器的威胁,防御关键技术的研究至关重要。
本文将围绕临近空间高超声速武器防御及关键技术进行深入探讨。
近年来,世界各国都在加紧研发临近空间高超声速武器,以提升自身军事实力。
然而,这种武器的发展也带来了一系列的挑战。
高超声速武器的速度极快,使得传统防御系统难以对其进行有效拦截。
其飞行轨迹具有高度机动性,进一步增加了防御难度。
高超声速武器的打击精度也是一大难题,使得防御方需在很短的时间内对大量目标进行识别、跟踪和打击。
为了有效应对临近空间高超声速武器的威胁,以下关键技术至关重要:发射技术:该技术主要用于将武器从发射平台送入临近空间,并确保其稳定飞行。
成像技术:利用高分辨率、高灵敏度的成像技术对目标进行识别、跟踪和打击。
一、高超声速飞行器技术发展路径及动力技术介绍1.1 高超声速飞行器技术发展路径高超声速飞行器区别与其他飞行器最大的特点是高度一体化,使得飞行器机身与推进系统密不可分,从某种意义上来说是无法划分出一个所谓的“发动机”进行研制的,这样的“发动机”也只有在与机身合二为一才能发挥其真实的性能,也才能真正的运行起来。
因此,高超声速飞行器首先是“自顶而下”地分解研究对象和研究阶段,随着技术的发展再逐步地整合各部分的研究,逐级、逐步形成一个完整的飞行器研究对象。
从总体方案设计的完整的飞行器作为研究对象可划分为四个层次的研究:气动/推进一体化研究、全流动通道推进系统研究、超然冲压模型发动机研究、超然冲压发动机部件研究,将高超声速飞行器自顶而下分解后就,再从分解出来的底层部件逐步发展“自下而上”到顶层飞行器。
同时“自顶而下”的技术分解和“自下而上”的技术集成这两条路线又是有交互的,在试验研究的任何阶段发现问题,都应当反馈到飞行器总体的设计,重新定义部件、子系统的研究对象。
图1.11.2 高超声速飞行器动力技术介绍气动/推进一体化研究 全流动通道推进系统研究 超然冲压模型发动机研究超然冲压发动机部件研究高超声速飞行器的核心关键技术包括超燃冲压发动机技术、高超声速飞行器组合推进系统技术、高超声速飞行器机身推进一体化设计技术、高超声速飞行器热防护技术、高超声速飞行器导航制导与控制技术、高超声速飞行器风洞实验技术。
下面的篇幅分别对超燃冲压发动机和组合推进系统技术做简要介绍:(1)超然冲压发动机概念介绍超燃冲压发动机是高超声速飞行器推进技术的核心技术,超然冲压发动机与亚燃冲压发动机同属于吸气式喷气发动机,由进气道、燃烧室和尾喷管构成,没有压气机和涡轮等旋转部件,高速迎面气流经进气道减速增压,直接进入燃烧室和燃料混合燃烧,产生高温燃气经尾喷管加速后排出,从而产生推力。
超燃冲压发动机通常可以分为双模态冲压发动机和双燃烧室冲压发动机。
2012年世界航天工业发展回顾——高超声速飞行器技术2013-01-07 2012年,国外进行了6次高超声速飞行器技术飞行试验,其中5次飞行试验取得成功,1次飞行试验失败。
一、助推滑翔高超声速飞行器技术1、美国高超声速技术飞行器-2(HTV-2)第二次飞行试验失败2011年8月11日,HTV-2进行了第2次飞行试验,在火箭起飞9分钟后HTV-2的遥测数据中断,飞行试验失败,初步分析结果表明:验证了马赫数20条件下的可控飞行,时间约为3分钟;针对首飞失败进行的气动设计调整也发挥了一定的作用。
2、美国发布综合高超声速(IH)计划推动助推滑翔高超声速技术发展2012年7月,DARPA发布了综合高超声速(IH)计划招标公告,提出基于助推滑翔技术途径,发展更先进的高超声速飞行器系列。
该计划是一项综合性高超声速发展计划,着眼于未来快速全球打击、控制空间,以及远程力量投送和时敏目标打击等作战意图,兼顾了多个技术发展方向。
二、吸气式巡航高超声速飞行器技术1、美国X-51A第三次飞行试验失败2012年8月14日,美国空军进行X-51A超燃冲压发动机验证飞行器了第三次飞行试验失败,其原因是飞行器尾翼意外解锁导致。
2012年11月初步调查结果显示,飞行器按计划与载机分离,助推火箭也按计划成功地点火助推;但在超燃冲压发动机工作之前,飞行器右上方尾翼本应锁定的作动器意外解锁,使机身气动稳定失衡,导致飞行器以螺旋式坠落太平洋,最终飞行试验失败。
2、美、澳联合HIFiRE成功进行两次飞行试验5月8日,HIFiRE-2在美国夏威夷太平洋导弹靶场由黄鹂探空火箭成功发射,美国空军公布HIFiRE-2“超燃冲压发动机爬升到30.48km高空,从马赫数6加速至马赫数8,并工作了12s”;9月20日,HIFiRE-3在挪威安道亚靶场由VS探空火箭成功发射,飞行器在达到350km最高点后俯冲,在20.5~32km高度达到最高马赫数8的速度。
国防技术基础2007年5月第5期世界各国 高超声速武器 发展现状 摘 要:高超声速武器是高技术武器装备,也是当今世界主要国家尤其是军事大国武器装备发展的重点。
在这一领域,美国的发展独占鳌头,在高超声速导弹、高超声速飞机和空天飞机等方面研究拥有较强优势,并提出了全方位高超声速武器和先进航天器研制计划。
其他国家,如俄罗斯、法国、日本以及印度等国也都积极开展高超声速武器装备的研究。
关键词:世界各国 高超声速武器 李大光(国防大学)几十年来,世界各国在高超声速技术方面坚持不懈努力,美国、俄罗斯、法国、德国、日本、印度和澳大利亚等国在20世纪90年代已陆续取得了技术上的重大突破,并相继进行了地面和飞行试验。
高超声速技术已经从概念和原理探索阶段进入了以高超声速巡航导弹、高超声速飞机、跨大气层飞行器和空天飞机等为应用背景的先期技术开发阶段。
目前,美国、俄罗斯、法国、德国、日本和印度等经过多年研究已取得不少技术成果,尤其在航天、航空、导弹等方面实施多项高超音速研制计划,以期获得最大的军事效益。
一、美国高超声速武器发展独占鳌头美国自20世纪50年代开始研究吸气式高超声速技术。
20世纪80年代中期,美国实施了采用吸气式推进、单级入轨(马赫数25)的国家空天飞机计划(NASP),由于在技术、经费和管理方面遇到了一系列的困难,NASP计划于1995年停止。
从1985年到1994年的10年间,美国国家空天飞机计划(NASP)大大推动了高超声速技术的发展。
通过试验设备的大规模改造和一系列试验,仅美国航空航天局兰利中心就进行了包括乘波外形一体化和超燃发动机试验在内的近3200次试验。
通过这些试验掌握了马赫数小于8的超燃发动机设计技术,并建立了大量的数据库,从而为实际飞行器的工程设计打下了牢固的技术基础。
实际上,30多年来,兰利研究中心一直在进行这方面的研究,曾经在8ft.(2.44m)高温风洞中研制和试验过22个发动机。
在此基础上,美国于1996年开始,针对高超声速导弹、高超声速飞机和空天飞机的研制工作调整高超声速技术的研究目标,提出了更为现实的全方位的高超声速武器和先进航天器研制计划。
高超声速飞行器技术研究第一章研究背景高超声速飞行器技术是目前国际上航空飞行领域最具前沿性的重要研究方向之一。
这种新型飞行器能够在大气层极高速度下飞行,具有极强的机动能力和抗干扰能力,实用价值极高。
目前,美国、俄罗斯、中国等国家都在积极开展高超声速飞行器技术研究,目的在于提高自身国防实力,并拓展民用领域的应用前景。
第二章技术现状目前,全世界在高超声速飞行器技术方面的研究可分为两大类,即飞行器的气动布局和运动控制。
在气动布局方面,高超声速飞行器主要分为气动光滑体、球弹、掠面机翼等几种形式。
在运动控制方面,高超声速飞行器涉及多学科交叉,主要包括热防护材料、涡流制动、魔方阵控制等方面。
在美国,高超声速技术一直是国防部关注的重点领域。
美国空军和海军等军方单位已经开展了多年的高超声速飞行器研究,先后研制出多款高超声速飞行器,如X-51Waverider、X-43A、X-15等。
我国自2000年开始开展高超声速技术研究,随着国家实力的不断增强,高超声速飞行器技术也取得了长足发展。
中国航空航天工业集团、中国航天科技集团等国内航空工业领域企业已相继进行高超声速飞行器技术研究和开发计划,取得了多项成果,推动了我国高超声速技术的发展。
目前,我国的高超声速技术主要应用于航空军事、纵深打击、反导拦截和航空航天探测等领域,同时对于物理科学、可再生能源、环保等方面也有着广泛的探索和研究。
第三章技术难点高超声速飞行器技术的研究难点主要集中于以下几个方面:1. 气动布局方面。
高超声速飞行器面临着气动热、气动力等诸多问题,设计合理的气动布局是高超声速飞行器研究的重中之重。
2. 热防护材料方面。
高超声速飞行器的速度较快,摩擦加热程度极高,需要采用超高温热防护材料。
3. 运动控制方面。
高超声速飞行器的机动和操控能力需要达到极高水平,运动控制的研究和应用是高超声速飞行器研究的重要目标。
第四章技术前景高超声速飞行器技术的应用前景非常广阔。
飞⾏器本科毕业论⽂选题(1299个)毕业论⽂(设计)题⽬学院学院专业学⽣姓名学号年级级指导教师毕业教务处制表毕业⼆〇⼀五毕业年⼗⼆⽉毕业⼀⽇飞⾏器与毕业论⽂选题(1299个)⼀、论⽂说明本写作团队致⼒于毕业论⽂写作与辅导服务,精通前沿理论研究、仿真编程、数据图表制作,专业本科论⽂300起,具体可以联系⼆、论⽂参考题⽬《鲁班的飞⾏器》围绕旋翼飞⾏器的三维结构化运动嵌套⽹格⽣成⽅法单兵飞⾏器往事低空飞⾏器在⼤⽐例尺地形测图中的实践与应⽤全对称⽮量推进飞⾏器美军⾼超⾳速飞⾏器有两个技术路线机翼可折叠的飞翼布局飞⾏器验证机基于SolidWorks和ANSYS的⼀种四旋翼飞⾏器旋翼的设计及分析基于⽓动舵⾯和RCS融合控制的⾼超声速飞⾏器再⼊姿态容错控制基于WiFi AP模式下的多轴飞⾏器数据传输系统设计多飞⾏器⾃适应编队制导控制技术吸⽓式⾼超声速飞⾏器控制研究综述基于数字地图预处理的飞⾏器航迹规划未来飞⾏器可海空两⽤⾼超⾳速飞⾏器能穿透导弹防御基于复合材料的⼋旋翼飞⾏器设计四轴飞⾏器的研究与设计四旋翼飞⾏器飞⾏控制专利申请现状及审查应⽤实例分析美国“未来飞⾏器”基于STM32的四旋翼飞⾏器姿态测量系统设计太阳能混合动⼒飞⾏器的设计与制作基于四旋翼飞⾏器的制药车间温湿度监测基于GPS的四旋翼飞⾏器研究设计四旋翼飞⾏器悬停控制的研究派诺特Bebop Drone四轴飞⾏器专题测试灵巧的“⼤眼睛”美国空军成功发射第4架次X—37B轨道测试飞⾏器六旋翼飞⾏器平稳着陆⽅法研究⼀种⽆⼈飞⾏器测控信道初步设计“创新杯”第六届全国未来飞⾏器设计⼤赛获奖作品选登神秘的飞⾏器基于蓝⽛串⼝的多旋翼飞⾏器遥控系统设计微型飞⾏器发展现状与关键技术基于ARM的四旋翼飞⾏器设计基于四轴飞⾏器的运载机器⼈设计浅谈对飞⾏器转弯飞⾏导航控制的研究航天飞⾏器⾦属结构的制造⼯艺及检验⽅法研究多旋翼飞⾏器发展概况研究初玩四轴飞⾏器多轴飞⾏器装机经验谈普通院校飞⾏器设计与⼯程专业⼯程应⽤型⼈才培养“中航⼯业杯”⽆⼈飞⾏器Yuneec Q500航拍⼀体飞⾏器Zano微型航拍四轴飞⾏器航天战术飞⾏器质量管理信息系统分析设计智能测污飞⾏器安卓⼿机遥控电动A4纸折微型飞⾏器总体设计为飞⾏器摄影⽽⽣:空中摄影附件⼤⽐拼浅谈⼩型低速航空飞⾏器造型美学基于DSP的多轴⽆⼈飞⾏器设计亚拓M690L多轴飞⾏器浅析电动多旋翼飞⾏器的设计及其在农业领域中的应⽤⼀种⾼级飞⾏器测试数据时域判读⽅法⾼超声速飞⾏器上升段轨迹优化了不起的飞⾏器微型飞⾏器的⼩幅运动⽓动⼒建模研究六旋翼飞⾏器容错控制算法我最喜欢的玩具——愤怒的⼩鸟发光感应飞⾏器折叠式飞⾏器机翼展开装置的技术研究⾼超⾳速飞⾏器⽓动热研究进展新型四旋翼飞⾏器设计与制作某型海⾯飞⾏器⽤阀门断裂原因的失效分析另类“单⼈飞⾏器”⽆⼈旋翼飞⾏器⾃适应飞⾏控制系统设计多功能探测智能四轴飞⾏器的研制分析亚拓M480L多轴飞⾏器基于⽆⼈飞⾏器和GIS的防汛抗旱监测系统基于ANSYS的四轴飞⾏器机架振动分析四旋翼飞⾏器多传感器硬件的电路设计基于PID神经⽹络的四旋翼飞⾏器控制系统研究输电线路精细化故障查找飞⾏器研制及应⽤⼩型四轴飞⾏器控制器设计的研究校园空中监管四轴飞⾏器的设计动⼿做⽓球飞⾏器新型涵道⽆⼈飞⾏器飞⾏控制策略研究基于四轴飞⾏器的PID姿态控制系统基于X—Bee和STM32F407的四轴飞⾏器设计基于飞⾏器的复杂零件⾃动加⼯及组装技术的研究飞⾏器坠海咋打捞?四旋翼飞⾏器飞⾏轨迹的仿真研究视觉导航的四轴飞⾏器控制系统设计农⽤⽆⼈遥控飞⾏器优势和效益分析可续航三栖探测飞⾏器系统设计与实现基于DSP的四旋翼⽆⼈飞⾏器控制系统基于WIFI的智能多功能微型四旋翼飞⾏器设计四轴飞⾏器的姿态研究与设计基于ARM的⼀种⽆⼈航拍旋翼飞⾏器设计“空中牧⽺⽝”让飞⾏器竞赛更具挑战与趣味性⼀种垂直起降飞⾏器四旋翼飞⾏器的设计与仿真分析北京航天长征飞⾏器研究所“图像去模糊技术”国际领先扑翼式飞⾏器的发展与展望飞⾏器健康监控的概念及其发展飞翔的歌利亚:超级飞⾏器狂想⾼超声速飞⾏器建模研究基于分布估计算法的弹性飞翼飞⾏器多操纵⾯控制分配基于Multiwii的开源四轴飞⾏器⼀种新型⽆⼈机⼩型化飞⾏器管理计算机的设计实现美空军科学咨询委员会评估⾼超声速飞⾏器技术成熟度基于OPC技术的飞⾏器测试与控制系统设计Mil—1394b总线在飞⾏器管理系统中的典型应⽤分析飞⾏器供电系统最⼤功率跟踪与测试技术研究微型飞⾏器悬臂谐振分析⾼空长航时飞⾏器⾃主导航系统研究及试验验证电动多旋翼飞⾏器的特点及其在农业中的应⽤带魔⼒的球球飞⾏器⽤KT板制作四轴飞⾏器机架的可⾏性电⼒巡线⽤四旋翼飞⾏器软硬件设计地效飞⾏器的发展及其军事应⽤⾃动航⾏飞⾏器设计变结构飞⾏器的故障诊断与容错控制盘点全球⼋⼤奇葩飞⾏器从中国⾼超声速导弹试验谈亚轨道飞⾏器⼀种警⽤可折叠六旋翼飞⾏器设计漫谈多轴飞⾏器的操纵⽅式基于Fluent的飞⾏器⽓动参数计算⽅法基于STM32单⽚机的三叶浆四旋翼飞⾏器设计四轴飞⾏器仿真系统设计滑翔飞⾏器威胁区规避算法研究魔⽅型深空探测飞⾏器未来变体⽆⼈飞⾏器的关键技术太空飞⾏器的空⽓动⼒学数据新型飞⾏器航空飞⾏器的结冰与防冰四旋翼飞⾏器控制系统设计基于⼿机WIFI通信的空中探测飞⾏器研制基于GPS及光流传感器的四旋翼飞⾏器四翼飞⾏器⽤于紧急运输的⽹络设计低空探测飞⾏器的改装及其在现代⽓象服务中的应⽤四旋翼飞⾏器增稳混合控制器求破解之法⾼超声速飞⾏器的拦截和防御基于⼴义逆矩阵求解的空间飞⾏器的定位7旬⽼⼈欲研制出⽆动⼒飞⾏器微型旋翼飞⾏器的现状分析和发展趋势初探英国⼈设计“怪物”飞⾏器结合飞艇、飞机、直升机的世界最长飞⾏器基于PIV原理的微型扑翼飞⾏器流场试验台遥控飞⾏器航拍在建设⼯程中的应⽤基于Mahony滤波器和PID控制器的四旋翼飞⾏器姿态控制飞⾏器制造⼯程专业教学⽅法改⾰模式研究⾼超声速飞⾏器的滑模预测控制⽅法⾼超⾳速飞⾏器引领空天武器新趋势飞⾏器⾥的好⼩伙多学科设计优化算法及其在飞⾏器设计中应⽤太阳帆飞⾏器⾃适应极点配置控制⽅法研究低空飞⾏器即时航迹评估⽅法及模型⾼空飞⾏器供油驱动系统IGBT模块结温特性研究综合化飞⾏器管理计算机技术研究虚拟制造技术在飞⾏器设计中的应⽤⽆⼈机飞⾏器通信链路抗⼲扰性能⽐较研究四旋翼⾃主飞⾏器系统发展中的飞⾏器射频隐⾝技术⼈造昆⾍——微型飞⾏器飞⾏器:作为艺术的喷⽓机飞⾏器设计的多参数决策matlab的模拟实现马丁飞⾏器宫崎骏关键词:少⼥,森林,飞⾏器四旋翼⾃主飞⾏器私⼈航天飞⾏器各显神通传说中的磁单极飞⾏器基于FPGA的⽆⼈飞⾏器温度巡检装置的设计蜂窝与太空飞⾏器地效飞⾏器周围流体场数值模拟国外⾼校浮空飞⾏器学⽣创新实践活动的发展与启⽰飞⾏器⼤型薄壁件制造的柔性⼯装技术临近空间⾼超声速飞⾏器建模与控制研究进展⾼速飞⾏器直接⼒/⽓动⼒复合控制技术综述多旋翼飞⾏器在输电线路巡维的应⽤飞⾏器⽼牌电⽓公司的飞⾏器德国西门⼦-舒克特SSW D.III/D.IV战⽃机关于脑电波控制飞⾏器的研究现状概述基于粒⼦群算法的再⼊式飞⾏器再⼊⾛廊计算⽅法研究⼀种飞⾏器测控电源的实时监测装置设计与实现⾼超⾳速飞⾏器呼之欲出基于科研资源向教学资源转化的飞⾏器结构⼒学的本科教育研究与实践飞⾏器吸⽓式⾼超声速飞⾏器纵向运动反演控制器设计四轴飞⾏器⽆刷直流电机驱动技术研究康达效应飞⾏器研究及应⽤飞⾏器的那些事SINS/CNS组合导航对⾼空飞⾏器再⼊精度的影响有输⼊饱和的⽋驱动VTOL飞⾏器滑模控制飞⾏器跳“龙门”临近空间飞⾏器发展概况外星飞⾏器没有来!俄研制新型地效飞⾏器“驭波者”来袭美国空军X—51A⾼超⾳速飞⾏器试验成功基于改进互补滤波器的低成本微⼩飞⾏器姿态估计⽅法基于⽆线传感器⽹络的飞⾏器结构健康监测系统的关键技术研究与应⽤某飞⾏器温度遥测参数异常分析对四轴飞⾏器的姿态控制器的设计与仿真⼗⼤即将实现的未来飞⾏器做⼀架⽓垫飞⾏器贴地飞⾏器再⽣源于SAAB的灵魂战车—北汽绅宝柔性与刚性机翼微型飞⾏器⽓动特性差异研究动基座飞⾏器故障弹道仿真飞⾏器三维轨迹动态显⽰系统的设计基于Matlab/Simulink的飞⾏器全数字仿真平台的设计基于测向阵列的空中飞⾏器瞬时⽆源定位完美主义飞⾏器未来飞⾏器未来飞⾏器微探飞⾏器电⼒巡检欧洲航天局透露“⾼速试验飞⾏器”计划细节⾃主学习教学⽅法在“飞⾏器⾃主导航”课程中的应⽤体会发展中的飞⾏器射频隐⾝技术“创新杯”第五届全国未来飞⾏器设计⼤赛获奖作品选登ADS—B飞⾏器航迹监视的三维可视化探讨世界上最⼩的亚轨道载⼈飞⾏器四旋翼⽆⼈飞⾏器混合控制系统研究神奇的意念遥控飞⾏器“创新杯”第五届全国未来飞⾏器设计⼤赛颁奖仪式在珠海召开天津滨海⾼新区特种飞⾏器研发基地⼆期开⼯超⾼速飞⾏器可数⼩时飞越太平洋等选择哪些飞⾏器航拍?雷震⼦与⼩型飞⾏器⼀起来做四轴飞⾏器(下)基于四杆机构对仿⽣蜻蜓扑翼飞⾏器的设计优化与仿真近空间飞⾏器故障诊断与容错控制的研究进展基于QFT的四旋翼飞⾏器飞⾏控制算法研究美国飞⾏器图形⼀起来做四轴飞⾏器(上)微型飞⾏器像昆⾍那样飞⾮常规布局的斜掠翼飞⾏器微型飞⾏器像昆⾍那样飞⾼超声速飞⾏器参数化⼏何建模⽅法与外形优化X基于单⽬视觉的室内微型飞⾏器位姿估计与环境构建“飞航杯”全国⾸届未来飞⾏器设计⼤赛揭晓明天,乘什么样的飞⾏器去旅⾏临近空间环境对临近空间飞⾏器的影响乘波者飞⾏器,⼀⼩时打击全球随⼼所欲飞⾏器⽔上飞⾏器做椭圆运动的飞⾏器近地点速度范围的浅显证明从天宫⼀号的发射看飞⾏器的空间交会对接使⽤GPS传感器的飞⾏器⾃动抛物系统设计扇翼飞⾏器模型的设计与制作Vega环境下的某飞⾏器视景仿真的实现教你调试单轴飞⾏器四旋翼微型飞⾏器设计⽇本⾼超声速飞⾏器技术发展解析基于DSP的发射控制系统在提⾼飞⾏器发射精度中的应⽤TYPE 20飞⾏器腕表碟影重重探秘国外圆盘形飞⾏器飞⾏器发展史遥控飞⾏器与摄像机——派诺特AR.Drone 2.0“天宫⼀号”飞⾏器发射的地理⾓度分析关于四轴飞⾏器的姿态动⼒学建模飞⾏器飞⾏⼯况视频监测及图像处理“航天创意杯”新概念飞⾏器创新⼤赛落下帷幕“猎户座”嬗变:从乘员探测飞⾏器到多⽤途载⼈飞船⼀款“KK”板单轴飞⾏器亚特兰蒂斯的飞⾏器飞⾏器制造⼯程专业实践教学体系完善研究通古斯之谜⼜有新说祸⾸疑是天外飞⾏器视频跟踪四旋翼飞⾏器创新实验系统明天,乘什么样的飞⾏器去旅⾏对“天宫⼀号”⽬标飞⾏器发射成功的多⾓度思考基于DE算法的再⼊飞⾏器横向机动能⼒研究基于改进粒⼦群算法的再⼊飞⾏器轨迹优化基于BP⽹络的飞⾏器解耦设计美披露外⼤⽓层杀伤飞⾏器陆基拦截试验失败原因飞⾏器机翼布局对雷达隐⾝性能影响探讨⼀种新飞⾏器的设想Evolution of Aircrafts飞⾏器发展史未来50年的概念飞⾏器直升机/喷⽓机混合飞⾏器⾸届中航⼯业杯——国际⽆⼈飞⾏器创新⼤奖赛闭幕天宫⼀号⽬标飞⾏器发射升空后准确进⼊预定轨道绿⾊飞⾏器的梦想与现实乘着⽉亮的飞⾏器中航⼯业杯—国际⽆⼈飞⾏器创新⼤奖赛9⽉在京举办晶体硅电池在太阳能飞⾏器上的选择与应⽤(下)“KK”飞控板系列飞⾏器的制作基于⾃适应逆的微型飞⾏器飞⾏控制系统美研制微型飞⾏器晶体硅电池在太阳能飞⾏器上的选择与应⽤晶体硅电池在太阳能飞⾏器上的选择与应⽤(上)探索近空飞⾏器创新永不⽌步飞⾏器专业开设基于多知识点的综合性\设计性实验的研究⼈类最早的飞⾏器《鲁班的飞⾏器》围绕旋翼飞⾏器的三维结构化运动嵌套⽹格⽣成⽅法单兵飞⾏器往事低空飞⾏器在⼤⽐例尺地形测图中的实践与应⽤全对称⽮量推进飞⾏器美军⾼超⾳速飞⾏器有两个技术路线机翼可折叠的飞翼布局飞⾏器验证机基于SolidWorks和ANSYS的⼀种四旋翼飞⾏器旋翼的设计及分析基于⽓动舵⾯和RCS融合控制的⾼超声速飞⾏器再⼊姿态容错控制基于WiFi AP模式下的多轴飞⾏器数据传输系统设计多飞⾏器⾃适应编队制导控制技术吸⽓式⾼超声速飞⾏器控制研究综述基于数字地图预处理的飞⾏器航迹规划未来飞⾏器可海空两⽤⾼超⾳速飞⾏器能穿透导弹防御基于复合材料的⼋旋翼飞⾏器设计四轴飞⾏器的研究与设计四旋翼飞⾏器飞⾏控制专利申请现状及审查应⽤实例分析美国“未来飞⾏器”基于STM32的四旋翼飞⾏器姿态测量系统设计太阳能混合动⼒飞⾏器的设计与制作基于四旋翼飞⾏器的制药车间温湿度监测基于GPS的四旋翼飞⾏器研究设计四旋翼飞⾏器悬停控制的研究派诺特Bebop Drone四轴飞⾏器专题测试灵巧的“⼤眼睛”美国空军成功发射第4架次X—37B轨道测试飞⾏器六旋翼飞⾏器平稳着陆⽅法研究⼀种⽆⼈飞⾏器测控信道初步设计“创新杯”第六届全国未来飞⾏器设计⼤赛获奖作品选登神秘的飞⾏器基于蓝⽛串⼝的多旋翼飞⾏器遥控系统设计微型飞⾏器发展现状与关键技术基于ARM的四旋翼飞⾏器设计基于四轴飞⾏器的运载机器⼈设计浅谈对飞⾏器转弯飞⾏导航控制的研究航天飞⾏器⾦属结构的制造⼯艺及检验⽅法研究多旋翼飞⾏器发展概况研究初玩四轴飞⾏器多轴飞⾏器装机经验谈普通院校飞⾏器设计与⼯程专业⼯程应⽤型⼈才培养⾃转旋翼/机翼组合构型飞⾏器飞⾏动⼒学特性旋翼飞⾏器飞⾏动⼒学系统辨识建模算法飞⾏器等离⼦体隐⾝技术及研究现状飞⾏器的翅膀美国轨道试验飞⾏器X-37B⽇内⽡国际车展飞⾏器的化妆舞会基于MATLAB的⽆⼈飞⾏器两点交会定位算法研究基于TVARMA的飞⾏器结构响应序列参数谱估计“天宫⼀号”⽬标飞⾏器的搭载⽅案评审结果揭晓中航⼯业杯—国际⽆⼈飞⾏器创新⼤奖赛9⽉在京举办美国公布⾼超声速试验飞⾏器试飞失败原因Draganfly四旋翼微型飞⾏器⾯向分级设计优化的飞⾏器参数化建模⽅法未来太空飞⾏器⼤曝光玛雅⽯板上的宇宙飞⾏器之谜X-37B“轨道试验飞⾏器1号”美国X系列飞⾏器(四)垂直极限的挑战⼀种飞⾏器综合健康管理系统决策⽀持层的设计⽅法飞⾏器⼤振幅运动实验与⽓动⼒建模飞⾏器隐⾝技术现状及其未来发展趋势个⼈飞⾏器显⾝⼿研制超微型飞⾏器成世界新趋势⽹络中⼼战的空中多⾯⼿:⽆⼈飞⾏器⼩波变换在飞⾏器遥测数据分析中的应⽤全⾃动航测测量系统MAP-Ver 在⽆⼈飞⾏器低空航摄数据处理中的应⽤飞⾏器板结构中Lamb波解析建模研究“怪物”飞⾏器上班族的飞⾏器美国X性系列飞⾏器⼀开启空间战争新时代?难以证实的古代宇宙飞⾏器之谜未来的飞⾏器数学专业:飞⾏器环境与⽣命保障⼯程考虑迟滞⾮线性的⾼超声速飞⾏器颤振分析伞翼飞⾏器折叠式飞⾏器等多⼯况下⾼超声速飞⾏器再⼊时流场的计算新型电⼒飞⾏器“帕分”等2则彩笔“飞⾏器”通⽤再⼊飞⾏器空间作战飞⾏器⽔动⼒穿戴式飞⾏器⾛近轻型运动飞⾏器“磁悬浮”:零⾼度飞⾏器飞⾏器电⽓接⼝⾃动测试系统设计关于飞⾏器振动仿真模拟的分析飞⾏器仪器舱混响室声环境实验研究和数值模拟折叠式飞⾏器·GPS定位鞋等超轻型飞⾏器的设计制作和试飞倾转双涵道风扇单⼈垂直起降飞⾏器抗震救灾的飞⾏器基于有限状态机的飞⾏器⾃毁系统时序控制设计近空间飞⾏器及其关键材料临近空间飞⾏器⾼超声速飞⾏器多约束参考轨迹快速规划算法基于CMAC⽹络的飞⾏器再⼊标准轨道制导基于INA-QFT的⾼超声速飞⾏器鲁棒控制器设计飞翼式飞⾏器结构布局与构件尺⼨的两级优化近空间飞⾏器的DSF:vsat鲁棒快速Terminal滑模控制⼗⼤杰出飞⾏器太空飞⾏器如何调控温度(下篇)UFO飞⾏器即将上市和飞⾏器相关的专业有哪些等太空飞⾏器如何调控温度(上篇)宇宙飞⾏器上带的电⼦脑袋新型飞⾏器飞⾏器的电磁⼒制动亚轨道飞⾏器返回段动⼒学虚拟样机设计⼤⽩丁博⼠的助⼒飞⾏器基于wince的飞⾏器姿态采集系统的设计与实现灵巧型军民通⽤交通⼯具——飞⾏家三栖飞⾏器基于遗传算法的飞⾏器路径规划研究临近空间和临近空间飞⾏器扑翼微型飞⾏器⾮线性H∞姿态控制飞⾏器虚拟现实仿真研究中国研制成功形似“UFO”的实⽤飞⾏器等⾼超声速飞⾏器的⽓动外形飞⾏器系统级可测试性设计⽅法研究“创新”杯第⼆届全国未来飞⾏器设计⼤赛专业⼆等奖作品(⼆)欧洲第⼀艘“⾃动转移飞⾏器”发射升空等完美世界飞⾏器再绎⾃由新梦想私享者的飞⾏器临近空间飞⾏器的种类及军事应⽤⽔上飞机、地效飞⾏器与冲翼艇辨析⾃主飞⾏器向苍蝇看齐东梦岛——奇奇的飞⾏器电⼦⼲扰对低可观测飞⾏器飞⾏路径规划的影响国内外微型飞⾏器研究现状及技术特点⼟⾖·⽜仔·总统⼭·柑橘·飞⾏器·⼤瀑布美国临近空间飞⾏器技术发展概述从“飞⾏器”谈起的“科学”飞⾏器的“摇篮”新型飞⾏器造艘飞⾏器去参赛⽇本准备进⾏升⼒体再⼊飞⾏器试验昆⾍飞⾏器飞⾏器造型⼤⽐拼飞⾏器的“原动⼒”飞⾏器在直⾓坐标系中定位⽅法研究飞⾏器助推段振动环境分析近空间飞⾏器成为各国近期研究的热点(下)近空间飞⾏器成为各国近期研究的热点(上)飞⾏器的奥秘应⽤于微型飞⾏器阵列天线的⾃适应波束形成器苍蝇飞⾏器正“瘦⾝”训练⾼超声速飞⾏器滑⾏航迹优化飞⾏器RCS计算前置处理中裁剪曲⾯剖分算法⾼超声速飞⾏器BTT⾮线性控制器设计与仿真基于MAS的空天飞⾏器⾃主控制系统设计⾼超⾳速飞⾏器头罩⽓动热流场数值模拟微型仿⽣扑翼飞⾏器的尺度效应分析美国航宇局探索体系和“机组探索飞⾏器”问答追逐飞⾏器的龟壳911TurBo不⼀样的新兵:美国研制“临近空间”飞⾏器“⼩鹰”号地效飞⾏器飞⾏器发动机的分类及⼯作原理⼀种翼⾝融合体飞⾏器外形的RCS计算与实验发明载⼈飞⾏器的应是中国⼈某RLV飞⾏器投放轨迹的设计与分析⾼空⾼速⽆⼈飞⾏器热控制系统设计碟形飞⾏器发展现状及其关键技术世爵:陆地飞⾏器⾼能激光武器的毁伤机理及飞⾏器防御途径分析美国的机组探测飞⾏器计划基于遗传算法的飞⾏器追踪拦截模糊导引律优化设计⽆⼈飞⾏器⾃主着舰实时场景的仿真实现基于OpenGL的飞⾏器超低空追击/拦截三维可视化仿真系统“地⾯飞⾏器”飞⾏器控制软件的Statechart原型及其验证跨⼤⽓层飞⾏器爬升段纵向飞⾏控制律和制导律设计地效飞⾏器的海战应⽤地效飞⾏器何以东⼭再起飞⾏器多学科设计优化软件系统防晕飞⾏器微型飞⾏器的微⼩摄像与⽆线传输系统旋翼式微型飞⾏器升⼒系统设计基于Matlab的飞⾏器系统动态特性分析飞⾏器结构特征提取与识别飞⾏器动态下俯过程中的负阻⼒现象激光推进轻型飞⾏器——⼤⽓模式和激光烧蚀推进相结合⾃⼰做个飞⾏器可重复使⽤空间飞⾏器的飞⾏控制飞⾏器RCS预估计算前置处理的曲⾯元⽅法基于视频图像的微型飞⾏器飞⾏⾼度提取⽅法各具特⾊的新动⼒飞⾏器微型飞⾏器新型极化电磁驱动舵机的研究飞⾏器结构模型的塑性动⼒响应和失效研究超⼩型固定翼飞⾏器飞控系统研究数据库中的知识发现在飞⾏器故障诊断中的应⽤登⽉飞⾏器软着陆轨道的遗传算法优化飞⾏器动⼒学虚拟样机技术研究微型飞⾏器螺旋桨的⽓动优化设计我所研究的磁悬浮环形飞⾏器基于GIS的⽆⼈飞⾏器路径规划航空百年:“601所杯”未来飞⾏器设计⼤赛启事新闻⾥的飞⾏器:RJ-100型客机“熊蜂-1T“遥控飞⾏器“熊蜂-1T”遥控飞⾏器⼩型观测系统新型飞⾏器V-44问世飞⾏器座舱联想形形⾊⾊的新飞⾏器阿列克谢耶夫与他的地效飞⾏器神奇的地效飞⾏器空间作战飞⾏器。
揭秘俄罗斯军队航天兵重点发展空天作战兵器2001年6月1日,俄罗斯军队成立了一个新兵种——航天兵,这被看作俄罗斯天军成立的标志。
俄军认为,未来高技术战争首先将从宇宙空间开始,制天权是夺取制空权和制海权的先决条件。
其实,早在冷战时期,苏联和美国就在航天领域你追我赶,大力发展军事航天和太空作战兵器。
但苏联的解体使其通往天空及太空的高速列车骤然停止甚至倒行,直到俄军航天兵成立,才又重新启动。
10年后的2011年12月1日,俄军在航天兵的基础上,合并空军的空天防御战略战役司令部,又组建空天防御兵,进一步推进空天大融合。
过去的10年,是俄天军加足马力,奋起直追的10年。
天军已经成为俄武装力量中最年轻也是发展最快的兵种。
俄天军在曲折反复中发展上世纪90年代苏联解体后,俄空天防御能力直线下降。
当时雷达部队员额削减60%,分队总数减少80%,对1000米以下低空目标侦察能力下降了50%。
这既有国家经济不给力的因素,也有改革造成的体制原因,但更主要的还是与俄军政高层的战略判断失误有关。
俄罗斯成立之初,奉行亲西方政策,认为已不存在来自西方的任何威胁,美国和北约也由原来的“冷敌”变成了“蜜友”。
失去战略对手后,俄军建设迷失了方向,军队发展完全由高层领导的喜好决定,特别是谢尔盖耶夫担任国防部部长期间,有限军费中的80%都用在战略核力量建设上。
这也导致俄军高层对武装力量的调整缺乏理性、统一的长远规划。
1997年11月,俄将原直属国防部的军事航天力量与原防空军的导弹太空防御兵并入战略火箭军。
次年,将原空军和防空军合并,组成新空军。
这造成空天防御的主体力量——导弹太空防御部队和国土防空军分别落在战略火箭军和空军两个军种之中,其发展受到严重桎梏。
就在俄军发展处于迷茫期时,1999年,北约实现首轮东扩,并提出先发制人的“战略新构想”,随即绕过联合国发动科索沃战争,俄罗斯的战略空间和传统势力范围受到挤压。
普京上台后,对国家安全形势进行了冷静反思。
控制工程C ontrol Engineering of China May 2008V ol .15,S 02008年5月第15卷增刊文章编号:167127848(2008)S 020021203 收稿日期:2008203217; 收修定稿日期:2008203228基金项目:国家自然科学基金资助项目(60775048)作者简介:方存光(19722),男,安徽寿县人,副教授,博士,主要从事建模方法与智能机器人控制、汽车电子控制系统等方面的教学与科研工作。
高超声速飞行器及其飞行状态控制方存光1,2,孙 勇1,王 伟2(1.沈阳理工大学汽车与交通学院,辽宁沈阳 110168; 2.大连理工大学信息与控制研究中心,辽宁大连 116024)摘 要:概述了高超声速飞行技术研究的意义及发展现状,从气动外形、推进手段及气动热效应等方面探讨了高超声速飞行器飞行状态控制面临的挑战;从空气动力学理论、仿真手段、工作环境及流场特性方面指出飞行器飞行状态描述的复杂性,在回顾并评价目前高超声速飞行器飞行状态控制策略的基础上,提出了以工作环境及飞行速率为变量的多模型建模方法描述飞行器的飞行状态,以机理建模和伪动力学建模综合应用的方法建立飞行器高超声速飞行状态模型的思路,并针对其高超声速飞行特点探讨了可能的控制策略。
关 键 词:高超声速;飞行器;飞行状态;控制中图分类号:TP 242 文献标识码:AHypersonic Aircraft and Its Flying Status C ontrolF ANG Cun 2guang1,2,SUN Yong 1,WANG Wei2(1.Autom obile &T raffic School ,Shenyang Lig ong University ,Shenyang 110168,China ;2.In formation &C ontrol Center ,Dalian T echnology University ,Dalian 116024,China )Abstract :S ignificance and development of research on hypers onic flying technology are introduced.The challenges which hypers onic aircraft flying status control meets are discussed from propelling means ,aerodynamic profile and thermal effect.H AFS m odeling intricacies are expat 2icted from aerodymemics ,simulation means ,operation circumstance and flow field.A fter reviewing and estimating H AFS control policies ,the idea is proposed that describing H AFS by multi 2m odel method ,which takes operation circumstance and flying velocity as variaties ,and esta 2bishing H AFS m odel by mechanism m odel and pseudo dynamic m odeling method.And based on the characteristics of hypers onic flying ,the control policy is disscussed.K ey w ords :hypers onic ;aircraft ;flying status ;control1 引 言高超声速飞行器(HS A )一般指以火箭或超燃冲压发动机为主要动力,飞行速度达5马赫以上的飞行器。
中核战略规划研究总院《原子能情况反映》编辑部组织相关专家,对2020年国外核领域事件进行梳理,根据事件对国际形势、核安全态势以及未来对核工业发展的影响进行筛选,评选出国外核领域十大事件,供参考。
1美国新型海基低威力核弹头服役2月4日,美国防部宣称,W76-2核弹头已于2019年底随“俄亥俄”级弹道导弹核潜艇“田纳西”号开展战略巡航。
W76-2核弹头威力约5000吨梯恩梯当量、附带损伤小,与“三叉戟”-Ⅱ潜射导弹这一海基运载工具相结合,增加潜射核武器运用灵活性。
W76-2核弹头由海基W76-1核弹头(当量10万吨梯恩梯)改造而来,通过全部替换或拆除弹头的氢弹主体(次级),仅使用引爆弹(初级),降低爆炸威力。
2019年2月,美能源部国家核军工管理局宣布,完成首枚W76-2核弹头的生产(首批共生产50枚)。
美国会在2019财年和2020财年共计为该项目拨款7500万美元。
美首次部署W76-2核弹头,形成海基低威力核打击能力,改变了仅有空基战术核打击手段的现状,加强了美核力量的灵活性和响应能力,提升了核武器的实战和威慑能力,丰富了美大国对抗的致胜手段;但也易引发战略误判与核冲突,降低核武器使用门槛,破坏国际战略稳定。
2国外加速研制部署高超声速武器3月19日,美海军、陆军联合进行了代号为“FE-2”的“通用高超声速滑翔体”第二次飞行试验,验证了滑翔体系统设计的合理性和动力、飞行控制等关键技术,为美海军、陆军快速研制并部署高超声速武器奠定了重要技术基础。
美俄等国均大力发展高超声速武器,视其为大国博弈与战略对抗的重要筹码,正开展高超声速武器攻防和军控等层面的全方位竞争。
其中,俄罗斯已于2019年底列装首批“先锋”高超声速导弹;法国明确其新一代空地巡航导弹将是以超燃冲压发动机推进的高超声速巡航导弹;日本近年安排有超声速空舰导弹和高超声速飞行器等项目;英国和印度已关注并筹划高超声速武器发展。
高超声速武器技术优势必将催生全新的作战手段,可能将颠覆现有打击方式和传统防御体系,高超声速武器巨大的战术实用价值和战略威慑潜力正引发世界范围的关注。
高超声速飞行器技术发展现状与前景展望高超声速飞行器是一种在大气层内飞行时速超过5马赫的飞行器,具有较快的飞行速度和高能效特性。
目前世界各国都在积极发展和探索高超声速飞行器技术,本文将对其发展现状进行概述,并展望其未来的发展前景。
现状:高超声速飞行器技术的发展可以追溯到上世纪50年代初期,美国、俄罗斯和中国等国家一直处于该领域的前沿。
然而,由于高超声速飞行器的飞行环境极其恶劣,技术难题众多,直到近年来才取得了一定的突破。
在美国,美国国防高级研究计划局(DARPA)推动了高超声速飞行器技术的发展。
经过多轮研发,美国成功开发出了X-51“威锋”飞行器,该飞行器成功进行了多次高超声速飞行试验,速度超过5马赫,并且能够长时间保持高超声速飞行状态。
此外,美国计划在未来几年内继续研发高超声速飞行器,并将其应用于军事和民用领域。
俄罗斯也是高超声速飞行器技术的领军国家之一。
俄罗斯成功开发出了“领航者”(Avangard)高超声速滑翔器,该滑翔器配备了核导弹,在飞行过程中可以绕过现有的导弹防御系统。
此外,俄罗斯还在积极研发高超声速巡航导弹等武器装备。
中国也在高超声速飞行器领域取得了令人瞩目的成就。
中国成功研制出了“神舟”系列高超声速飞行器,该飞行器能够在大气层内飞行时速超过10马赫,并且能够携带多种有效载荷。
此外,中国还计划在未来引入高超声速运载火箭,实现载人航天进入高超声速时代。
前景:高超声速飞行器技术的发展具有广阔的应用前景。
首先,在军事领域,高超声速飞行器可以有效提升军事打击能力,实现迅速、准确的打击敌方目标。
其次,在民用领域,高超声速飞行器可以用于长途旅行和货物运输,大大缩短飞行时间,提高效率。
然而,高超声速飞行器技术仍然面临着一些挑战和难题。
首先,高超声速飞行器的设计和制造过程极其复杂,需要克服高温、高压、高速等恶劣环境带来的问题。
其次,高超声速飞行器的飞行稳定性和控制难度较大,需要进一步研究和优化飞行控制技术。
高超声速飞行器发展现状和关键技术问题高超声速飞行器是指可以飞行在5倍音速以上的飞行器,具有超过音速5倍速度的飞行能力。
它具有重要的军事战略意义和广阔的应用前景。
在当今世界,高超声速技术已经成为各国军事竞争的焦点之一。
本文将探讨高超声速飞行器的发展现状,并分析相关的关键技术问题。
首先,我们来看一下高超声速飞行器的发展现状。
目前,全球范围内有多个国家在高超声速飞行器领域进行着积极的研究和开发。
其中,美国、俄罗斯和中国是最活跃的国家之一。
美国在高超声速领域具有丰富的研究实力,被认为是全球高超声速飞行器技术的领先者。
美国国防部和美国航空航天局(NASA)在该领域进行了多项研究项目,其中包括X-51飞行器的研发。
X-51是一种无人驾驶的高超声速飞行器原型,它成功地进行了多次飞行试验。
俄罗斯在高超声速技术领域也有很强的实力。
俄罗斯成功研发了“雅歌”高超声速导弹系统,并在2018年进行了试射。
此外,俄罗斯还计划发展一种名为“复兴者”的可重复使用高超声速飞行器,该飞行器预计在2023年前进行首次试飞。
中国也在高超声速领域取得了重要的进展。
中国成功研发了“神舟飞机-2号”和“神舟飞机-3号”两型高超声速飞行器,在实验中取得了显著的成果。
另外,中国还计划发展一种名为“彩虹-5”的超高音速飞行器,该飞行器将具有可重复使用能力。
虽然全球多个国家都在高超声速飞行器领域进行积极研究,然而,这个领域仍然面临着许多关键技术问题。
首先是发动机技术。
高超声速飞行器的发动机需要提供足够的推力和稳定的工作性能。
目前,涉及到高超声速发动机的关键技术难题包括高温环境下的可靠燃烧和动力系统的散热问题。
燃烧过程中产生的高温和高速气流对发动机的耐久性和工作效率提出了很高的要求。
其次是材料技术。
高超声速飞行器需要使用能够承受高温和高速气流冲击的材料。
这些材料需要具备良好的高温稳定性、抗热疲劳和热传导性能。
目前,开发适合高超声速飞行器使用的材料仍然是一个挑战。
稳定火焰了,因而需要一个大亚燃燃烧室(双燃烧室超燃冲压工作原理):而对于双模态超燃冲压发动机,M<4时可以处于亚燃模态,这时可用多个小预燃室进行点火与稳定。
这种双模态超燃冲压发动机能在较宽M工作范围内(△M>4)工作的特点在总体上特别具有生命力。
推进系统所需的研制周期最长,是高超声速技术的主要关键技术,根据美国已经历过‘三起三落’的技术基础,现在‘第四起’已具备条件进行飞行试验了,而且都安排在本世纪末和下世纪初。
可见,美国从NASP下马之后并未停止对于高超声速技术的研制,只是把近期目标降低而已,难度减小了,投资减少了:然而对高超声速技术在导弹、飞机、空天飞机等方面具有广泛应用前景的信念丝毫未变,相反看得更清楚了。
事实上,这一技术规划的调整很快就取得了实效,现在许多迹象表明,高超声速导弹的研制又重新导致了在世界范围内高超声速研制的复活【sl:美国海军第一步将研制M8的高超声速导弹(神箭EXCALIBUR).作为重点于比美空军提前~年半进行飞行试验:美国空军根据HyTech计划正进行M7—8的地面试验,2001年将要进行M6—8的验证机飞行试验:Hyper—x从1999年起也要开始进行水5一10的飞行试验“1:与此同时,NASA和它的台同商正在试验用于2015年的空天飞机推进系统(管道火箭/冲压/超燃冲压/火箭推进方案),先进的重复使用运输技术计划(ARTT)正在寻求为实现发射成本降低约百倍(¥100/磅)的吸气式推进系统(RBcc)。
最近美国在低速推进系统的研制方面又有了新的技术突破【7l,‘进入空间’公司研制的引射冲压发动机取得了很大的进展,并打算在2001年进行全尺寸发动机试验,2002年便开始投入商业发射的实际运用。
可以预见,如果引射冲压(M。
O一2)和超燃冲压(Mt3—8)这两项技术得到试验证实,则一种能够自行助推、加速和巡航(MzO一8)的RBCC组合发动机最终将会面世,由于这种发动机在保持商比冲的同时也具有较高的推重比(充分吸取了冲压和火箭发动机的优点,并尽量避免了由此带来的缺点),而且飞行范围又宽,因而对于巡航、巡航/加速、加速的任务需求都能很好地满足。
军事强国加紧研制高超音速武器四大技术待突破高超音速武器备受青睐高超音速武器是指以超高音速飞行技术为基础、飞行速度超过5倍音速的武器。
自20世纪50年代末开始探索超音速燃烧冲压发动机技术以来,美国、俄罗斯、德国和澳大利亚等国在20世纪90年代初陆续取得了技术上的重大突破,并相继进行了地面试验和飞行试验。
试验表明高超音速技术已经从概念和原理探索和基础研究阶段,进入以某种高超音速飞行器为应用背景的先期技术开发阶段。
冷战期间,美国曾提出多个高超音速飞行器的发展计划,如超燃冲压发动机导弹和国家“空天飞机”计划等,都中途夭折,但在关键技术方面还是取得一系列重大突破,从而为实际飞行器的工程设计奠定了坚实的技术基础。
1996年,美国对高超音速飞行器的发展进行调整,降低近期的发展目标,确立分阶段逐步发展的思路,选择以巡航导弹为突破口,而后转入其他飞行器与天地往返运输系统。
目前,高超音速巡航导弹已进入工程研制阶段,美国正在实施多项研究计划,目标是研制速度6—8马赫、射程1200千米左右的高超音速巡航导弹。
同时,以高超音速飞机等为应用背景的高超音速系列飞行试验研究也在进行中,如X-51A“驭波者”高超声速无人机。
俄罗斯在高超音速技术领域也处于世界领先地位。
俄早已拥有“白蛉”“宝石”等多种冲压发动机推进的导弹,它们为高超音速研究奠定了坚实的基础。
目前,俄罗斯高超音速技术已进入飞行验证阶段,正在研究更接近于实际的飞行器布局。
此外,俄罗斯还正在研制“下一代发射技术”高超音速试验飞行器,该飞行器采用氢燃料超燃冲压发动机,飞行马赫数达6—14马赫,已进行了大量的地面试验和风洞试验。
四大关键技术亟待突破高超音速飞行的飞行马赫数范围很宽,要跨越亚音速、跨音速、超音速3个阶段,才能进入高超音速阶段。
当飞行器从稠密大气层冲向稀薄大气层时,空气密度的巨大变化给飞行器的设计带来很大困难。
因此,超音速技术必须突破四大关键技术问题。
高超音速推进技术。
高超声速飞行器的研发与应用高超声速飞行器是一种在高速飞行时,能够带来更快速的飞行速度和更高的平稳程度的飞行器。
高超声速飞行速度高达5至25马赫,比声速快5至25倍。
尽管高超声速飞行器仍处于研究和发展阶段,但其已经被广泛应用于军事和航天领域中。
这种飞行器在未来也能够用于民用航空领域,从而实现更快速的旅行和更迅捷的交通。
1.高超声速飞行器的研发历程高超声速飞行器的研发是一个极具挑战性的任务,需要克服众多技术难题。
最早的高超声速试验是在20世纪30年代进行的,随着时间的推移,其研究不断发展和完善。
20世纪末,中国、美国、俄罗斯、欧洲等多个国家都开始投入巨额资金和人力,加紧了高超声速飞行器的研究。
中国于2006年成功试飞了“飞跃-2”高超声速飞行器(Hypersonic Flight Vehicle, HFV),它的飞行速度高达马赫数10至15。
“飞跃-2”的研发,代表了中国在高超声速技术领域的可靠性和领先性。
美国的X-51A无人高超声速试验机,于2010年开始飞行试验。
这种可以在30分钟内飞抵太平洋的高超声速试验机在试飞期间达到了马赫数5.1的飞行速度,成为全球首个进入高超声速的无人驾驶飞机。
俄罗斯也积极发展高超声速飞行器,并提出了“俄罗斯中等和长期科技发展规划2030年”的目标,即发展高超声速飞行器技术和载人高超声速飞行器,推动该领域的发展。
欧洲高超声速联盟(European Hypersonics Alliance)则致力于推动欧洲在高超声速领域的技术和研究计划。
欧洲空间局已经成功测试出了一种积极冷却的火箭发动机,这种发动机可以帮助高超声速飞行器在气温高达2000度的条件下,保持良好的性能。
2.高超声速飞行器的应用高超声速飞行器领域的研究还处于起步阶段,但这种飞行器在军事和航天领域中已经被广泛应用。
军事方面,高超声速飞行器可以用于侦察、反制和打击敌方军事设施,包括更快速准确地进行打击和空袭。
高超声速飞行器的飞行速度高,能够极大提高战斗效率,并且可以更高效的通过传统防空系统和导弹拦截系统。
高超声速飞行器一、国内外高超声速飞行器研制现状高超声速飞行器技术是21世纪航空航天技术的新制高点,是航空史上继发明飞机、突破声障飞行之后第三个划时代的里程碑,同时也将开辟进入太空的新方式。
高超声速飞行器技术的突破,将对国际战略格局、军事力量对比、科学技术和经济社会发展以及综合国力提升等产生重大和深远的影响。
因此,世界主要国家一直把高超声速飞行器研制作为科技发展的最前沿阵地,从人力、物力、财力等各方面给予大力支持。
自20世纪50年代末开始探索超声速燃烧冲压发动机技术以来,经过几十年的探索,美国、俄罗斯、法国、德国、日本、印度和澳大利亚等国在20世纪90年代初陆续取得了技术上的重大突破,并相继进行了地面试验和飞行试验。
这表明高超声速技术从进行概念和原理探索的基础研究阶段,进入了以某种高超声速飞行器为应用背景的先期技术开发阶段。
各国技术开发的主要应用目标近期为高超声速巡航导弹,中期为高超声速飞机,远期为吸气式推进的跨大气层飞行器、空天飞机。
高超声速飞行器技术是21世纪航空航天技术的制高点,也是重要的军民两用技术。
虽然目前仍存在不少技术难题,而且耗费巨大,但从世界各研制国目前的发展势头来看,以超燃冲压发动机为动力的高超声速巡航导弹有可能在2010年前后问世。
预计到2025年,以超燃冲压发动机为动力的高超声速飞机和空天飞机也有可能投入使用,并将在军事、政治和经济等领域产生重大影响。
1 美国1.1 Hyper2X计划经过较长时间的研究和实践,美国在高超声速飞行器的设计研制方面积累了丰富的经验。
作为试验性高超声速飞行研究计划,Hyper2X计划是对以往所做工作的一次检验。
Hyper2X计划是美国国家航空航天局(NASA)近年来重点开展的高超声速技术研究计划,主要目的是研究并验证可用于高超声速飞机和可重复使用的天地往返系统的超燃冲压发动机技术,并验证高超声速飞行器的设计方法和试验手段。
1997年1月,NASA与兰利研究中心、德莱顿飞行研究中心签订合同,Hyper2X计划正式启动。
武器系统本文20002126收到,作者系航天机电集团公司三院310所研究员俄罗斯高超声速技术飞行试验计划(一)刘桐林 摘 要 高超声速技术是现代高新技术的集合,已经进入飞行试验阶段。
在这一技术领域中,俄罗斯、美国研究处于世界的领先地位。
本报告较全面介绍俄罗斯高超声速技术进展,重点介绍当前正在或计划进行的4个飞行试验计划,即“冷”(Холод)计划、“鹰”(Ореβл)计划、“彩虹2D 2”(Радуга2д2)计划和“鹰231”(Ореβл231)计划。
主题词 俄罗斯 高超声速 超燃冲压发动机 飞行试验 计划 前苏联在超声速飞行器和冲压发动机技术领域在世界上处于绝对领先地位。
几十年来,前苏联中央空气流体动力研究院(ЦАГИ)、巴拉诺夫中央航空发动机研究院(ЦИАМ)、图拉耶夫联盟设计局(ТМКБ2Союз)、彩虹设计局(МКБ21адуга)、莫斯科航空学院(МАИ)等单位长期致力于高超声速技术基础理论研究,在亚 超燃冲压发动机、C H 燃料、耐高温材料、CFD 技术及一体化设计技术等方面取得了重大突破。
在高空飞行试验中,首次实现超声速燃烧,是航空航天领域的重大事件,它将大大促进高超声技术应用研究的发展。
俄罗斯已进入高超声速技术飞行验证阶段。
有许多飞行试验计划,多是联合进行的,也有的是与国外合作开发的。
其中,重要的飞行试验计划有4个:ЦИАМ与ЦАГИ等联合进行的“冷”(Холод)计划和“鹰”(Ореβл)计划;彩虹设计局和ЦАГИ联合进行的“彩虹2D 2”(Радуга2д2)计划和图拉耶夫联盟设计局(ТМКБ2Союз)、火炬设计局(ОКБ2Факел)、米格和莫斯科飞机生产联合企业(МАПОМИГ)联合进行的“鹰231”(Ореβл231)飞行试验计划。
1 “冷”(Холод)计划在俄罗斯高超速技术飞行试验中,最早进行的是“冷”计划。
1.1 研制单位概况“冷”计划是由俄罗斯巴拉诺夫中央发动机研究院(ЦИАМ2C I AM )与俄罗斯茹科夫斯基中央空气流体动力研究院(ЦАГИ2T s A G I )等单位合作进行的。
ЦИАМ是从事航空发动机研究的国家级科研机构,是俄罗斯最大的研究机构之一,也是欧洲最大的发动机研究试验中心。
它是1930年在中央空气流体动力学研究院螺桨发动机部、汽车和航空发动机研究院的航空部、伏龙芝航空工厂设计所的基础上组建的。
1955年建成了图拉耶沃试验研究基地,它是欧洲最大的高空、高速下试验航空发动机的基地。
后来又陆续建成了计算机中心、生产试验等设施。
ЦИАМ的喷气理论与优化发动机性能研究工作成绩突出,研制了几代大功率涡轮喷气发动机,为前苏联发展现代高性能歼击机准备了动力装置,ЦИАМ为前苏联航空发动机的现代化作出了巨大的贡献。
ЦИАМ主要的科研领域有:图1 ЦИАМC 16冲压发动机综合试验系统(俄罗斯代号Ц16)气体动力学、燃烧、热交换、结构分析和控制理论领域的基础研究;喷气发动机理论研究;性能最佳化的先进发动机研究;发动机所有部件(包括燃气发生器)的基础研究和应用研究;向各个设计局提供发动机研制的科学依据;为研制中的发动机及其系统、零部件作试验;探索改进发动机技术,以解决环境问题。
国际合作方面,ЦИАМ与美国、英国、法国、德国、中国等有科研合作项目,还积极参加大型国际会议和航空技术博览会。
ЦИАМ分两地:院部和科学研究中心在莫斯科市内航空发动机大街,试验研究基地坐落在莫斯科州的雷特卡里诺。
科学研究中心下设各研究室进行基础理论研究,它们是大发动机研究室、小发动机研究室、航空航天发动机研究室、冲压发动机研究室、气体动力学研究室、强度研究室、压气机研究室、燃烧室研究室、涡轮研究室、数学模型和计算机辅助设计研究室、飞机动力装置研究室、可靠性试验研究室、操纵系统研究室、燃油研究室、计算机中心、仪表与试验设备研究室和信息研究室。
ЦИАМ拥有大约30座试验设施(包括一架试飞平台),能在接近真实飞行的条件下对航空发动机及其部件、系统和构件进行试验研究。
这些设施包括:涡喷发动机高空试车台,模拟高度H ≈20km ,M a ≤30,实时处理试验数据;发动机小试车台,模拟试验涡喷、涡扇发动机的飞行高度、速度以及气候情况,模拟高度H =0~10km ,M a =0~15;气候试车台,可做地球上各地的气候条件下的模拟试车,如模拟试验发动机在高山机场的工作特性;开口段风洞,试验发动机在飞机起飞和着陆时的工作情况;压气机试验台,研究压气机的气动力特性和强度,装备有试验数据自动采集和处理系统,可以对全尺寸的双轴或内外涵道压气机,或者其模型在地面或高空、高速条件下进行试验,所试验的压气机最大转速17000转 分;研究燃油雾化和燃烧过程的装置;燃烧试验台;涡轮及其零部件试验台;研究气体动力学的现代数学模型;计算机辅助设计系统;强度试验室有一整套对航空发动机的材料、零部件作强度试验的台、架和装置;现代化的激光、光学测试系统。
ЦИАМ是与美国阿纳德研究中心实力相当的科研机构,科研人员3500多人,技术实力雄厚。
除去众多知名专家外,拥有博士60多人,副博士260余人。
两年前,叶利钦总统发布命令,图2 轴对称亚 超燃冲压发动机模型外形图 图3轴对称亚 超燃冲压发动机模型结构示意图图4 轴对称超燃冲压发动机气流流路图将ЦИАМ命名为国家研究中心,开展航空发动机基础理论研究,并对该专业技术领域的发展与产品负有认证的职能。
1.2 轴对称亚 超燃冲压发动机试验模型ЦИАМ的亚超燃冲压发动机试验模型是轴对称的。
在轴对称冲压发动机设计技术中,俄罗斯处于世界领先地位,并已成功地在飞航导弹中广泛应用。
轴对称亚 超燃冲压发动机模型是一个自主系统,它包括携带氢燃料的亚 超燃冲压发动机、燃料监控 测量系统、遥测系统等。
程序控制系统控制发动机的燃烧状态;地面遥测站接收遥测系统的数据进行处理。
试验模型总质量为595kg ,长度为4.3m ,最大直径为750mm ,可携带17kg (300L 3)的液氢燃料。
试验发动机的进气道直径为230mm ,长度为1.28m 。
发动机及支架的很多部件均是用普通材料制成的,进气道及中心锥、燃烧室和液氢燃料箱由不锈钢制成;锥尖和整流罩前缘处用铝2铁2铬粉末冶金材料,可承受1200℃以上的高温。
在试验燃烧室中有气蚀火焰稳定器。
在发动机模型的进气道中有三排喷嘴。
图4是试验发动机模型空气流路图。
在冲压发动机进行亚声速燃烧时,使用 、 两排喷嘴;在超声速燃烧条件下使用 ~ 喷嘴,做到双模态燃烧的转换。
1.3 试飞器ЦИАМ轴对称亚超燃冲压发动机试飞器采用已经开始退役的远程、中高空地对空导弹系统SA 25“甘蒙”(Gamm on )(俄罗斯名称为Вега“维加”,系统代号C 2200)中的5B 28导弹。
该导弹是C 2200系统中重要组成部分,是火炬设计局从60年代初开始研制、70年代初装备的。
它是一个系列家族,有SA 25,SA 25A ,SA 25B ,SA 25C ,SA 25D ,SA 25E型号,相应的俄罗斯代号为C 2200,C 2200B ,C 2200э,C 2200Д,C 2200Э,Э表示出口型,曾出口原华约国家,在原独联体国家也大量装备,也曾向利比亚出售。
它是为拦截高空侦察机、远程空对地导弹载机、高空远程支援式干扰机和指挥机而研制的(目标最大速度为1200m s )。
该导弹作战距离为17~320km ,拦截高度为0.3~35km 。
弹长10.8m ,弹径( 级)为860mm ,发射质量约为7000kg ,最大飞行速度M a =5,机动能力20g 。
采用固定阵地发射,固定高低角,方位可随动。
5B 28导弹是二级并联系统。
4台固体火箭助推器捆绑在 级弹体四周。
助推器工作完后,靠头部气动不对称力向四周分离。
每台助推器推力20t 。
级呈“×”形正常式气动布局,有4片大后掠弹翼,全动式尾舵。
主发图5 试飞行布局结构图飞行试验结果表试验日期1991.11.271992.11.171995.3.11997.8.11998.2.12最大飞行速度(m s )16531535171218321830最大飞行高度(km )3522.4303327.1最大飞行马赫数(M a )5.65.355.8626.5超燃冲压发动机工作时间(s )27.541.5——77动机为一台液体火箭发动机,液体燃料N 2O 4可长期安全存放,推力为31.36~96kN 。
5B 28导弹经过改装后作为ЦИАМ轴对称亚超燃冲压发动机的试验运载器来使用,拆除战斗部及无关系统,增加测量设备,发动机模型安装在5B 28导弹的头部。
1.4 飞行试验1991~1998年,ЦИАМ轴对称超燃冲压发动机的验证性飞行试验共进行过5次:其中第一次为俄罗斯自筹资金开发试验;第二、三次为与法国共同研究;第四、五次为与美国NA SA 合作试验项目。
这5次试验均是在哈萨克斯坦拜科努尔航天中心附近的靶场进行的,都是使用氢燃料。
这5次试验结果如表所示。
现将5次试验情况简要分述如下。
(1)第一次试验,1991年11月27日1991年11月27日进行首次轴对称亚 超燃冲压发动机模型的系留试验。
为了这次试验,ЦИАМ曾在1989、1990年做过两次发射试验,目的是验证试飞器的弹道,试验发动机不工作。
在飞行结束时,将试飞器回收。
但在后来的5次试验中,试飞器并没有设计成可回收的,在试验后就损坏了。
这次试验基本上是成功的。
导弹飞行180km ,飞行时间约为130s ,最大的飞行高度达到35km ,弹道非常平坦。
最大飞行速度达到1653m s ,最大飞行马赫数M a =5.6。
试飞器在飞行时间,通过程序控制系统使亚 超燃冲压发动机完成了两次独立的预编程燃烧。
第一次,持续时间近20s 。
从18km 高空、M a =3.5开始,到28km 高空、M a =6结束;第二次,持续时间近10s 。
从22km 高空、M a =4.5开始,到18km 高空、M a =3.5结束。
试验目的是验证发动机的点火系统。
在第一次的最终5s ,实现了超声速燃烧。
这是世界上首次在飞行试验中,实现了冲压发动机从亚声速燃烧模态到超声速燃烧模态的转换。
这一事件在现代发动机技术发展领域具有重大意义,它标志着超燃冲压发动机从地面试验的理论性研究到了应用开发阶段,更加确立了俄罗斯在这一专业技术领域的领先地位。
试验成功之后,俄罗斯将试验结果向西方国家通报了。
1992年初美国一家科技刊物报道说,当我们还在进行理论研究时,俄罗斯人已经在进行运行试验了。
90年代中期,美国加速发展高超声速技术,与这一事件可能有很大关系。
试验发动机在实现超声速燃烧时,燃烧室的气流速度达到了图6 试验飞行器待发射状态M a =3。