“圆锥曲线平行弦中点轨迹问题”说题
- 格式:docx
- 大小:11.01 KB
- 文档页数:4
圆锥曲线中点弦问题题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --=2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2-3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A 2 B 3 C .22 D .32.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b+=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A .23 B .33 C .23 D .53【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3] B .3(0,]4 C .3D .3[,1)42.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞)3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,m s+nt=1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=02.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .123.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .64.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜2,则m n 的值是( )A .22B 23C 92D 236.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D .1548.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C 2D .12圆锥曲线中点弦问题解析题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --= 【答案】B【解析】设直线和圆锥曲线交点为1(A x ,1)y ,2(B x ,2)y ,其中点坐标为(2,1)-,当斜率不存在时,显然不成立,设y kx m =+,分别代入圆锥曲线的解析式22111369x y +=,22221369x y +=并作差,利用平方差公式对结果进行因式分解,得12121212936y y y y x x x x -+=--+,得19236k =--,12k =,所以1(2)12y x =++,即:240x y -+=.2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2- 【答案】A 【解析】设直线l 的方程为1y k x b =+,代入双曲线方程2212x y -=,得到2221112102k x bk x b ⎛⎫----= ⎪⎝⎭,得到11221212k bx x k +=-,设()()111212,,,M x k x b N x k x b ++,则()11212,22k x x x x N b ⎛⎫+++ ⎪⎝⎭,则21121212b k k x x k =+=+,故1212k k ⋅=,故选A .3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4 【答案】D【解析】∵MN 关于y=x+m 对称∴MN 垂直直线y=x+m ,MN 的斜率﹣1,MN 中点P (x 0,x 0+m )在y=x+m 上,且在MN 上设直线MN :y=﹣x+b ,∵P 在MN 上,∴x 0+m=﹣x 0+b ,∴b=2x 0+m由2213y x b y x =+⎧⎪⎨-=⎪⎩﹣消元可得:2x 2+2bx ﹣b 2﹣3=0△=4b 2﹣4×2(﹣b 2﹣3)=12b 2+12>0恒成立,∴M x +N x =﹣b ,∴x 0=﹣2b ,∴b=2m∴MN 中点P (﹣4m ,34m )∵MN 的中点在抛物线y 2=9x 上, ∴299164mm =-∴m=0或m=﹣4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A .24 B .36C .22D .3【答案】C【解析】设点()11,A x y ,()22,B x y ,联立22112ax by y x⎧+=⎨=-⎩,得:()24410a b x bx b +-+-=,()()()244414164b a b b a b ab ∆=--+-=+- .12124414b x x a b b x x a b ⎧+=⎪⎪+⎨-⎪=⎪+⎩⇒12224x x b a b +=+,∴()121212*********x x y y x x -++-+-===()1241144b a x x a b a b -+=-=++.设M 是线段AB 的中点,∴M (2,44b a a b a b++).∴直线OM 的斜率为42224aa ab b b a b+==+则22ab=代入①满足△>0(a >0,b >0).2.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】B【解析】由题意设该双曲线的标准方程为22221(0,0)y x a b a b-=>>,1122(,),(,)M x y N x y ,则2211221y x a b -=且2222221y x a b-=,则1212121222()()()()y y y y x x x x a b +-+-=,即1212222()6()y y x x a b --=,则21221261(2)1230y y a x x b ---===--,即223b a =,则2244c a ==,所以221,3a b ==,即该双曲线的方程为2213x y -=.3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x 【答案】A【解析】设抛物线方程为y 2=2px ,直线与抛物线方程联立求得x 2−2px =0,∴x A +x B =2p ,∵x A +x B =2×2=4,∴p=2,∴抛物线C 的方程为y 2=4x .类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b +=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A 2B 3C .23D 5【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3(0,]2 B .3(0,]4 C .32D .3[,1)4【答案】C【解析】当P 是椭圆的上下顶点时,12F PF ∠最大,121120180,6090,F PF F PO ∴︒≤∠<︒∴︒≤∠<︒12sin 60sin sin 90,F PF ∴︒≤∠<︒113,,1c F P a F O c a ==≤<则椭圆的离心率e 的取值范围为32⎫⎪⎪⎣⎭.2.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞) 【答案】A【解析】已知双曲线()2222100x y a b a b-=>,>的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴3b a ≥e 2222224c a b a a+==≥,∴e ≥2,故选:A3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 【答案】B【解析】设直线1l 的方程为b y x a =,则直线2l 的方程为b y x a =-,设点11,b A x x a ⎛⎫ ⎪⎝⎭、22,b M x x a ⎛⎫- ⎪⎝⎭,则点11,b B x x a ⎛⎫-- ⎪⎝⎭,()1212AM bx x ak x x +=-,()12121212MBb b b x x x x a a a k x x x x -+-==--+,22AM BM b k k e a ∴⋅==,即21e e -=,即210e e --=,1e >,解得512e =,故选:B.综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,ms +nt =1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=0 【答案】D【解析】因为 m ,n ,s ,t 为正数,m +n =3,ms +nt =1,s +t 的最小值是 3+2√2,所以 (s +t )(ms +nt ) 的最小值是 3+2√2,所以 (s +t )(ms +nt )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s =ns t时取最小值,此时最小值为 m +n +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2.设以 (1,2) 为中点的弦交椭圆 x 24+y 216=1 于A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2)分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0.2.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .12【答案】C 【解析】由题得2222222242,4()2,2c c a a b a a b a =∴=∴-=∴=.设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=,所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-.3.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .6 【答案】A【解析】设112200(,),(,),(,)A x y B x y D x y ,则1201202,2x x x y y y +=+=,2211184x y -=,2222184x y -=,两式相减,得12121212()()()()84x x x x y y y y +-+-=,即0121202y y y x x x -=-,即12OD AB k k =,同理,得112,2OE OF BC AC k k k k ==,所以1112()4OD OE OF AMBC ACk k k k k k ++=++=-. 4.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】D【解析】根据题意,()2,0F -是双曲线的焦点,则双曲线的焦点在x 轴上,设双曲线的方程为22221x y a b-=,且()11,M x y ,()22,N x y ,直线MN 过焦点F ,则()30112MNK -==--,则有12121y y x x -=-,变形可得1212y y x x -=-,2211222222221,1,x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩①②,-①②,2222121222x x y y a b--=,又由1212y y x x -=-,且122x x +=,126y y +=,变形可得:223b a =,又由2c =,则224a b +=,解可得:21a =,23b =,则要求双曲线的方程为:2213y x -=.5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n 的值是( )A .22B 23C .922D 23【答案】A【解析】设()()1122,,,M x y N x y ,设MN 中点为1212,22x x y y A ++⎛⎫⎪⎝⎭,直线MN 的斜率为1-,直线OA 的斜率为12121212222y y x x x x y y ++==++.由于,M N 在椭圆上,故2211222211mx ny mx ny ⎧+=⎨+=⎩,两式相减得()()222212120m x x n y y -+-=,化简为12121212x x y y m n y y x x +--⋅=+-,即221,2m m n n -=-=. 6.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=【答案】C【解析】由已知得c =2,设椭圆的方程为2222150x ya a +=-,联立得222215032x y a a y x ⎧+=⎪-⎨⎪=-⎩,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=()22125010450a a --,由题意知x 1+x 2=1,即()22125010450a a --=1,解得a 2=75,所以该椭圆方程为2212575x y +=.7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D 15 【答案】C【解析】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以3e =8.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C .22D .12 【答案】C【解析】显然(2,1)M - 在椭圆内,设直线30x y -+=与椭圆的交点为112212(,),(,)()A x y B x y x x ≠,由M 是,A B 的中点有:12124,2x x y y +=-+=,将,A B 两点的坐标代入椭圆方程得:2211221x y a b +=, 2222221x y a b+=。
第2讲圆锥曲线论之中点问题及应用一、知识点1.中点弦所在直线方程2.有心圆锥垂径定理3.有心圆锥曲线第三定义4.对称问题二、典型例题【题型1 中点弦所在的直线的方程】例1.(1)已知直线l与圆x2+y2=9交于A,B两点,且AB的中点为P(1,1),求直线l的方程(2)已知直线l与椭圆x 24+y23=1交于A,B两点,且AB的中点为P(1,1),求直线l的方程(3)已知直线l与双曲线x2−y22=1交于A,B两点,且AB的中点为P(2,1),求直线l的方程(4)已知直线l与抛物线y2=4x交于A,B两点,且AB的中点为P(1,1),求直线l的方程【题型2有心圆锥曲线垂径定理】例2、(1)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,点(2,√2)在C上,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,直线OM的斜率与直线l的斜率的乘积为定值。
(2)已知椭圆C:9x2+y2=m2(m>0), 直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值。
(3)已知A,B,C是椭圆W:x 24+y2=1上的三个点,O是坐标原点,当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由。
(4)已知椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√32,且过点(√72,34),点P在第一象限,A为左顶点,B为下顶点,PA交y轴于点C,PB交x轴于点D,若CD∥AB,求点P的坐标。
(5)双曲线C:x 2a2−y2b2=1(a>0,b>0),直线y=kx+m交双曲线C于A,B两点,交双曲线C的渐近线于C,D,求证:|AC|=|BD|(6)已知斜率为k的直线l与椭圆C:x 24+y23=1交于A,B两点,且AB的中点为M(1,m)(m>0),证明:k<−12(7)已知双曲线x2−y22=1,过点P(1,1)能否作直线l,使l与所给双曲线交于Q1,Q2两点,且点P是弦Q1Q2的中点?直线l如果存在,求出它的方程;如果不存在,说明理由。
圆 锥 曲 线 之 轨 迹 问 题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。
这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。
3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。
二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =-Q ∴点P 的轨迹一定是线段MN 的延长线。
故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x ,圆O '的方程为010822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =3.已知椭圆)0(12222>>=+b a by a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上 ∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+=-,0),21(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。
“圆锥曲线平行弦中点轨迹问题”说题“说题”是近年来涌现出的一种新型教学研究模式.简单地讲:说题是执教者或受教育者在精心做题的基础上,阐述对习题解答时所采用的思维方式,解题策略及依据,进而总结出经验性解题规律. “说题”使教研活动更入微了,可以说是教研活动的一次创新.一般说来,说题应从以下几个方面进行分析:数学思想与数学方法,命题变化的自然思维,小结、归纳与应用,一题多解、发散思维,常规变式,多种变式、融会贯通,从特殊到一般寻找规律.要求数学教师不但对题目进行深层次的挖掘,说出题目的本质、新意、特色,还要说出题目的编制、演变过程以及该题目的潜在价值.下面是本人的一次说题研究,在此抛砖引玉供各位参考.一、说问题背景问题来源于2005年上海市普通高等学校春季招生考试数学试卷第22题:(1)求右焦点坐标是(2,0),且经过点(-2,-2)的椭圆的标准方程;(2)已知椭圆C的方程是x2a2+y2b2=1(a>b>0),设斜率为k的直线l,交椭圆C于A、B两点,AB的中点为M. 证明:当直线l平行移动时,动点M在一条过原点的定直线上;(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.二、说问题立意1.考查椭圆的标准方程和性质;中心对称等;2.考查数学思想有:从特殊到一般思想;数形结合思想;分类讨论思想;数学方法:判别式法;函数与方程转化等;引导将双曲线问题与相应的椭圆问题开展类比研究的思想方法.3.通过研究椭圆的平行弦的中点轨迹,对直线与曲线位置关系研究方法有更深刻的理解;这是将知识、方法、思想、能力素质融于一体的命题,也看出高校选拔人才对学生的直觉思维能力、逻辑推理能力、运算能力和自主探索能力等提出了较高的要求.三、说问题解法解法1(1)略(2)设直线l的方程为y=kx+m,与椭圆C的交点A(x1,y1)、B(x2,y2),则有y=kx+m,x2a2+y2b2=1,解得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.∵Δ>0,∴m2<b2+a2k2,即-b2+a2k2<m<b2+a2k2.则x1+x2=-2a2kmb2+a2k2,y1+y2=kx1+m+kx2+m=2b2mb2+a2k2.∴AB中点M的坐标为(-a2kmb2+a2k2,b2mb2+a2k2).∴线段AB的中点M在过原点的直线b2x+a2ky=0上.(3)如图,作两条平行直线分别交椭圆于A、B和C、D,并分别取AB、CD的中点M、N,连接直线MN;又作两条平行直线(与前两条直线不平行)分别交椭圆于A1、B1和C1、D1,并分别取A1B1、C1D1的中点M1、N1,连接直线M1N1,那么直线MN和M1N1的交点O即为椭圆中心.解法2(2)可利用点差法;(3)利用一组平行弦中点作出椭圆的一条弦其中点就是椭圆中心.用点差法求弦中点的轨迹,过程如下:设直线l的方程为y=kx+m,与椭圆C的交点A(x1,y1)、B(x2,y2),由x21a2+y21b2=1,x22a2+y22b2=1,相减得(x1+x2)(x1-x2)a2=-(y1+y2)(y1-y2)b2.当x1=x2时,弦AB中点M轨迹方程为y=0(-a<y当y1=y2时,弦AB中点M轨迹方程为x=0(-b<y<b);(y1+y2),当x1≠x2且y1≠y2时,y1-y2x1-x2=-b2a2(x1+x2)∴k=-b2a2?2x2y. ∴y=-b2a2kx.再由方法一求出x的取值范围.四、说问题来源问题源于高级中数课本(上海教育出版社)高二年级第二学期12.4例5:求椭圆x24+y2=1中斜率为1的平行弦的中点轨迹.例5与2005上海春招22(2)两题题目条件一样,解题方法也一样,只是数字与字母的区别,体现了近年来高考试题“追根溯源,回归课本”,“源于课本,高于课本”的理念,因此我们在高考复习中应当充分重视教材,研究教材,汲取教材的营养价值,发挥课本的示范功能.五、说问题拓展拓展问题1:如图3(1),已知一椭圆,试在图中作出该椭圆的中心、对称轴、顶点、焦点.作法:(1)确定椭圆的中心方法同22(3).。
圆锥曲线轨迹的例题和练习(优秀)专题:圆锥曲线轨迹首先,准备第一场战斗。
直接法(五部分法):如果运动点所满足的几何条件本身是某些几何量的等价关系,或者这些几何条件简单、明了、易于表达,我们只需要将这种关系“转化”为包含方程,就可以得到曲线的轨迹方程。
这种寻找轨迹的方法叫做直接法。
2.定义方法:如果运动点轨迹的条件满足基本轨迹的定义(如圆、椭圆、双曲线和抛物线的定义),则运动点的轨迹方程可以根据定义直接计算。
3.坐标转移法(替代法):在一些问题中,移动点满足的条件不容易在方程中列出,但是移动点随着另一个移动点(称为相关点)移动。
如果相关点满足的条件是明显的或可分析的,那么我们可以用移动点的坐标来表示相关点的坐标。
根据相关点所满足的方程,我们可以得到运动点的轨迹方程。
这种寻找轨迹的方法也称为坐标转移法或替代法。
4.参数方法: 有时很难找出一个运动点应该满足的几何条件,并且没有明显的相关点,但是更容易发现(或者可以通过分析找到)这个运动点的运动经常受到另一个变量(角度、斜率、比率、截距或时间等)的限制。
),也就是说,移动点的坐标随着另一个变量的变化而变化。
我们可以将这个变量设置为一个参数,并建立轨迹的参数方程。
这种方法称为参数方法。
如果我们需要得到轨迹的一般方程,我们只需要消除参数变量。
5.钢轨穿越方法:在寻找运动点轨迹的过程中,有时会出现需要两条运动曲线相交的轨迹问题。
这类问题通常可以通过求解方程来获得带参数的交点坐标,然后消除参数来获得期望的轨迹方程来解决。
这个方法被称为交集方法。
(2)小型试验手术刀1把。
已知的M轨迹(-圆锥曲线)首先,准备第一场战斗。
直接法(五部分法):如果运动点所满足的几何条件本身是某些几何量的等价关系,或者这些几何条件简单、明了、易于表达,我们只需要将这种关系“转化”为包含方程,就可以得到曲线的轨迹方程。
这种寻找轨迹的方法叫做直接法。
2.定义方法:如果运动点轨迹的条件满足基本轨迹的定义(如圆、椭圆、双曲线和抛物线的定义),则运动点的轨迹方程可以根据定义直接计算。
)0y p k =关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。
这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。
其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。
上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。
下面我们看一个结论引理 设A 、B 是二次曲线C :022=++++F Ey Dx Cy Ax 上的两点,P ),(00y x 为弦AB 的中点,则)02(22000≠+++-=E Cy E Cy DAx k AB 。
设A ),(11y x 、B ),(22y x 则0112121=++++F Ey Dx Cy Ax (1)0222222=++++F Ey Dx Cy Ax ……(2) )2()1(-得0)()())(())((212121212121=-+-+-++-+y y E x x D y y y y C x x x x A∴0)()()(2)(22121210210=-+-+-+-y y E x x D y y Cy x x Ax ∴0))(2())(2(210210=-++-+y y E Cy x x D Ax∵020≠+E Cy ∴21x x ≠ ∴E Cy D Ax x x y y ++-=--00212122即E Cy D Ax k AB ++-=0022。
(说明:当B A −→−时,上面的结论就是过二次曲线C 上的点P ),(00y x 的切线斜率公式,即E CyD Ax k ++-=0022)推论1 设圆022=++++F Ey Dx y x 的弦AB 的中点为P ),(00y x ()00≠y ,则E y D x k AB ++-=0022。
(假设点P 在圆上时,则过点P 的切线斜率为)推论2 设椭圆12222=+b y a x 的弦AB 的中点为P ),(00y x ()00≠y ,则0022y x a b k AB •-=。
1专题46圆锥曲线中与中点相关的问题知识必备直线与圆锥曲线相交所得弦中点问题,一般有以下三中类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题. 常见结论如下: (1)椭圆x 2a 2y 2b 2=1,直线y =kx m 相交于A ,B 两点,M 为线段AB 中点,O 为直角坐标系原点,则有k OM ⋅k AB =b 2a 2(注意此处a ,b 只和位置相关,与大小无关).(2)双曲线x 2a 2y 2b 2=1,直线y =kx m 相交于A ,B 两点,M 为线段AB 中点,O 为直角坐标系原点,则有k OM ⋅k AB =b 2a 2(注意此处a ,b 只和位置相关,与前后无关).(3)抛物线y 2=2px ,直线y =kx m 相交于A ,B 两点,M 为线段AB 中点,O 为直角坐标系原点,则有y M ⋅k AB =p.典型例题考点一弦中点的应用【例题1】直线y =x 1被椭圆x 24y 22=1所截得弦的中点坐标为( )A (23,53) B (43,73) C (23,13) D (43,13)【例题2】若椭圆x 236y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率为________【例题3】椭圆4x 29y 2=144内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为________ 【例题4】已知椭圆x 2a 2y 2b 2=1(a >b >0)的一条弦所在的直线方程是x y 5=0,弦的中点坐标是M (4,1),则椭圆的离心率是________【例题5】椭圆ax 2by 2=1(a >0,b >0,a ≠b )与直线y =12x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为√32,则ab 的值为________【例题6】若直线y =kx 2与抛物线y 2=8x 交于A 、B 两点,若线段AB 的中点的横坐标是2,则|AB |=__________【例题7】已知椭圆E:x 2a2y2b 2=1(a>b >0)的右焦点为F(4,0),过点F的直线交椭圆于A ,B两点若AB的中点坐标为(1,1),则E的方程为()A x248y216=1B x236y212=1C x224y28=1D x212y24=1【例题8】双曲线x2y 23=1上两点A,B关于直线y=x1对称,则直线AB方程为()A y=x B y=x1C y=x1D y=x12【例题9】已知椭圆x 22y2=1上上在在相两两点关于直线y=x t上对称,则实数t上的值值围是是________【例题10】如图,已知椭圆x 22y2=1的左焦点为F,O坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A,B上两点,线段AB上的垂直平分线与x上轴交于点G上,则点G上横坐标的值值围是为________【例题11】已知双曲线C:x 2a2y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1且斜率为13上的直线交双曲线于A,B上两点,线段AB上的垂直平分线恰过点F2上,则该双曲线的离心率为()A√6B√5C√62D√52【例题12】已知椭圆G:x 2a2y2b2=1(a>b>0)的离心率为√63,右焦点为(2√2,0),斜率为1的直线l与椭圆G交与A,B两点,以AB为底边作等腰三角形,顶点为P(3,2).(1)求椭圆G的方程;(2)求△PAB的面积.【例题13】已知椭圆E:x 2a2y2b2=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为12c(1)求椭圆E的离心率;(2)如图,AB是圆M:(x2)2(y1)2=52的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.23【例题14】已知抛物线C 的顶点为坐标原点O ,焦点F 在x 铀上,过点(2,0)的直线交C 于P ,Q 两点,且OP ⊥OQ ,线段PQ 的中点为M ,则直线MF 的斜率的最大值为( ) A√66 B12C√22D 14。
专题03 圆锥曲线中的中点弦问题一、单选题1.已知椭圆22134x y +=的弦被点(1,1)平分,那么这条弦所在的直线方程为( )A .4370x y +-=B .4370x y --=C .3410x y +-=D .3410x y --=【答案】A 【分析】设出这条弦与椭圆的交点,将点代入椭圆方程,两式作差求出直线的斜率,再利用点斜式即可求解. 【详解】设这条弦与椭圆22134x y +=交于()11,P x y ,()22,Q x y ,由(1,1)在椭圆内,由中点坐标公式知122x x +=,122y y +=,把()11,P x y ,()22,Q x y 代入22134x y +=,可得221122221,341,34x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② , ①-①可得()()1212860x x y y -+-=,121243y y k x x -∴==--,∴这条弦所在的直线方程为()4113y x -=--, 即为4370x y +-=.则所求直线方程为4370x y +-=. 故选:A2.已知椭圆22:143x y C +=,过点()11P ,的直线l 与椭圆C 交于,A B 两点,若点P 恰为弦AB 中点,则直线l 斜率是( ) A .3- B .13-C .34-D .43-【答案】C 【分析】设出,A B 的坐标代入椭圆方程后,作差变形,根据斜率公式和中点坐标公式可得解. 【详解】设1122(,),(,)A x y B x y ,则12122,2x x y y +=+=,则2211143x y +=,2222143x y +=, 两式相减得2222121243x x y y =---, 所以1212121233234424y y x x x x y y -+=-⨯=-⨯=--+,即直线l 斜率是34-. 故选:C 【点睛】方法点睛:一般涉及到弦的中点和弦所在直线的斜率时,使用点差法解决.3.直线1y kx =+与椭圆2214x y +=相交于,A B 两点,若AB 中点的横坐标为1,则k =( )A .2-B .1-C .12-D .1【答案】C 【分析】代入消元得关于x 一元二次方程,再用韦达定理即可. 【详解】设()()1122,,,A x y B x y把1y kx =+代入2214x y +=得()221480k x kx ++=,122814kx x k +=-+,因为AB 中点的横坐标为1, 所以24114k k -=+,解得12k =-. 故选:C 【点睛】用韦达定理解决直线与圆锥曲线交点问题是常用的方法,需要注意直线与圆锥曲线是否有交点,可用∆判断.4.已知抛物线2:4C y x =,以()1,1为中点作C 的弦,则这条弦所在直线的方程为( ) A .210x y --= B .210x y -+= C .230x y +-= D .230x y ++=【答案】A 【分析】设过点()1,1的直线交抛物线C 于()11,A x y 、()22,B x y 两点,可得出121222x x y y +=⎧⎨+=⎩,利用点差法可求得直线AB 的斜率,利用点斜式可得出直线AB 的方程. 【详解】设过点()1,1的直线交抛物线C 于()11,A x y 、()22,B x y 两点. 若直线AB 垂直于x 轴,则线段AB 的中点在x 轴上,不合乎题意. 所以,直线AB 的斜率存在,由于点()1,1为线段AB 的中点,则121222x x y y +=⎧⎨+=⎩,由于点()11,A x y 、()22,B x y 在抛物线C 上,可得21122244y x y x ⎧=⎨=⎩,两式作差得()()()22121212124y y y y y y x x -=+⋅-=-,所以,直线AB 的斜率为12121242AB y y k x x y y -===-+,因此,直线AB 的方程为()121y x -=-,即210x y --=.【点睛】本题考查抛物线的中点弦问题,考查点差法的应用,同时也可以利用直线与抛物线方程联立,结合韦达定理求解,考查计算能力,属于中等题.5.已知椭圆G :22221x y a b+=(0a b >>)的右焦点为()3,0F ,过点F 的直线交椭圆于A ,B 两点.若AB的中点坐标为()1,1-,则G 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D 【分析】先设()11,A x y ,()22,B x y ,代入椭圆方程,两式作差整理,得到2121221212y y y y b a x x x x +--=⋅+-,根据弦中点坐标,将式子化简整理,得到222a b =,根据222a b c =+且3c =,即可求出结果. 【详解】设()11,A x y ,()22,B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,又过点F 的直线交椭圆于A ,B 两点,AB 的中点坐标为()1,1-,所以121222x x y y +=⎧⎨+=-⎩,()12120131AB y y k x x ---==--,即()22222201111213122b b a b a a ----=⨯=-⇒=⇒=-,由于222a b c =+且3c =,由此可解得218a =,29b =,故椭圆E 的方程为221189x y +=.【点睛】本题主要考查求椭圆的方程,考查中点弦问题,属于常考题型.6.在平面直角坐标系xOy 中,F 是抛物线26y x =的焦点,A 、B 是抛物线上两个不同的点.若AF BF +5=,则线段AB 的中点到y 轴的距离为( )A .12B .1C .32D .2【答案】B 【分析】本题先设11(,)A x y ,22(,)B x y 两点,并判断线段AB 的中点到y 轴的距离为122x x +,再求12x x +,最后求解. 【详解】解:设11(,)A x y ,22(,)B x y ,则线段AB 的中点到y 轴的距离为:122x x +, 根据抛物线的定义:12AF BF x x p +=++, 整理得:12532x x AF BF p +=+-=-=, 故线段AB 的中点到y 轴的距离为:1212x x +=, 故选:B. 【点睛】本题考查抛物线的定义,是基础题.7.过椭圆2222:1(0)x y C a b a b+=>>的右焦点(2,0)F 的直线与C 交于A ,B 两点,若线段AB 的中点M的坐标为95,77⎛⎫-⎪⎝⎭,则C 的方程为( ) A .22195x y +=B .2215x y +=C .22162x y +=D .221106x y +=【答案】A 【分析】设,A B 以及AB 中点M 坐标,利用“点差法”得到,AB MO k k 之间的关系,从而得到22,a b 之间的关系,结合()2,0F 即可求解出椭圆的方程.【详解】设()()1122,,,A x y B x y ,则12x x ≠AB 的中点95,77M ⎛⎫- ⎪⎝⎭,所以5071927AB MFk k ⎛⎫-- ⎪⎝⎭===-, 又2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--, 即2121221212y y y y b x x x x a-+⋅=--+, 而12121AB y y k x x -==-,121252579927y y x x ⎛⎫⨯- ⎪+⎝⎭==-+⨯, 所以2255199b a =⨯=,又2c =,所以22222254499c a b a a a =-=-==,所以2295a b ==, 椭圆方程为:22195x y +=.故选:A. 【点睛】本题考查了已知焦点、弦中点求椭圆方程,应用了韦达定理、中点坐标公式,属于基础题.8.已知椭圆2222:1(0)x y G a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则G 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D【分析】设出,A B 两点的坐标,利用点差法求得,a b 的关系式,结合222a b c =+求得22,a b ,进而求得椭圆E 的方程. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-, 即()22222201111213122b b a b a a ----=⨯=-⇒=⇒=-,由于222a b c =+且3c =,由此可解得2218,9a b ==,故椭圆E 的方程为221189x y +=.故选:D. 【点睛】本小题主要考查点差法解决椭圆中的中点弦问题,属于基础题.9.直线l 过点(1,1)P 与抛物线24y x =交于,A B 两点,若P 恰为线段AB 的中点,则直线l 的斜率为( )A .2B .2-C .12D .12-【答案】A 【分析】利用点差法,21122244y x y x ⎧=⎨=⎩两式相减,利用中点坐标求直线的斜率.【详解】设()()1122,,,A x y B x y ,21122244y x y x ⎧=⎨=⎩,两式相减得()2212124y y x x -=-,即()()()1212124y y y y x x +-=-, 当12x x ≠时,()1212124y y y y x x -+=-,因为点()1,1P 是AB 的中点,所以122y y +=,24k =, 解得:2k = 故选:A 【点睛】本题考查中点弦问题,重点考查点差法,属于基础题型.10.已知椭圆22221(0)x y a b a b +=>>的右焦点为FF 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12-D .12【答案】C 【分析】先根据已知得到222a b =,再利用点差法求出直线的斜率. 【详解】由题得222222242,4()2,2c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=, 所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-.故选:C 【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.11.已知椭圆2222:1x y M a b+=(0)a b >>,过M 的右焦点(3,0)F 作直线交椭圆于A ,B 两点,若AB 中点坐标为(2,1),则椭圆M 的方程为( )A .22196x y +=B .2214x y +=C .221123x y +=D .221189x y +=【答案】D 【分析】设,A B 以及AB 中点P 坐标,利用“点差法”得到,AB PO k k 之间的关系,从而得到22,a b 之间的关系,结合()3,0F 即可求解出椭圆的方程.【详解】设()()1122,,,A x y B x y ,AB 的中点()2,1P,所以01132ABPF kk -===--, 又2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--,即2121221212y y y y b x x x x a -+⋅=--+, 而12121AB y y k x x -==--,1212211222y y x x +⨯==+⨯,所以2212b a =,又3c =, ①22189a b ⎧=⎨=⎩,即椭圆方程为:221189x y +=.故选:D. 【点睛】本题考查了已知焦点、弦中点求椭圆方程,应用了韦达定理、中点坐标公式,属于基础题.12.已知椭圆2217525+=y x 的一条弦的斜率为3,它与直线12x =的交点恰为这条弦的中点M ,则M 的坐标为( )A .11,2⎛⎫⎪⎝⎭B .11,22⎛⎫⎪⎝⎭C .11,22⎛⎫-⎪⎝⎭D .11,22⎛⎫-⎪⎝⎭ 【答案】C 【分析】由题意知:斜率为3的弦中点01(,)2M y ,设弦所在直线方程3y x b =+,结合椭圆方程可得122b x x +=-即可求b ,进而求M 的坐标. 【详解】由题意,设椭圆与弦的交点为1122(,),(,)A x y B x y ,:3AB y x b =+, 则将3y x b =+代入椭圆方程,整理得:22126750x bx b ++-=,①22123648(75)02b b b x x ⎧∆=-->⎪⎨+=-⎪⎩,而121x x =+,故2b =-, ①:32AB y x =-,又01(,)2M y 在AB 上,则012y =-, 故选:C 【点睛】本题考查了求椭圆的弦中点坐标,应用了韦达定理、中点坐标公式,属于基础题.13.已知椭圆E :()222210x y a b a b+=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12BC .13D【答案】B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-,所以12124,2x x y y +=+=-, 所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =, 即2a b =,所以c e a ===, 故选:B【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题. 14.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( )A .13B .32C .12D .1【答案】C【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率.【详解】解:由c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y ,则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-①得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C .【点睛】 本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.二、多选题15.已知椭圆C :22148x y +=内一点M (1,2),直线l 与椭圆C 交于A ,B 两点,且M 为线段AB 的中点,则下列结论正确的是( )A .椭圆的焦点坐标为(2,0)、(-2,0)B .椭圆C的长轴长为C .直线l 的方程为30x y +-=D.3AB = 【答案】CD【分析】 由椭圆方程22148x y +=可得焦点在y轴上,且2,2a b c ===,即可判断AB ;利用点差法可求出直线斜率,即可得出方程,判断C ;联立直线与椭圆方程,利用弦长公式求出弦长即可判断D.【详解】由椭圆方程22148x y +=可得焦点在y轴上,且2,2a b c ===, ∴椭圆的焦点坐标为()()0,2,0,2--,故A 错误;椭圆C的长轴长为2a =,故B 错误;可知直线l 的斜率存在,设斜率为k ,()()1122,,,A x y B x y , 则22112222148148x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212048x x x x y y y y -+-++=, ()()121224048x x y y --∴+=,解得12121y y k x x -==--, 则直线l 的方程为()21y x -=--,即30x y +-=,故C 正确; 联立直线与椭圆2230148x y x y +-=⎧⎪⎨+=⎪⎩,整理得23610x x -+=, 121212,3x x x x ∴+==,3AB ∴==,故D 正确. 故选:CD.【点睛】易错点睛:已知椭圆方程,在求解当中,一定要注意焦点的位置,本题的焦点在y 轴上,在做题时容易忽略焦点位置,判断错误.三、填空题16.ABC 的三个顶点都在抛物线E :y 2=2x 上,其中A (2,2),ABC 的重心G 是抛物线E 的焦点,则BC 边所在直线的方程为________.【答案】4x +4y +5=0【分析】设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),先求出点M 的坐标,再求出直线BC 的斜率,即得解.【详解】设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),易知1(,0)2G , 则12122132203x x y y ++⎧=⎪⎪⎨++⎪=⎪⎩从而12012012412x x x y y y +⎧==-⎪⎪⎨+⎪==-⎪⎩,即1(,1)4M --, 又2211222,2y x y x ==,两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率1212120022112BC y y k x x y y y y -=====--+ 故直线BC 的方程为y -(-1)=1()4x -+,即4x +4y +5=0.故答案为:4x +4y +5=0【点睛】方法点睛:圆锥曲线里与弦有关的问题常用点差法:先设出弦的端点坐标,再代入圆锥曲线的方程,再作差化简即得弦的中点坐标和弦的斜率的关系. 17.设A 、B 是椭圆22336x y +=上的两点,点(1,3)N 是线段AB 的中点,直线AB 的的方程为__________.【答案】40x y +-=【分析】设出A ,B 点坐标,根据两点在椭圆上,代入椭圆方程,作差,利用中点坐标公式,即可化简,求出直线AB 的斜率,再根据斜率和直线上的定点坐标,写出点斜式方程.【详解】设1(A x ,1)y ,2(B x ,2)y ,则22111212121222223363()()()()0336x y x x x x y y y y x y ⎧+=⎪∴-++-+=⎨+=⎪⎩,依题意,1212123(),AB x x x x k y y +≠∴=-+. (1,3)N 是AB 的中点, 122x x ∴+=,126y y +=,从而1AB k =-.所以直线AB 的方程为3(1)y x -=--,即40x y +-=.故答案为:40x y +-=【点睛】方法点睛:圆锥曲线里与中心弦有关的问题,常用点差法:首先设弦的端点坐标1(A x ,1)y ,2(B x ,2)y ,再把点的坐标代入圆锥曲线的方程,再作差化简即得弦的中点和直线的斜率的关系式.18.已知椭圆2222:1(0)x y E a b a b+=>>,过点(4,0)的直线交椭圆E 于,A B 两点.若AB 中点坐标为(2,﹣1),则椭圆E 的离心率为_______【分析】设()()1122,,,A x y B x y ,代入椭圆方程,两式作差,利用离心率公式即可求解.【详解】设()()1122,,,A x y B x y , 则2211221x y a b+=,① 2222221x y a b+=,① ①-①可得()()()()12121212220x x x x y y y y a b +-+-+=, 因为AB 中点坐标为(2,﹣1),则124x x +=,122y y +=-,所以()2122120121422y y b x x a ---===--, 所以224a b =,因为222b a c =-,所以2234a c =,所以2c e a ==.19.已知双曲线方程是2212y x -=,过定点(2,1)P 作直线交双曲线于12,P P 两点,并使P 为12PP 的中点,则此直线方程是__________________.【答案】47y x =-【分析】设111222(,),(,),P x y P x y 得221122222222x y x y ⎧-=⎪⎨-=⎪⎩,两式相减化简得直线的斜率,即得直线的方程. 【详解】由题得2222x y -=,设111222(,),(,),P x y P x y所以221122222222x y x y ⎧-=⎪⎨-=⎪⎩, 两式相减得121212122()()()()0x x x x y y y y +--+-=,由题得12124,2x x y y +=+=,所以12128()2()0x x y y ---=,因为12x x ≠,所以12124y y k x x -==-, 所以直线的方程为14(2),y x -=-即47y x =-.故答案为:47y x =-【点睛】方法点睛:点差法:圆锥曲线里遇到与弦的中点有关的问题,常用点差法.先设弦的端点111222(,),(,),P x y P x y 再代点的坐标到圆锥曲线的方程,再两式相减得到直线的斜率和弦的中点的关系式. 再化简解题.20.已知椭圆E :221189x y +=过椭圆内部点()1,1C -的直线交椭圆于M ,N 两点,且MC CN =则直线MN 的方程为_____________.【答案】230x y --=【分析】由已知条件得到C 为MN 的中点,利用中点坐标公式得到122x x +=,设出直线的方程与椭圆的方程联立,利用韦达定理得到21224412k k x x k++=+即可得出结果. 【详解】由MC CN =,可知C 为MN 的中点,又()1,1C -,不妨设直线MN 的方程为:()11y k x +=-,设点()()1122,,,M x y N x y ,则122x x +=,①将直线MN 的方程代入椭圆的方程消y 得:()22211180x k x +---=⎡⎤⎣⎦, 化简整理得:()()2222124424160k x k k x k k +-+++-=, 由韦达定理得:21224412k k x x k++=+,① 由①①得:12k =, 所以直线MN 的方程为:()1112y x +=-, 即直线MN 的方程为:230x y --=. 故答案为:230x y --=.【点睛】关键点睛:确定C 为MN 的中点以及直线与椭圆的方程联立利用韦达定理求解是解决本题的关键.21.已知双曲线2214x y -=和点()3,1P -,直线l 经过点P 且与双曲线相交于A 、B 两点,当P 恰好为线段AB 的中点时,l 的方程为______.【答案】3450x y +-=【分析】设点()11,A x y 、()22,B x y ,利用点差法可求得直线l 的方程,进而可得出直线l 的方程.【详解】设点()11,A x y 、()22,B x y ,若直线l x ⊥轴,则A 、B 两点关于x 轴对称,则点P 在x 轴上,不合乎题意.由于()3,1P -为线段AB 的中点,则12123212x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,可得121262x x y y +=⎧⎨+=-⎩, 将点A 、B 的坐标代入双曲线的方程可得221122221414x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩, 上述两式相减得222212124x x y y -=-,可得2212221214y y x x -=-,即1212121214y y y y x x x x -+⋅=-+, 所以,12121134y y x x -⎛⎫⋅-= ⎪-⎝⎭,所以,直线l 的斜率为121234y y x x -=--, 因此,直线l 的方程为()3134y x +=--,即3450x y +-=. 故答案为:3450x y +-=.【点睛】 利用弦的中点求直线的方程,一般利用以下两种方法求解:(1)点差法:设弦的两个端点坐标分别为()11,x y 、()22,x y ,代点作差求得直线的斜率,进而利用点斜式可求得直线的方程;(2)设直线的点斜式方程,将直线方程与圆锥曲线方程联立,利用韦达定理求得直线的斜率,进而可求得直线的方程.22.已知抛物线2:4,C x y =AB 为过焦点F 的弦,过,A B 分别作抛物线的切线,两切线交于点P ,设112200(,),(,),(,)A x y B x y P x y ,则下列结论正确的有________.①若直线AB 的斜率为-1,则弦8AB =;①若直线AB 的斜率为-1,则02x =;①点P 恒在平行于x 轴的直线1y =-上;①若点(,)M M M x y 是弦AB 的中点,则0M x x =.【答案】①①①【分析】设P A ①方程()1124x x y k x -=-与抛物线方程24x y =联立,利用判别式求出12x k =,可得P A ①方程,同理可得PB ①方程,联立PA 与PB 的方程求出点P 的坐标,可知①正确;①直线AB 的方程为1y tx =+,与抛物线方程24x y =联立,当1t =-时,利用韦达定理求出0x 与0y 可知①错误,①正确;当1t =-时,利用抛物线的定义和韦达定理可得弦长||8AB =,可知①正确.【详解】 设P A 方程()1124x x y k x -=-与抛物线方程24x y =联立得2211440x kx kx x -+-=① 由2211Δ161640k kx x =-+=得12x k =, PA ∴方程为2111()42x x y x x -=-,同理得PB 方程2222()42x x y x x -=-, 联立21112222()42()42x x y x x x x y x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩,解得121224x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩, 所以交点P 1212,24x x x x +⎛⎫ ⎪⎝⎭,即1202M x x x x +==,所以①正确; 根据题意直线AB 的斜率必存在①①直线AB 的方程为1y tx =+,联立21040y tx x y --=⎧⎨-=⎩,消去y 并整理得2440x tx --=,由韦达定理得121244x x t x x +=⎧⎨⋅=-⎩①12014x x y ∴==-,所以①正确; 当t =-1时,12022x x x +==-,所以①错误, 当t =-1时,根据抛物线的定义可得1212||(2()2)p AB y y y y p p =+---=-++ ()12121124448x x x x =-+-++=-++=+=,所以①正确.故答案为:①①①【点睛】关键点点睛:设出切线方程,利用判别式等于0,求出切线方程,联立切线方程求出交点P 的坐标是解题关键.23.已知椭圆2222:1(0)x y E a b a b+=>>的半焦距为c,且=c ,若椭圆E 经过,A B 两点,且AB 是圆222:(2)(1)M x y r ++-=的一条直径,则直线AB 的方程为_________.【答案】240x y -+=【分析】设1122(,),(,)A x y B x y ,代入椭圆方程做差,根据直线的斜率公式及AB 的中点M ,求出直线斜率,即可得到直线方程.【详解】设1122(,),(,)A x y B x y , 代入椭圆方程可得:2211221x y a b +=①,2222221x y a b+=①, ①-①得:2212122121()()y y b x x x x a y y -+=--+,由=c 可得22223a b c b -==,即2214b a =, 又AB 的中点M (2,1)-,所以2212122121()11(2)()42ABy y b x x k x x a y y -+==-=-⨯-=-+ 所以直线AB 的方程为11(2)2y x -=+, 即240x y -+=. 故答案为:240x y -+= 【点睛】方法点睛:点差法是解决涉及弦的中点与斜率问题的方法,首先设弦端点的坐标,代入曲线方程后做差,可得出关于弦斜率与弦中点的方程,代入已知斜率,可研究中点问题,代入已知中点可求斜率.24.椭圆221164x y +=的弦AB 中点为(1,1)M ,则直线AB 的方程___________【答案】450x y +-= 【分析】设出,A B 的坐标,利用点差法求解出直线AB 的斜率,然后根据直线的点斜式方程求解出直线AB 的方程,最后转化为一般式方程. 【详解】设()()1122,,,A x y B x y ,所以22112222416416x y x y ⎧+=⎨+=⎩,所以1212121214x x y y y y x x +--⋅=+-, 又因为1212122122x x y y +=⨯=⎧⎨+=⨯=⎩,所以12121242AB y y k x x --⋅==-,所以1=4AB k -, 所以()1:114AB l y x -=--,即450x y +-=, 故答案为:450x y +-=. 【点睛】思路点睛:已知椭圆中一条弦的中点坐标,求解该弦所在直线方程的思路:(1)可以通过先设出弦所在直线与椭圆的交点坐标,将坐标代入椭圆方程中并将两个方程作差; (2)得到中点和坐标原点连线的斜率与直线斜率的关系,从而根据直线的点斜式方程可求解出直线方程.25.已知点P (1,2)是直线l 被椭圆22148x y +=所截得的线段的中点,则直线l 的方程是_____.【答案】30x y +-=【分析】设出直线与椭圆的交点,采用点差法进行分析,由此可求得直线的斜率,再根据直线的点斜式方程则直线l 的方程可求. 【详解】设直线l 与椭圆交于,A B 两点,()()1122,,,A x y B x y ,所以22112222148148x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以222212124488x x y y ⎛⎫-=-- ⎪⎝⎭, 所以121212122x x y y y y x x +--⋅=+-,且121222,24P P x x x y y y +==+==,所以12122214l y y k x x -==-⋅=--,所以():21l y x -=--即30x y +-=,故答案为:30x y +-=. 【点睛】关键点点睛:本题考查椭圆中点弦所在直线方程的求法,难度一般.已知椭圆中一条弦的中点坐标,求解该弦所在直线方程时,可以通过先设出弦所在直线与椭圆的交点坐标,将坐标代入椭圆方程中并将两个方程作差,由此可得中点和坐标原点连线的斜率与直线斜率的关系,从而根据直线的点斜式方程可求解出直线方程.四、解答题26.已知椭圆22:143x y C +=的左、右顶点分别为A 、B ,直线l 与椭圆C 交于M 、N 两点.(1)点P 的坐标为1(1,)3,若MP PN =,求直线l 的方程;(2)若直线l 过椭圆C 的右焦点F ,且点M 在第一象限,求23(MA NB MA k k k -、NB k 分别为直线MA 、NB 的斜率)的取值范围. 【答案】(1)931412y x =-+;(2)[3,0).4-【分析】(1)利用点差法,求直线的斜率,再求直线方程;(2)直线的斜率不存在时,求点,M N 的坐标,得到NBMAk k 的值,以及当斜率存在时,直线与曲线方程联立,利用根与系数的关系求NBMAk k 的值,并将23MA NB k k -表示为MA k 的二次函数,并求取值范围. 【详解】解:(1)设1(M x ,1)y ,2(N x ,2)y , 由题意可得P 为线段MN 的中点,由22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减可得 12121212()()()()043x x x x y y y y -+-++=,而1(1,)3P ,即有122x x +=,1223y y +=, 则12122()2()049x x y y --+=,可得121294y y x x -=--, 故直线l 的方程为19(1)34y x -=--, 即931412y x =-+; (2)由题意可得(2,0)A -,(2,0)B ,(1,0)F ,当直线l 的斜率不存在时,3(1,)2M ,3(1,)2N -,12MA k =,332M NB A k k ==.当直线l 的斜率存在时,则l 的斜率不为0,设直线l 的方程为(1)y k x =-,0k ≠,与椭圆方程223412x y +=联立, 可得2222(34)84120k x k x k +-+-=,则2122834kx x k +=+,212241234k x x k-=+,所以2121121212112121212(1)(2)2()23·2(1)(2)()2NB MA k y x k x x x x x x x k x y k x x x x x x x +-+++--===----++- 22211222222112224128121822333434343412846()2343434k k k x x k k k k k k x x k k k---+⋅---+++===----+--+++, 所以3NB MA k k =,因为M在第一象限,所以MA k ∈, 所以2221333333()[244MA NB MA MA MA k k k k k -=-=--∈-,0). 【点睛】思路点睛:1.一般涉及中点弦问题时,采用点差法求解;2.直线与圆锥曲线相交问题时,有时需要考查斜率不存在和存在两种情况,斜率存在的情况经常和曲线方程联立,利用根与系数的关系解决几何问题. 27.已知动圆M 过点(2,0)F ,且与直线2x =-相切. (①)求圆心M 的轨迹E 的方程;(①)斜率为1的直线l 经过点F ,且直线l 与轨迹E 交于点,A B ,求线段AB 的垂直平分线方程.【答案】(①)28y x =;(①)100x y +-=.【分析】(①)由题意得圆心M 到点(2,0)F 等于圆心到直线2x =-的距离,利用两点间距离公式,列出方程,即可求得答案.(①)求得直线l 的方程,与椭圆联立,利用韦达定理,可得1212,x x x x +的值,即可求得AB 中点00(,)P x y 的坐标,根据直线l 与直线AB 垂直平分线垂直,可求得直线AB 垂直平分线的斜率,利用点斜式即可求得方程. 【详解】(①)设动点(,)M x y|2|x =+, 化简得轨迹E 的方程:28y x =;(①)由题意得:直线l 的方程为:2y x =-,由28y x⎨=⎩,得21240x x -+=,2124140∆=-⨯⨯>, 设1122(,),(,)A x y B x y ,AB 中点00(,)P x y 则121212,4x x x x +==, 所以12062x x x +==,0024y x =-=, 又AB 垂直平分线的斜率为-1,所以AB 垂直平分线方程为100x y +-=. 【点睛】本题考查抛物线方程的求法,抛物线的几何性质,解题的关键是直线与曲线联立,利用韦达定理得到1212,x x x x +的表达式或值,再根据题意进行化简和整理,考查计算求值的能力,属基础题.28.已知椭圆222:1(1)x E y a a +=>的离心率为2.(1)求椭圆E 的方程;(2)若直线:0l x y m -+=与椭圆交于E F 、两点,且线段EF 的中点在圆22+1x y =,求m 的值.【答案】(1)2212x y +=;(2)5±. 【分析】(1)根据条件解关于,a c 的方程组即可得结果;(2)设()11,E x y ,()22,F x y ,联立直线方程与椭圆方程,根据韦达定理,可求得中点坐标,代入圆方程解得m 的值. 【详解】(1)由题意,得2221c a a c ⎧=⎪⎨⎪=+⎩,解得1a c ⎧=⎪⎨=⎪⎩ 故椭圆的标准方程为2212x y +=.(2)设()11,E x y ,()22,F x y ,线段EF 的中点为()00,M x y .联立2212x y ⎪⎨+=⎪⎩,消去y 得,2234220x mx m ++-= 120223x x m x +==-,003m y x m =+=,即2,33m m M ⎛⎫- ⎪⎝⎭,()()22443220m m m ∆=-⨯⨯->⇒<又因为点M 在圆221x y +=上,所以222133m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得5m =±,满足题意. 【点睛】关键点睛:本题考查弦中点问题以及椭圆标准方程,解题的关键是熟悉中点坐标公式,本题中直线方程代入椭圆方程整理后应用韦达定理求出12x x +,求出中点坐标,再将其代入圆中求解,考查了学生的基本分析转化求解能力,属中档题.30.已知直线l 与抛物线2:5C y x =交于,A B 两点. (1)若l 的方程为21y x =-,求AB ; (2)若弦AB 的中点为()6,1-,求l 的方程.【答案】(1;(2)52280x y +-=. 【分析】(1)联立直线与抛物线方程,写出韦达定理,利用弦长公式即可求解; (2)利用点差法求出直线斜率,即可求出直线方程. 【详解】设,A B 两点的坐标分别为()()1122,,,x y x y .(1)联立25,21,y x y x ⎧=⎨=-⎩得24910,0x x -+=∆>,因此121291,44x x x x +==,故||4AB ===. (2)因为,A B 两点在C 上,所以2112225,5,y x y x ⎧=⎨=⎩两式相减,得()2221215y y x x -=-,因为12122y y +=-⨯=-,所以212112552AB y y k x x y y -===--+,因此l 的方程为5(1)(6)2y x --=--,即52280x y +-=. 【点睛】方法点睛:解决中点弦问题常用点差法求解,即将两交点设点代入曲线方程,两式相减利用平方差公式化简,将中点坐标代入即可得出弦所在直线斜率.31.坐标平面内的动圆M 与圆1C 22:(4)1x y ++=外切,与圆222:(4)81C x y -+=内切,设动圆M 的圆心M 的轨迹是曲线E ,直线0l :45400x y -+=. (1)求曲线E 的方程;(2)当点M 在曲线E 上运动时,它到直线0l 的距离最小?最小值距离是多少?(3)一组平行于直线0l 的直线,当它们与曲线E 相交时,试判断这些直线被椭圆所截得的线段的中点是否在同一条直线上,若在同一条直线上,求出该直线的方程;若不在同一条直线上,请说明理由?【答案】(1)221259x y +=;(2)点9(4,)5M -到直线0l的距离最小,;(3)在同一直线,直线为:9200x y +=. 【分析】(1)利用两个圆外切与内切的性质可得12||||10MC MC +=,再利用椭圆的定义即可求得曲线的方程;(2)设与0l 平行的直线l 的方程为450x y m -+=,代入221259x y +=,整理可得222582250x mx m ++-=,当222500360m ∆=-=,直线l 与曲线E 相切,此时点9(4,)5M -到直线0l 的距离最小,利用点到线距离公式求得最小值.(3)设两个交点为1122(,),(,)A x y B x y ,利用点差法化简得12121212925y y x x x x y y -+=-⋅-+,即49525xy=-⋅,整理得9200x y +=. 【详解】解:(1)设动圆M 的半径为r ,由题意可知12||1,||9MC r MC r =+=-,则1212||||10||8MC MC C C +=>=,根据椭圆的定义可知曲线E 是以12,C C 为焦点,长轴长为10的椭圆,其中210,28a c ==,即5,4,3a c b ====所以曲线E 的方程为:221259x y +=.(2)设与0l 平行的直线l 的方程为450x y m -+=,即455m y x =+,代入221259x y +=,可得224925()22555m x x ++=,整理得222582250x mx m ++-=, 22264100(225)2250036m m m ∆=--=-,当0∆=时,此时25m =±直线l 与曲线E 相切,根据图形可知当25m =时,点9(4,)5M -到直线0l的距离最小,min9|4(4)540|41d⨯--⨯+==. (3)这些直线被椭圆所截得的线段的中点在同一条直线上设与0l 平行的直线与曲线E 的两交点坐标为1122(,),(,)A x y B x y ,中点(,)N x y ,2211222212591259x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式作差得222212120259x x y y --+=,整理可得:12121212925y y x x x x y y -+=-⋅-+,即49525x y =-⋅,整理得9200x y +=,即所有弦的中点均在直线9200x y +=上.【点睛】思路点睛:本题考查求椭圆的标准方程,椭圆上点到直线的最近距离,点差法的应用,解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.32.已知椭圆22122:1(0x y C a b a b +=>>)的长轴长为8,一条准线方程为x =与椭圆1C 共焦点的双曲线2,C 其离心率是椭圆1C 的离心率的2倍. (1)分别求椭圆1C 和双曲线2C 的标准方程;(2)过点M (4,1)的直线l 与双曲线2,C 交于P ,Q 两点,且M 为线段PQ 的中点,求直线l 的方程.【答案】(1)221169x y +=;22143x y -=;(2)3110x y --= 【分析】(1)根据椭圆的长轴长以及准线方程求出4a =,c =进而求出3b ==,即求椭圆的方程,求出椭圆的离心率,可得双曲线的离心率,结合与椭圆共焦点即可求出双曲线的标准方程. (2)设()11,P x y ,()22,Q x y ,利用点差法求出直线的斜率即可求解. 【详解】(1)椭圆22122:1(0x y C a b a b+=>>)的长轴长为28a =,则4a =,一条准线方程为x =,则27a c =,解得c =所以3b ==,所以椭圆1C 的标准方程为221169x y +=,离心率14c e a ==设双曲线的标准方程为()2211221110,0x y a b a b -=>>,则222117c a b ==+,1=,解得12a =,所以1b ===所以双曲线2C 的标准方程为22143x y -=. (2)设()11,P x y ,()22,Q x y ,22112222143143x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ ,两式作差可得()()()()1212121211043x x x x y y y y +--+-=, ()()12121182043x x y y ⨯⨯--⨯⨯-=, 即12123y y x x -=-, 所以直线l 的斜率为3,所以直线l 的方程为()134y x -=-, 即3110x y --=. 【点睛】关键点点睛:根据中点弦求直线方程,关键是利用“点差法”求出直线的斜率,考查了计算求解能力.33.椭圆C:(222212x y m m m+=>,直线l 过点()1,1P ,交椭圆于A 、B 两点,且P 为AB 的中点. (1)求直线l 的方程;(2)若AB OP =,求m 的值. 【答案】(1)230x y +-=;(2)m 【分析】(1)设()11,A x y ,()22,B x y ,利用点差法求直线的斜率;(2)根据(1)的结果,联立方程,利用弦长公式AB =m 的值.【详解】(1)222113122m m m +=<,(m >,∴点P 在椭圆里面, 设()11,A x y ,()22,B x y , 则2211222222221212x y m m x y m m ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减可得222212122202x x y y m m --+=, 变形为()()()()121212122202x x x x y y y y m m +-+-+=,① 点()1,1P 是线段AB 的中点,12122,2x x y y ∴+=+=,并且有椭圆对称性可知120x x -≠,由①式两边同时除以12x x -,可得,1222122202y y m m x x -+⋅=-, 设直线AB 的斜率为k ,120k ∴+=, 解得:12k =-, 所以直线l 的方程()1112302y x x y -=--⇒+-=; (2)OP ==222212230x y m m x y ⎧+=⎪⎨⎪+-=⎩,22612920y y m -+-=, 可得122y y +=,212926m y y -=,AB ===,且m >解得:m【点睛】方法点睛:点差法是解决涉及弦的中点与斜率问题的方法,首先设弦端点的坐标,可得出关于弦斜率与弦中点的方程,代入已知斜率,可研究中点问题,代入已知中点可求斜率.34.在平面直角坐标系xOy 中,已知双曲线C的焦点为(0,、,实轴长为(1)求双曲线C 的标准方程;(2)过点()1,1Q 的直线l 与曲线C 交于M ,N 两点,且恰好为线段MN 的中点,求线段MN 长度.【答案】(1)2212y x -=;(2【分析】(1)根据双曲线的定义c =,a =(2)先根据点差法求直线l 的方程,再根据弦长公式即可求出.【详解】(1)双曲线C的焦点为(0,、,实轴长为则a =c =而222321b c a =-=-=, ∴双曲线C 的标准方程2212y x -=; (2)设点1(M x ,1)y ,2(N x ,2)y ,点()1,1Q 恰好为线段MN 的中点,即有122x x +=,122y y +=, 又221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得121212121()()()()2y y y y x x x x -+=-+, ∴12122y y x x --=, ∴直线l 的斜率为2k =,其方程为12(1)y x -=-,即21y x =-,由222122y x y x =-⎧⎨-=⎩,即22410x x --=,可得1212x x =-,则MN ===【点睛】本题考查了双曲线的方程,直线与双曲线的位置关系,考查了运算求解能力,属于中档题.35.已知双曲线2212y x -=. (1)倾斜角45°且过双曲线右焦点的直线与此双曲线交于M ,N 两点,求MN .(2)过点(2,1)A 的直线l 与此双曲线交于1P ,2P 两点,求线段12PP 中点P 的轨迹方程;(3)过点(1,1)B 能否作直线m ,使m 与此双曲线交于1Q ,2Q 两点,且点B 是线段12Q Q 的中点?这样的直线m 如果存在,求出它的方程;如果不存在,说明理由.【答案】(1)8(2)22240x y x y --+=(3)不存在,理由见解析【分析】(1)直线斜率为1,写出直线方程与双曲线联立,由韦达定理即弦长公式求解;(2)设11(P x ,1)y ,22(P x ,2)y ,(,)P x y ,则221122x y -=,222222x y -=,两式相减,利用P 是中点及斜率相等可求P 得轨迹方程,从而得到其轨迹;(3)假设直线l 存在.由已知条件利用点差法求出直线l 的方程为210x y --=,联立方程组2222210x y x y ⎧-=⎨--=⎩,得22430x x -+=,由80∆=-<,推导出直线m 不存在. 【详解】(1)由双曲线2212y x -=知,右焦点为,由直线倾斜角45°可知直线斜率为1,所以直线方程为:y x =联立2212y x y x ⎧=⎪⎨-=⎪⎩可得250x +-=, 设1122(,),(,)M x y N x y ,则0∆>且12x x +=-125x x ⋅=-,所以12||||8MN x x =-==(2)设11(P x ,1)y ,22(Px ,2)y ,(,)P x y , 则122x x x +=,122y y y +=,221122x y -=,222222x y -=, 12124()2()0x x x y y y ∴---=,∴直线12PP 的斜率12122y y x k x x y-==-, 12AP y k x -=-,A ,P ,1P ,2P 共线, ∴122y x x y -=-, 22240x y x y ∴--+=,即线段12PP 的中点P 的轨迹方程是22240x y x y --+=. (3)假设直线m 存在.设(1,1)B 是弦12Q Q 的中点,且11(Q x ,1)y ,22(Q x ,2)y ,则122x x +=,122y y +=.1Q ,2Q 在双曲线上,∴221122222222x y x y ⎧-=⎨-=⎩, 121212122()()()()0x x x x y y y y ∴+---+=,12124()2()x x y y ∴-=-,12122y x y k x -∴==-, ∴直线m 的方程为12(1)y x -=-,即210x y --=,联立方程组2222210x y x y ⎧-=⎨--=⎩,得22430x x -+= ①1643280∆=-⨯⨯=-<,∴直线m 与双曲线无交点,直线m不存在.【点睛】关键点点睛:在直线与双曲线相交问题中,涉及弦及弦中点的问题,可以采用“点差法”,可以简化运算,降低运算难度.。
圆锥曲线之轨迹问题例题习题(精品)专题:圆锥曲线之轨迹问题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y的等式就得到曲线的轨迹方程。
这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。
3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。
二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN=- ∴点P 的轨迹一定是线段MN 的延长线。
故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x,圆O '的方程为10822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为 析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x = 3.已知椭圆)0(12222>>=+b a b y a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为 析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a by a x 上∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++=4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P是动点,若[)+∞∈+=-,0),21(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。
专题17 圆锥曲线中的轨迹问题1.(浙江省杭州市八县市区2021-2022学年高二下学期期末数学试题)已知椭圆C的离心率为2,其焦点是双曲线2213y x -=的顶点.(1)写出椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 有唯一的公共点M ,过点M 作直线l 的垂线分别交x 轴、y 轴于(),0A x ,()0,B y 两点,当点M 运动时,求点(),P x y 的轨迹方程,并说明轨迹是什么曲线.【答案】(1)2212x y +=(2)轨迹方程()2221,0,0x y x y +=≠≠,为椭圆2221x y +=除去4个顶点【解析】 【分析】(1)根据双曲线的顶点,结合椭圆离心率的公式与基本量的关系求解即可;(2)根据题意可得直线l 与椭圆C 相切,故联立直线与椭圆的方程,利用判别式为0可得,k m 的关系,再得到点M 坐标的表达式,从而得到过点M 作直线l 的垂线的方程,求得(),P x y ,结合椭圆的方程求解即可 (1)设椭圆C 的方程为()22221,0x y a b a b +=>>,()222,0a b c c =+>,由题意,双曲线2213y x -=的顶点为()1,0±,故1c =.又c a =,故a =2211b =-=,故椭圆C 的方程为2212x y +=(2)由题意,直线l 与椭圆C 相切,联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩得()222124220k x kmx m +++-=,故()()222216412220k m k m ∆=-+-=,即2221m k =+.设(),M M M x y ,则22212M km kx k m-==-+,故22221M k m k y k m m m m -⎛⎫=-+== ⎪⎝⎭,故21,k M m m ⎛⎫- ⎪⎝⎭.所以直线AB 的方程为112k y x m k m ⎛⎫-=-+ ⎪⎝⎭,即11y x k m =--,当0y =时,k x m =-,故,0k A m ⎛⎫- ⎪⎝⎭,当0x =时,1x m =-,故10,B m ⎛⎫- ⎪⎝⎭,故1,kP m m ⎛⎫-- ⎪⎝⎭.又21,k M m m ⎛⎫- ⎪⎝⎭,故(),P x y 则()2,M x y -,又()2,M x y -在2212x y +=上,故()()22212x y +-=,即2221x y +=,由题意可得0,0x y ≠≠,故点(),P x y 的轨迹方程为()2221,0,0x y x y +=≠≠,为椭圆2221x y +=除去4个顶点2.(2022·青海·海东市第一中学模拟预测(文))已知动圆E 过定点()2,0P ,且y 轴被圆E 所截得的弦长(1)求圆心E 的轨迹方程.(2)过点P 的直线l 与E 的轨迹交于A ,B 两点,()2,0M -,证明:点P 到直线AM ,BM 的距离相等. 【答案】(1)24y x = (2)证明见解析 【解析】 【分析】(1)设(),E x y ,由圆的弦长公式列式可得;(2)设()11,A x y ,()22,B x y ,设():2l y k x =-,直线方程代入抛物线方程,应用韦达定理得12x x +,12x x ,计算0AM BM k k +=,得直线PM 平分AMB ∠,从而得结论,再说明直线l 斜率不存在时也满足. (1)设(),E x y ,圆E 的半径r =E 到y 轴的距离d x =,由题意得224r d =+,化简得24y x =,经检验,符合题意. (2)设():2l y k x =-,与E 的方程联立,消去y 得,()22224440k x k x k -++=.设()11,A x y ,()22,B x y ,则1221244,4x x k x x ⎧+=+⎪⎨⎪=⎩, ()()()()()()()()12122112121212222222222222AM BM k x k x k x x k x x y yk k x x x x x x ---++-++=+=+=++++++∵()()()()()1221122222240k x x k x x k x x -++-+=-=,∵0AM BM k k +=,则直线PM 平分AMB ∠,当直线l 与x 轴垂直时,显然直线PM 平分AMB ∠. 综上,点P 到直线AM , BM 的距离相等.3.(2022·江西·上高二中模拟预测(理))已知圆心在y 轴上移动的圆经过点()0,4A -,且与x 轴、y 轴分别交于点()0,0B x ,()00,C y 两个动点,记点()00,D x y 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点()0,1F 的直线l 与曲线Γ交于P ,Q 两点,直线OP ,OQ 与圆E :()2224x y +-=的另一交点分别为M ,N (其中O 为坐标原点),求OMN 与OPQ △的面积之比的最大值. 【答案】(1)24x y = (2)6425【解析】(1)设动圆的圆心为H ,则040,2y H -⎛⎫ ⎪⎝⎭ ,半径为042y +,所以22220004422y y BH x -+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,化简整理即可;(2)分析可知直线斜率存在,设1y kx =+,()11,P x y ,()22,Q x y ,联立得124x x k +=,124x x =-,再求出直线OP 的方程为14x y x = ,直线OQ 的方程为24xy x =,分别与圆联立求出216416M x x =+,226416N x x =+,所以()()221210241616OMN OPQ OM ON S S OP OQ x x ⨯==⨯++△△,展开再代入韦达定理,分析求解即可.(1)设动圆的圆心为H ,则040,2y H -⎛⎫⎪⎝⎭ ,半径为042y +, 22220004422y y BH x -+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,化简得:0204x y = ,即Γ的方程为24x y = ; (2)当直线l 的斜率不存在时,直线l 为:0x =,此时与抛物线只有一个交点,不符合题意;当直线l 的斜率存在时,设过()0,1F 的直线方程为1y kx =+ , ()11,P x y ,()22,Q x y ,联立方程:241x yy kx ⎧=⎨=+⎩ ,得2440x kx --= ,124x x k +=,124x x =-, 则直线OP 的方程为1114y x y x x x == ,直线OQ 的方程为2224y xy x x x == , 联立方程:()221244x y x y x ⎧-+=⎪⎨=⎪⎩,解得216416M x x =+ ,同理226416N x x =+ ,OP x,OQ x ===,1OM ==2ON ==()()221210241616OMN OPQ OM ONS S OP OQx x ⨯===⨯++△△ ()()2222222121212121024102410246425640025162561625616216k k x x x x x x x x ====++⎡⎤+++++-+⎣⎦显然当0k =时最大,最大值为6425; 综上,Γ的方程为24y x =,OMN 与OPQ △ 的面积之比的最大值为:6425.4.(2022·河南省兰考县第一高级中学模拟预测(理))已知点)F ,平面上的动点S 到F 的距离是S40+=S 的轨迹为曲线C . (1)求曲线C 的方程;(2)过直线:2l y =上的动点()(),22P s s >向曲线C 作两条切线1l ,2l ,1l 交x 轴于M ,交y 轴于N ,2l 交x 轴于T ,交y 轴于Q ,记PNQ 的面积为1S ,PMT △的面积为2S ,求12S S ⋅的最小值.【答案】(1)2214x y +=(2)48 【解析】 【分析】(1)设(),S x y 是所求轨迹C 上的任意一点,根据题意列出方程,即可求解;(2)设直线12,l l 的方程分别为12()2,()2y k x s y k x s =-+=-+,求得,,,M N T Q 的坐标,求得22112122k k S S s k k ⋅=⋅+-,联立方程组求得0∆=,得到12122243,44s k k k k s s +==--,化简得到221224(12)3(4)s s S S s +⋅=-,令24(0)s t t -=>,结合基本不等式,即可求解. (1)解:设(),S x y 是所求轨迹C 上的任意一点, 由题意知动点S到)F的距离是S40+=x =,整理得2214x y +=, 即曲线C 的方程为2214x y +=.(2)解:设直线12,l l 的方程分别为12()2,()2y k x s y k x s =-+=-+,可得()()1212220,2,0,2,,0,,0N k s Q k s M s T s k k ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,所以12212111122=2224P P S S NQ x y MT s k s k s k k ⋅⋅⋅=⋅-⋅-22221211212()2k k k ks s k k k k -=⋅=⋅+-,联立方程组22()214y k x s x y =-+⎧⎪⎨+=⎪⎩,整理得222(41)8(2)4(2)40k x k ks x ks +--+--=,则222264(2)4(41)[4(2)4]0ks k k ks ∆=--+--=,整理得()224430s k ks --+=,所以12122243,44s k k k k s s +==--, 所以2221212()163(4)k k s k k s +=-,所以2212121623(4)k k s k k s +=--, 代入上式,可得22221222164(12)43(4)3(4)s s s S S s s s +⋅=-=--,令24(0)s t t -=>,124(4)(16)46442020)48333t t S S t t t ++⋅==++≥⋅=,当且仅当64t t=时,即8t =时,即s =12S S 的最小值为48.5.(2022·重庆南开中学模拟预测)已知点)F,动点(),M x y到直线:l x =d,且d =,记M 的轨迹为曲线C .(1)求C 的方程; (2)过M 作圆221:43O x y +=的两条切线MP 、MQ (其中P 、Q 为切点),直线MP 、MQ 分别交C 的另一点为A 、B .从下面∵和∵两个结论中任选其一进行证明. ∵PA PM ⋅为定值; ∵MA MB =.【答案】(1)22142x y += (2)条件选择见解析,证明见解析 【解析】 【分析】(1)根据已知条件可得出关于x 、y 的等式,化简后可得出曲线C 的方程;(2)设()00,M x y 、()11,A x y 、()22,B x y ,分2043x =、2043x ≠两种情况讨论,在第一种情况下,直接验证OM OA ⊥;在第二种情况下,设直线MA 的方程为y kx m =+,由直线与圆相切结合韦达定理可得出OM OA ⊥.选∵,分析出Rt Rt MOP AOP ∽,利用三角形相似可求得PA PM ⋅的值; 选∵,分析可知OA OB =,结合勾股定理可证得结论成立. (1)解:由题意知x =2224x y +=,所以,曲线C 的方程为22142x y +=.(2)证明:设()00,M x y 、()11,A x y 、()22,B x y ,当2043x =时,2043y =,则不妨设点M ⎝⎭,则点A ⎝⎭或A ⎛ ⎝⎭, 此时0OM OA ⋅=,则OM OA ⊥;当2043x ≠时,设直线:MA y kx m =+,由直线MA 与圆224:3O x y +=()22341m k =+, 联立2224y kx m x y =+⎧⎨+=⎩可得()222214240k x kmx m +++-=, ()()()()22222221616421248424103k m k m k m k ∆=-+-=+-=+>, 由韦达定理可得012421km x x k +=-+,21222421-=+m x x k ,则()()()()220101000101011OM OA x x y y x x kx m kx m k x x km x x m ⋅=+=+++=++++()()()()222222222212441234101212k m k m m k m k kk+--++-+===++,所以,OM OA ⊥,同理可得OM OB ⊥.选∵,由OM OA ⊥及OP AM ⊥可得Rt Rt MOP AOP ∽, 则PM OP OPPA=,所以,243PM PA OP =⋅=; 选∵,出OM OA ⊥及OM OB ⊥可得:A 、O 、B 三点共线,则OA OB =, 又222222MA OA OM OB OM MB =+=+=,因此,MA MB =.6.(2022·河南郑州·三模(理))在直角坐标系xOy 中,曲线1C 的方程为()2211x y +-=.P 为曲线1C 上一动点,且2OQ OP =,点Q 的轨迹为曲线2C .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线1C ,2C 的极坐标方程;(2)曲线3C 的极坐标方程为2221sin ρθ=+,点M 为曲线3C 上一动点,求MQ 的最大值.【答案】(1)2sin ρθ=;4sin ρθ= (2)5 【解析】 【分析】(1)利用直角坐标和极坐标的互化关系求1C 的极坐标方程,利用代入法求2C 的极坐标方程;(2)M 为2212x y +=上一点,Q 为()2224x y +-=上一点,可知max max 2MQ MN =+,即可求解.(1)由题意可知,将cos sin x y ρθρθ=⎧⎨=⎩代入()2211x y +-=得2sin ρθ=,则曲线1C 的极坐标方程为2sin ρθ=, 设点P 的极坐标为()00,ρθ,则002sin ρθ=,点Q 的极坐标为(),ρθ,由2OQ OP =得002ρρθθ=⎧⎨=⎩,即0012ρρθθ⎧=⎪⎨⎪=⎩, 将012ρρθθ⎧=⎪⎨⎪=⎩代入002sin ρθ=得4sin ρθ=, 所以点Q 轨迹曲线2C 的极坐标方程为4sin ρθ=;(2)曲线3C 直角坐标方程为2212x y +=,设点),sin Mϕϕ,曲线2C 的直角坐标方程为()2224x y +-=,则圆心为()0,2N ,max max 2MQ MN =+,即MN =当sin 1ϕ=-时,max 3MN = ,所以max 325MQ =+=.7.(2022·山东·肥城市教学研究中心模拟预测)在平面直角坐标系xOy 中,已知12,A A两点的坐标分别是(,直线,A B A B 12相交于点B ,且它们的斜率之积为13. (1)求点B 的轨迹方程;(2)记点B 的轨迹为曲线C ,,,,M N P Q 是曲线C 上的点,若直线MN ,PQ 均过曲线C 的右焦点F 且互相垂直,线段MN 的中点为R ,线段PQ 的中点为T . 是否存在点G ,使直线RT 恒过点G ,若存在,求出点G 的坐标,若不存在,说明理由. 【答案】(1)(2213x y x -=≠;(2)存在,()3,0. 【解析】 【分析】(1)根据直线斜率公式,结合已知等式进行求解即可;(2)设出直线方程与双曲线方程联立,根据一元二次方程根的判别式、根与系数关系、直线斜率公式进行求解即可. (1)设(,)M x y ,因为直线,A B A B 12相交于点B ,且它们的斜率之积为13,13=, 整理可得2213x y -=,所以点B的轨迹方程为(2213x y x -=≠.(2)因为曲线C的方程为(2213x y x -=≠,所以直线,MN PQ 的斜率都存在且不为0.设直线MN :(2)y k x =-,则直线PQ :1(2)y x k=--,设()()1122,,,,M x y N x y由()(22233y k x x y x ⎧=-⎪⎨-=≠⎪⎩可得:()222231121230k x k x k --++=, 当2310k -=时,即213k =,方程为470x -+=,此时只有一解,不符合题意,当2310k -≠时,42221444(31)(123)12(1)0k k k k ∆=--+=+>,由韦达定理可得:21221231k x x k +=-,所以点R 的横坐标为()212216231R k x x x k =+=-,代入直线MN :(2)y k x =-可得:()22262223131R Rk ky k x k k k ⎛⎫=-=-= ⎪--⎝⎭, 所以线段MN 的中点22262,3131k k R k k ⎛⎫⎪--⎝⎭, 用1k -替换k 可得22266331T k x k k ==--,2222331T k k y k k --==--,所以线段PQ 的中点2262,33k T k k -⎛⎫ ⎪--⎝⎭,当1k ≠±时,()()()()()2222222222222232312313666363131313RTk k k k k k k k k k k k k k k k k ---+---===-------, 直线RT 的方程为:222226()33(1)3k k y x k k k+=----, 整理可得:222222623(1)3(1)33k k k y x k k k k =-⋅-----2222222222622932(1)(3)3(1)33(1)3(1)33(1)3(1)k k k k k kx x x k k k k k k k -=-+=-=--------, 此时直线RT 过定点G ()3,0, 若1k =±时,则()3,1R , ()3,1T -,或()3,1R -,()31T ,,直线RT 的方程为3x =, 此时直线RT 也过点G ()3,0, 综上所述:直线RT 过定点G ()3,08.(2022·河北张家口·三模)已知0b a >>,点)A,B ⎛⎫⎪ ⎪⎝⎭,动点P满足|||PA PB =,点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线y kx m =+与曲线C 相切,与曲线2222:1x yE a b-=交于M 、N 两点,且π2MON ∠=(O 为坐标原点),求曲线E 的离心率. 【答案】(1)222x y b +=;【解析】 【分析】(1)根据两点间距离距离公式,结合已知等式进行求解即可;(2)根据曲线切线的性质,结合一元二次方程根的判别式、根与系数关系、平面向量垂直的性质、双曲线的离心率公式进行求解即可. (1)设(,)P x y,由|||PA PB ==222x y b +=即为曲线C ; (2)y kx m =+与曲线C相切,b ∴=2221m b k=+.设()11,M x y ,()22,N x y ,将y kx m =+代入曲线E 整理得:222222222()2(0)b a k x a kmx a m a b ---+=,2220b a k -≠,222222()40a b m b a k ∆=+->,2122222a km x x a k b -∴+=-,222212222a m a b x x a k b +=-.π2MON ∠=,0OM ON ∴⋅=,即12120x x y y +=. 222222212121212222()()()k a b m b y y kx m kx m k x x km x x m a k b -=++=+++=-, 2222222222222220a m a b k a b m b a k b a k b +-∴+=--,整理得2222221m a b k b a =+-, 22222a b b b a∴=-,即222b a =,223c a =,e 故曲线E9.(2022·河南·南阳中学三模(文))已知点D 为圆O :221x y +=上一动点,过点D 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,连接BA 并延长至点P ,使得1PA =,点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)设直线l 与曲线C 交于不同于右顶点Q 的M ,N 两点,且QM QN ⊥,求QM QN ⋅的最大值.【答案】(1)2214x y +=(2)3225【解析】 【分析】(1) 注意到A 为BP 的中点,由相关点法,即可求得曲线C 的方程;(2) 先判断直线l 恒过点6,05T ⎛⎫⎪⎝⎭,而QM QN ⋅即为∵QMN 面积的两倍,故将问题转化为求∵QMN 面积的最大值. (1)设点P (x ,y ),D 00(,)x y ,则A 0(,0)x 、B 0(0,)y ,由题意的1AB =,因为1PA =, 所以BA AP = 而00(,)BA x y =-,0(,)AP x x y =-,所以002x x y y ⎧=⎪⎨⎪=-⎩代入圆O :221x y +=得曲线C 的方程为2214x y += . (2)由题意知,直线l 的斜率不为0,则不妨设直线l 的方程为()2x ky m m =+≠.联立得2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x 得()2224240k y kmy m +++-=,()()222244440k m k m ∆=-+->,化简整理,得224k m +>.设()11,M x y ,()22,N x y ,则12224km y y k -+=+,212244m y y k -=+.因为QM QN ⊥,所以0QM QN ⋅=.因为()2,0Q ,所以()112,QM x y =-,()222,QN x y =-,得()()1212220x x y y --+=,将11x ky m =+,22x ky m =+代入上式,得()()()()2212121220k y y k m y y m ++-++-=,得()()()2222242122044m km k k m m k k --+⋅+-⋅+-=++,解得65m =或2m =(舍去), 所以直线l 的方程为65x ky =+,则直线l 恒过点6,05T ⎛⎫⎪⎝⎭,所以12114822525QMNS QT y y =⋅-=⨯△ 设214t k =+,则14t <≤,825QMN S =△ 易知825y =10,4⎛⎤⎥⎝⎦上单调递增,所以当14t =时,QMNS取得最大值为1625. 又12PMN S QM QN =⋅△,所以()()maxmax32225QMN QM QN S ⋅==△. 10.(2022·河南·宝丰县第一高级中学模拟预测(理))已知点1,0A ,动点M 到直线4x =的距离与到点A 的距离的比为2,设动点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)若点()1,0B -,点P ,Q 为曲线C 上位于x 轴上方的两点,且PA QB ∥,求四边形PABQ 的面积的最大值.【答案】(1)22143x y += (2)3 【解析】 【分析】(1)直接法求点的轨迹方程 ;(2) 由已知得A ,B 为所求椭圆C 的焦点,通过计算=PE QF ,可得四边形PEFQ 为平行四边形,将所求四边形PABQ 的面积转化为求三角形POE的面积,从而得到2POEPABQS S ==四边形△,利用换元法及导数法即可求出面积的最大值. (1)设(),M x y2=,所以4x -=两边平方,得()()2224414x x y -=-+,化简,得22143x y +=,即曲线C 的方程为22143x y +=.(2)如图,由(1)知曲线C 为椭圆,A ,B 为其焦点,延长PA 与椭圆相交于另一点E ,延长QB 与椭圆相交于另一点.F设直线PE 的方程为1x my =+,()11,P x y ,()22,E x y ,联立方程221,431x y x my ⎧+=⎪⎨⎪=+⎩消去x 并化简,得()2234690,m y my ++-=, 所以122634m y y m +=-+,122934y y m =-+,所以PE()22121.34m m +=+ 因为//PA QB ,所以//PE QF ,设QF 的方程为1x my =-, 同理可求()2212134m QF m +=+,所以PE QF =,所以四边形PEFQ 为平行四边形,所以四边形PABQ 的面积 2PQE POE PABQ S S S ==四边形△△. 点O 到直线PE的距离d ==所以()22121112234POEm S PE d m +=⋅=⨯=+△所以2POEPABQ S S ==四边形△()1t t ≥,所以212121313PABQ t S t t t==++四边形,令13y t t =+,则2221313t y t t -=-=',显然当1t ≥时,0y '>,所以13y t t=+在[)1,+∞上单调递增,所以当1t =,即0m =时,y 取得最小值,且min 4y =, 所以()max3PABQS =四边形,即四边形PABQ 的最大值为3.11.(2022·全国·模拟预测(理))已知(2,0)A -,(2,0)B ,动点(,)M x y 满足AM 与BM 的斜率之积为14-,记M 的轨迹为曲线C . (1)求点M 的轨迹方程;(2)点P ,Q 在C 上,且AP AQ ⊥,求APQ 面积的取值范围.【答案】(1)221(2)4x y x +=≠±(2)160,25⎛⎤ ⎥⎝⎦【解析】 【分析】(1)设点(),M x y ,由坐标分别求出直线AM 、BM 的斜率,结合斜率之积为14-,得到关于x ,y 得方程,化简即可,注意考虑斜率不存在,得到取值范围;(2)直线AP 的斜率为k ,,由点斜式得到直线AP 的方程,联立椭圆C 消去y 得到关于x 的一元二次方程,联立韦达定理求得P x ,再由弦长公式求得AP ,因为AP AQ ⊥,则直线AQ 的斜率为1k-,同理可得AQ ,代入12APQ S AP AQ =△化简得到关于k 的式子,利用换元法和对勾函数得到取值范围. (1)直线AM 的斜率为(2)2AM y k x x =≠-+,直线BM 的斜率为(2)2BM y k x x =≠-, 由题意可知:22144224AM BM y y k k x y x x ⋅=⋅=-⇒+=+-(2)x ≠±, 故曲线C 的方程为:221(2)4x y x +=≠±.(2)不妨设P 在x 轴的上方,直线AP 的斜率为k ,则0k >.则直线AP 的方程为:()2y k x =+,联立椭圆22:14x C y +=,得2222(14)161640k x k x k +++-=,即()()()222216414164160k k k ∆=-+-=>,则由韦达定理得:22221648221414p p k k x x k k --+-=⇒=++,所以,2p AP +==由于AP AQ ⊥,所以AQ 的斜率为1k -,直线AQ 的方程为:1(2)y x k=-+,以1k -代替2||14()k AQ k⇒==+-,所以222218()118(1)||122(14)(4)4()9APQk k k k S AP AQ k k k k++====++++△‖, 令1t k k=+,由于0k >,所以2t ≥,2889494APQ t S t t t==++△.由于94t t+在2t ≥时单调递增,所以2t =时面积最大,此时1625APQ S =△. 综上:160,25APQ S ⎛⎤∈ ⎥⎝⎦△,故APQ 面积的取值范围为160,25⎛⎤⎥⎝⎦.12.(2022·四川·石室中学三模(理))已知点(0,M,(0,N -,(4,R ,(4,0)Q ,动点S ,T 满足RS RQ λ→→=,2()MT MR λλ→→=∈R ,直线MS 与NT 交于一点P .设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线1:320l x y -=与曲线C 交于A ,B 两点,G 为线段AB 上任意一点(不与端点重合),倾斜角为α的直线2l 经过点G ,与曲线C 交于E ,F 两点.若2||||||EF GA GB ⋅的值与点G 的位置无关,求证:||||GE GF =.【答案】(1)2211612x y +=;(2)证明见解析. 【解析】 【分析】(1)设(),P x y ,由M ,P ,S 三点共线,得(4y x -=-,由N ,P ,T 三点共线,得8(y λ+=,消去λ即得解;(2)不妨设点A 在第一象限,设点(2,3)G m m ,其中11m -<<,若直线2l 的斜率不存在,则直线2l 的方程为2x m =,故2||||||EF GA GB ⋅不为定值. 若直线2l 的斜率存在,设直线2l 的斜率为k ,则直线2l 的方程为(23)y kx k m =--.将直线2l 的方程代入曲线C 的方程化简、整理得到韦达定理计算即得证.(1)解:由题意,知(0,RQ →=-,从而)()4,1S λ-,则()4,MS →=-. 设(),P x y,则(,M x P y →=-,(,N x P y →=+. 由M ,P ,S三点共线,得(4y x -=-. 由()4,0MR →=,得(8,T λ,从而(8NT λ→=.由N ,P ,T三点共线,得8(y λ+=,消去λ得()22321224y x -=-,整理得2211612x y +=,即曲线C 的方程为2211612x y +=.(2)证明:由题意并结合(1)易知(不妨设点A 在第一象限),(2,3)A ,(2,3)B --. 设点(2,3)G m m ,其中11m -<<,则||)GA m =-,||)GB m =+,所以()2||||131GA GB m ⋅=-.若直线2l 的斜率不存在,则直线2l 的方程为2x m =,此时(2E m,(2,F m ,故()()222124||||||131m EF GA GB m -=⋅-不为定值.若直线2l 的斜率存在,设直线2l 的斜率为k ,则直线2l 的方程为(23)y kx k m =--.将直线2l 的方程代入曲线C 的方程化简、整理,得()2222438(23)4(23)480k x km k x k m +--+--=.设()11,E x y ,()22,F x y ,则1228(23)43km k x x k -+=+,221224(23)4843k m x x k --=+, 所以()()22212||1EF kx x =+-()(){}()222222222164(23)1643(23)1243k k m k k k m k ⎡⎤+--+--⎣⎦=+()()()222222481(23)161243k k m k k⎡⎤+--+⎣⎦=-+,故()()()()22222222481(23)1612||||||13431k k m k EF GA GB k m ⎡⎤+--+⎣⎦=⋅+-. 因为2||||||EF GA GB ⋅的值与m 的值无关,所以22(23)1612k k -=+,解得12k =-,所以1224(23)2243x x km k m k +-==+, 所以G 是EF 的中点,即||||GE GF =.13.(2022·福建三明·模拟预测)如图,在平面直角坐标系中,O 为原点,()1,0F ,过直线l :4x =左侧且不在x 轴上的动点P ,作PH l ⊥于点H ,HPF ∠的角平分线交x 轴于点M ,且2PH MF =,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知曲线C 与x 轴正半轴交于点1A ,过点()4,0S -的直线1l 交C 于A ,B 两点,AS BS λ=,点T 满足AT TB λ=,其中1λ<,证明:12ATB TSO ∠=∠. 【答案】(1)()221043x y y +=≠(2)证明见解析 【解析】 【分析】(1)根据条件,代入动点()(),0P x y y ≠的坐标,化简即可; (2)注意到S 点在x 轴上,所以12y y λ=,将λ作为桥梁,合理利用,即可求解. (1)设()(),0P x y y ≠,因为PH x ∥轴,所以HPM PMF ∠=∠, 因为PM 为HPF ∠的角平分线,所以HPM FPM ∠=∠, 所以FPM PMF ∠=∠,即MF PF =,所以12PF MF PHPH==.12=,化简整理得22143x y +=,因为P 不在x 轴上,即曲线C 的方程为()221043x y y +=≠(2)易知直线1l 的斜率存在且不为0,设1l 的方程为()40x my m =-≠.联立方程组221434x y x my ⎧+=⎪⎨⎪=-⎩,消x 整理得()223424360m y my +-+=, 所以()()2224434360m m ∆=--⨯+⨯>,得2m >或2m <-,设()11,A x y ,()22,B x y ,则1222434m y y m +=+,1223634y y m =+. 由AS BS λ=得12y y λ-=-,所以12y y λ=, 设()00,T x y ,由AT TB λ=,得()0120y y y y λ-=-,所以21211201122236222334241134y y y y y m y y m y y my m λλ⨯++=====++++, 所以003441x my m m=-=⨯-=-, 所以点31,T m ⎛⎫- ⎪⎝⎭在直线1x =-上,且00y ≠,又因为()4,0S -与()12,0A 关于直线1x =-对称,所以1TSA △是等腰三角形, (或者证明直线TS 与直线1TA 的斜率互为相反数)所以11TSA TA S ∠=∠,因为111ATB TSA TA S ∠=∠+∠,所以12ATB TSO ∠=∠, 综上所述,12ATB TSO ∠=∠.14.(2022·江苏·南京市宁海中学模拟预测)已知平面上一动点P 到定点()1,0F 的距离与它到定直线1x =-的距离相等,设动点P 的轨迹为曲线C . (1)求曲线C 的轨迹方程(2)已知点(2,B ,过点B 引圆()()222:402M x y r r -+=<<的两条切线BP ;BQ ,切线BP 、BQ 与曲线C 的另一交点分别为P 、Q ,线段PQ 中点N 的纵坐标记为λ,求λ的取值范围.【答案】(1)24y x =;(2)λ的取值范围为(--. 【解析】 【分析】(1)根据曲线轨迹方程的定义求解;(2) 设切线BP的方程为12y k x +=(﹣)BQ的方程为22y k x +=(﹣)1224k k r +=-, 212284r k k r =--,再求出12228y y t r +==--,即得解.(1)设(,)P x y ,|1|x =+, 化简得()222(1)1x y x -+=+, 所以24y x =,所以曲线C 的方程为24y x =, (2)由已知2B(,所以切线,BP BQ 的斜率存在, 设切线BP的方程为12y k x -+=() 则圆心40M (,)到切线AP的距离d r ==,所以22211480r k r -++()﹣=, 设切线BQ的方程为22y k x -+=()同理可得22222480r k r -++()﹣=,所以12k k ,是方程222480r k r -++()﹣=的两根,所以12k k += 212284r k k r =--,设1122(,),(,)P x y Q x y ,联立12(2)4y k x y x ⎧=-+⎪⎨=⎪⎩211048k y y k =+﹣﹣,所以11=所以114y k =-,同理224y k =-,所以121244(=22y y k k λ-+-++=12112k k ⎛⎫⋅+ ⎪⎝⎭=﹣12122k k k k +⋅=﹣224284r r r -=-⋅--=- 因为02r <<,所以2111884r <<-所以--<- 所以λ的取值范围为(--.15.(2022·四川·内江市教育科学研究所三模(文))已知点()2,0A -,()2,0B ,直线PA 与直线PB 的斜率之积为12-,记动点P 的轨迹为曲线C(1)求曲线C 的方程;(2)设D 为曲线C 上的一点,线段AD 的垂直平分线交y 轴于点E ,若ADE 为等边三角形,求点D 的坐标﹒【答案】(1)()220421x y y +=≠;(2)25⎛- ⎝⎭或2,5⎛-⎝⎭﹒ 【解析】 【分析】(1)设P (x ,y )(y ≠0),根据12PA PB k k ⋅=-即可求C 的方程;(2)设()00,D x y (00y ≠),根据D 在C 上列出一个方程,用D 表示出E ,根据ADE 为等边三角形的AD AE =,由此可得第二个方程,两根方程联立即可求出D 的坐标. (1)设点P 的坐标为()(),0x y y ≠,∵直线PA 与直线PB 的斜率之积为12-,∵12PA PBk k ⋅=-,即1222y y x x ⨯=-+-,化简得22142x y +=, ∵曲线C 的方程为()220421x y y +=≠;(2)设()00,D x y (00y ≠),()0,E t ,线段AD 的中点为002,22x y Q -⎛⎫⎪⎝⎭, 则直线AD 的斜率002AD y k x =+,直线QE 的斜率00222QEy t k x -=-, 由题可知1AD QEk k ⋅=-,∵000021222y t y x x -⨯=--+,整理得2000422y x y t -⎛⎫-= ⎪⎝⎭,又∵2200142x y +=,∵20002y y t y ⎛⎫-=- ⎪⎝⎭,得02y t =-,故00,2y E ⎛⎫- ⎪⎝⎭.又∵ADE 为等边三角形,有AD AE =,220003404y x x ++=,∵20532120x x ++=,解得025x =-或06x =-(舍去), 将025x =-代入2200142x y+=,解得0y0y = ∵点D的坐标为25⎛- ⎝⎭或2,5⎛-⎝⎭. 16.(2022·河南平顶山·模拟预测(理))在平面直角坐标系xOy 中,一动圆经过点F (2,0)且与直线2x =-相切,设该动圆圆心的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点M (m ,0)(m >0)作两条互相垂直的直线12,l l ,且1l 与曲线Γ交于A ,B 两点,2l 与曲线Γ交于C ,D 两点,点P ,Q 分别为AB ,CD 的中点,求△MPQ 面积的最小值. 【答案】(1)28y x = (2)16 【解析】 【分析】(1)设出圆心坐标,列出等量关系,整理得到轨迹方程;(2)设出直线方程,与第一问求出的抛物线联立,得到两根之和,两根之积,从而表达出点P ,Q 的坐标,表达出△MPQ 面积,利用基本不等式求出面积的最小值. (1)设圆心为(),A x y ,2=+x ,两边平方,整理得:28y x =,故曲线Γ的方程为28y x =.(2)显然直线12,l l 斜率均存在,不妨设1:l x ky m =+,(0k >)与28y x =联立得:2880y ky m --=,设()()1122,,,A x y B x y ,则12128,8y y k y y m +==-,则()21212282x x k y y m k m +=++=+,故21242x x k m +=+,1242y y k +=,所以()24,4P k m k +,由于直线12,l l 互相垂直,故244,Q m kk ⎛⎫+- ⎪⎝⎭,所以2MPQSk m m m m =+--1816k k ⎛⎫=+≥= ⎪⎝⎭,当且仅当1k k ,即1k =时等号成立,所以△MPQ 面积的最小值为16.17.(2021·福建省德化第一中学三模)在平面直角坐标系中,∵ABC 的两个顶点A ,B 的坐标分别为()1,0-,()1,0,平面内两点G ,M 同时满足以下3个条件:∵G 是∵ABC 三条边中线的交点:∵M 是∵ABC 的外心;∵//GM AB(1)求∵ABC 的顶点C 的轨迹方程;(2)若点P (2,0)与(1)中轨迹上的点E ,F 三点共线,求||PE PF ⋅的取值范围【答案】(1)221(0)3y x y +=≠;(2)93,2⎛⎫ ⎪⎝⎭. 【解析】 【分析】(1)设出点的坐标,利用两点间的距离公式即可求得轨迹方程;(2)设出三点所在的直线方程,与(1)中的轨迹方程联立,由判别式大于0求出2k 的范围,利用韦达定理得到E ,F 两点横坐标的和与积,将PE PF ⋅表示为k 的关系式,进一步得到PE PF ⋅的取值范围. (1)设C (x ,y ),G (0x ,0y ),M (M x ,M y ), 因为M 是∵ABC 的外心,所以MA MB = 所以M 在线段AB 的中垂线上,所以1102M x -+==, 因为/GM AB ,所以0M y y =,又G 是∵ABC 三条边中线的交点,所以G 是∵ABC 的重心, 所以0011003333x x y yx y -++++====,, 所以03M yy y ==, 又MA MC =,=化简得()22103y x y +=≠,所以顶点C 的轨迹方程为()22103y x y +=≠;(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0, 设所在直线的方程为()2y k x =-,联立()222,1,3y k x y x ⎧=-⎪⎨+=⎪⎩得()222234430k x k x k +-+-=.由()()()2222443430k k k ∆=-+->,得21k <.设()11,E x y ,()22,F x y ,则212221224,343.3k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩所以()()2121212142PE PF x x k x x x x ⋅=--=+⋅-++⋅()()()222224384313k k k k k +-+-=+⋅+()2229118933k k k +==-++.又201k <<,所以2334k <+<, 所以932PE PF <⋅<. 故PE PF ⋅的取值范围为93,2⎛⎫⎪⎝⎭.18.(2022·广西柳州·三模(理))已知点(A ,点(2,B -,点M 与y 轴的距离记为d ,且点M 满足:214d MA MB ⋅=-,记点M 的轨迹为曲线W . (1)求曲线W 的方程;(2)设点P 为x 轴上除原点O 外的一点,过点P 作直线1l ,2l ,1l 交曲线W 于点C ,D ,2l 交曲线W 于点E ,F ,G ,H 分别为CD ,EF 的中点,过点P 作x 轴的垂线交GH 于点N ,设CD ,EF ,ON 的斜率分别为1k ,2k ,3k 的,求证:()312k k k +为定值.【答案】(1)22186x y +(2)证明见解析 【解析】 【分析】(1)设(),M x y ,则d x =,根据平面向量数量积的坐标表示化简计算即可;(2)设()0,0P x 和直线GH 的方程,进而求出点G 的坐标,设(,)C C C x y 、(,)D D D x y ,利用点差法和弦中点坐标公式计算化简可得()2401014330k x m k x k m +++=,同理可得()2402024330k x m k x k m +++=,根据韦达定理可得()124034x k k k x m +=-+,代入()312k k k +计算化简即可. (1)设(),M x y ,由题意得d x =,()2MA x y =-,()2,MB x y =--由214d MA MB ⋅=-,∵()()222,14d x y x y -⋅--=-∵2224314x x y -+-=-.∵22364x y +=, 即M 的轨迹方程为22186x y +;(2)显然GH 斜率存在,设()0,0P x ,设GH 的方程为:4y k x m =+ 由题意知CD 的方程为:()10y k x x =-联立方程()104y k x x y k x m⎧=-⎨=+⎩ 解得:()101414014k x m x k k k k x m y k k +⎧=⎪-⎪⎨+⎪=⎪-⎩ 可得:()140101414,k k x m k x m G k k k k +⎛⎫+ ⎪--⎝⎭设(,)C C C x y ,(,)D D D x y ,C ,D 都在曲线W 上,则有22186C Cx y +=∵22186D D x y +=∵ ∵-∵得:2222086C D C D x x y y --+=则有:134C D C DC D C Dy y x x k x x y y -+==-⋅-+又G 为CD 中点,则有;()10114034C D C D y y k x m k x x k k x m -+==-⋅-+可得:()2401014330k x m k x k m +++= 同理可得:()2402024330k x m k x k m +++=故1k ,2k 为关于k 的方程()24004330k x m k x k m +++=的两实根由韦达定理得:()124034x k k k x m +=-+,将0x x =代入直线GH 中得:40y k x m =+ 可得:()040,N x k x m +故有:4030k x mk x += 则()()4003120403344k x m x k k k x k x m ⎡⎤++=⋅-=-⎢⎥+⎣⎦,故()312k k k +为定值34- 19.(2022·全国·模拟预测(理))已知圆22:2O x y +=与x 轴交于A ,B 两点,动点P 满足直线AP 与直线BP 的斜率之乘积为12-.(1)求动点P 的轨迹E 的方程;(2)过点()1,0的直线l 与曲线E 交于M ,N 两点,则在x 轴上是否存在定点Q ,使得QM QN ⋅的值为定值?若存在,求出点Q 的坐标和该定值;若不存在,请说明理由.【答案】(1)2212x y +=,(x ≠;(2)存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-,理由见解析;【解析】 【分析】(1)设出动点(),P xy (x ≠,利用直接法求解轨迹方程;(2)先求出直线l 斜率为0时不合题意,得到直线斜率不等于0,从而设出直线l 的方程1x ky =+,联立第一问求出的轨迹方程,利用韦达定理得到两根之和,两根之积,设出(),0Q m ,求解QM QN ⋅,化简整理得到QM QN ⋅()224522m m k -=--+,从而得到存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-.(1)令0y =得:x =()),A B ,(),P x y (x ≠,则12PA PB k k ⋅==-,整理得:2212x y +=,(x ≠;动点P 的轨迹方程E 为2212x y +=,(x ≠;(2)存在点(),0Q m ,使得QM QN ⋅为定值,理由如下:当直线l 斜率为0时,则直线l 为0y =,此时与2212xy +=,(x ≠无交点,故不合题意,舍去,即直线l 斜率不为0设(),0Q m ,直线l 设为1x ky =+,则与2212x y +=,(x ≠联立得:()222210k y ky ++-=,设()()1122,,,M x y M x y ,则12122221,22k y y y y k k +=-=-++,所以()()()()11221212,,QM QN x m y x m y x m x m y y ⋅=-⋅-=--+()()()()221212121212121111x x m x x m y y ky ky m ky ky m y y =-+++=++-+++++()()()()22121211k y y k mk y y m =++-++-()224522m m k -=--+ 当450m -=即54m =时,QM QN ⋅为定值,即存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-; 综上:存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-.20.(2022·全国·高考真题)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面∵∵∵中选取两个作为条件,证明另外一个成立:∵M 在AB 上;∵PQ AB ∥;∵||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)2213y x -= (2)见解析 【解析】 【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k , M (x 0,y 0),由∵|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由∵//PQ AB 等价转化为003ky x =,由∵M 在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可. (1)右焦点为(2,0)F ,∵2c =,∵渐近线方程为y =,∵ba=∵b =,∵222244c a b a =+==,∵1a =,∵b =∵C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由∵∵推∵或选由∵∵推∵:由∵成立可知直线AB 的斜率存在且不为零;若选∵∵推∵,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符; 总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件∵M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--, 设()00,M x y ,则条件∵AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM的斜率为直线QM∵由))10102020,y y x x y y x x -=--=-,∵)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==---,直线)00:PM y x x y =-+,即00y y =, 代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦, 解得P的横坐标:100x y ⎛⎫=⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∵0012012002222000033,2,33y x x x y x x x x y x y x ⎫-++-=--⎪--⎭∵03x m y =, ∵条件∵//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件∵M 在AB 上,等价于()2002ky k x =-;条件∵//PQ AB 等价于003ky x =;条件∵AM BM =等价于200283k x ky k +=-;选∵∵推∵:由∵∵解得:2200002228,433k k x x ky x k k =∴+==--,∵∵成立; 选∵∵推∵:由∵∵解得:20223k x k =-,20263k ky k =-,∵003ky x =,∵∵成立; 选∵∵推∵:由∵∵解得:20223k x k =-,20263k ky k =-,∵02623x k -=-,∵()2002ky k x =-,∵∵成立.。
秒杀题型:玩转压轴题之中点弦问题秒杀题型一:圆、椭圆、双曲线的中点弦问题:注:方程:221mx ny +=,①当0,>n m 且n m ≠时,表示椭圆;②当0,>n m 且n m =时,表示圆;③当n m ,异号时,表示双曲线。
秒杀策略:点差法:简答题模板:step1:设直线与曲线:设直线:l y kx t =+与曲线:221mx ny +=交于两点A 、B ,AB 中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B ,Step2:代入点坐标:即1122y kx t y kx t =+⎧⎨=+⎩;22112222 1 (1)1 (2)mx ny mx ny ⎧+=⎪⎨+=⎪⎩,Step3:作差得出结论:(1)-(2)得:..AB AB OP y mk k k x n=-=中中。
(作为公式记住,在小题中直接用。
)题型一:求值:〖母题1〗已知椭圆221164x y +=,求以点P(2,-1)为中点的弦所在的直线方程.1.(2013年新课标全国卷I10)已知椭圆2222:1(0)x y G a b a b+=>>的右焦点为()0,3F ,过点F 的直线交椭圆于B A ,两点.若AB 的中点坐标为()11-,,则E 的方程为()A.1364522=+y x B.1273622=+y x C.1182722=+y x D.191822=+y x 2.(2010年新课标全国卷12)已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于,A B 两点,且AB 的中点为()12,15N --,则E 的方程为()A.22136x y -= B.22145x y -= C.22163x y -= D.22154x y -=3.(高考题)已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB .(1)求点B 的坐标;(2)若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值.4.(2015年新课标全国卷II20)已知椭圆)0(9:222>=+m m y x C ,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点B A ,,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎪⎭⎫⎝⎛m m ,3,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行?若能,求此时l 的斜率,若不能,说明理由.5.(高考题)已知椭圆C 的焦点分别为1(F -和2F ,长轴长为6,设直线2y x =+交椭圆C 于,A B 两点,求线段AB 的中点坐标.6.(高考题)设椭圆C :()222210x y a b a b+=>>过点()0,4,离心率为35.(1)求C 的方程;(2)求过点()3,0且斜率为45的直线被C 所截线段的中点坐标.7.(2013年全国高考试题新课标卷II)平面直角坐标系xOy 中,过椭圆M:22221x y a b+=(0>>b a )右焦点的直线03=-+y x 交M 于A,B 两点,且P 为AB 的中点,OP 的斜率为12.(1)求M 的方程;(2)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB,求四边形ACBD 面积的最大值。
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
圆锥曲线平行弦中点的轨迹江夏一中 胡成波直线与圆锥曲线是高中数学永恒的主题,本节我们探讨一下圆锥曲线中平行弦中点的轨迹。
例1. 已知:抛物线y 2=4x,斜率为2的直线与抛物线交于A 、B 两点,求弦AB中点M 的轨迹方程。
解:设中点M (x,y ), A(x 1,y 1), B (x 2,y 2)设直线AB :y=2x+n由⎩⎨⎧+==n x y x y 242得(2x+n )2=4x ∴ 4x 2+4(n-1)x+n 2=0y 2=4x △ =16(n-1)2-16n >∴n <21x 1+ x 2=1- n∴x= 221X x +=21n - ∙∴y=2.21n -+n=1 ∵ n <21 ∴ x=21n ->41 ∴所求轨迹方程为y=1(x >41) 此题的另一种解法:点差法 由⎪⎩⎪⎨⎧==22212144x y x y 22112144x y x y == 得(y 1+ y 2)(y 1-y 2)=4(x 1- x 2) ∴2121x x y y --=214y y + ∴ 2=y24 ∴y=1 再求解法知x >41 ∴所求弦AB 中点M 的轨迹方程为:y=1(x >41) 注:用点差法求弦中点的轨迹方程很简单,但不容易求出点的轨迹方程的定义域。
由例1知,抛物线y 2=4x 的一组平行弦中点的轨迹在一条直线上,对于一般抛物线是否成立呢?我们现在来证明。
不妨设抛物线y 2=4x (p >0),直线y=kx+n,y(其中k 是常数,且k ≠0,n 是参数)直线与抛物线交点为A(x 1,y 1), B (x 2,y 2),AB 中点为M (x,y )由⎩⎨⎧+==nkx y px y 22得 k 2x 2+2knx+n 2=2px∴k 2x 2+2(kn-p)x+ n 2=0∴4(kn-p)2-4 k 2n 2>0∴k 2n 2-2pkn+p 2- k 2n 2>0∴2kn <p 推出 kn <2p ∴x 1+ x 2=-2)(2k p kn -=n ∴x=221x x +=-2k p kn -=2kkn p - ∴y=kx+n=-k p kn -+n=k p ∵kn <2p ∴ x=2k kn p ->22k pp -=22k p 所求弦AB 中点轨迹方程为=k p (x >22kp )在x 轴上,当弦AB 斜率不存在时,弦AB 中点都在一条直线上,由此可知:抛物线一组平行弦中点都在一条直线上,此结论对于其他圆锥曲线是否成立呢?我们以椭圆为例。
圆锥曲线的中点弦问题一:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.①在椭圆中,以为中点的弦所在直线的斜率;②在双曲线中,以为中点的弦所在直线的斜率;③在抛物线中,以为中点的弦所在直线的斜率。
注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0!1、以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。
若存在这样的直线l ,求出它的方程,若不存在,说明理由。
2、过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。
例4、 已知椭圆1257522=+x y ,求它的斜率为3的弦中点的轨迹方程。
3、求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程。
∴所求椭圆的方程是1257522=+x y4、圆锥曲线上两点关于某直线对称问题例6、已知椭圆13422=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。
例7、已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.注意的问题(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。
利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣答案:1.解:设直线与椭圆的交点为),(11y x A 、),(22y x BΘ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x两式相减得0)(4)(22212221=-+-y y x x于是0))((4))((21212121=-++-+y y y y x x x x ∴21244)(421212121-=⨯-=++-=--y y x x x x y y即21-=AB k ,故所求直线的方程为)2(211--=-x y ,即042=-+y x 。
圆锥曲线平行弦中点轨迹问题”说题
说题”是近年来涌现出的一种新型教学研究模式
简单地讲:说题是执教者或受教育者在精心做题的基础上,阐述对习题解答时所采用的思维方式,解题策略及依据,进而总结出经验性解题规律. “说题”使教研活动更入微了,可以说是教研活动的一次创新
般说来,说题应从以下几个方面进行分析:数学思想
与数学方法,命题变化的自然思维,小结、归纳与应用,题多解、发散思维,常规变式,多种变式、融会贯通,从特殊到一般寻找规律.要求数学教师不但对题目进行深层次的
挖掘,说出题目的本质、新意、特色,还要说出题目的编制、演变过程以及该题目的潜在价值
面是本人的一次说题研究,在此抛砖引玉供各位参考、说问题
背景
问题来源于2005 年上海市普通高等学校春季招生考试
数学试卷第22 题:
1)求右焦点坐标是(2,0),且经过点(-2,-2)的
椭圆的标准方程;
(2)已知椭圆C的方程是x2a2+y2b2=1 (a>b>0), 设
斜率为k的直线I,交椭圆C于A、B两点,AB的中点为M.证
明:当直线l 平行移动时,动点M 在一条过原点的定直线上;
3)利用(2)所揭示的椭圆几何性质,用作图方法找
出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.
二、说问题立意
1.考查椭圆的标准方程和性质;中心对称等;
2.考查数
学思想有:从特殊到一般思想;数形结合思想;分类讨论思
想;数学方法:判别式法;函数与方程转化等;引导将双
曲线问题与相应的椭圆问题开展类比研究的思想方法.3.通
过研究椭圆的平行弦的中点轨迹,对直线与曲线位置关系研究方法有更深刻的理解;这是将知识、方法、思想、能力素质融于一体的命题,也看出高校选拔人才对学生的直觉思维能力、逻辑推理能力、运算能力和自主探索能力等提出了较高的要求.
、说问题解法
解法1(1)略(2)设直线I的方程为y=kx+m,与椭圆C的交点A(x1,
y1 )、B (x2, y2),则有y=kx+m,
x2a2+y2b2=1,解得( b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.
•••△ >0,二m2vb2+a2k2,即-b2+a2k2vmvb2+a2k2.则
x1+x2=-2a2kmb2+a2k2,y1+y2=kx1+m+kx2+m=2b2mb2+a2k2. ••• AB 中点M 的坐标为(-a2kmb2+a2k2 , b2mb2+a2k2 ).
•••线段AB的中点M在过原点的直线b2x+a2ky=0上.
(3)如图,作两条平行直线分别交椭圆于A、B和C、D,并分别取AB、CD的中点M、N,连接直线MN ;又作两条平行直线(与前两条直线不平行)分别交椭圆于和C1、D1,并分别取
A1、B1 A1B1、C1D1的中点M1、N1,连接直
线M1N1,那么直线MN和M1N1的交点0即为椭圆中心.
解法2(2)可利用点差法;(3)利用一组平行弦中点作
出椭圆的一条弦其中点就是椭圆中心
用点差法求弦中点的轨迹,过程如下:设直线l 的方程
为y=kx+m,与椭圆C 的交点A(x1,y1 )、B(x2,y2),由x21a2+y21b2=1 ,x22a2+y22b2=1 ,相减得
x1+x2)(x1-x2)a2=-(y1+y2)(y1-y2)b2.
当x1=x2 时,弦AB 中点M 轨迹方程为y=0(-a<y 当y1=y2时,弦AB中点M轨迹方程为x=0 (-b<y<b);
当x1 工x2 且y1 工y2 时,y1-y2x1-x2=-b2a2( x1+x2)(y1+y2),
••• k=-b2a2?2x2y. y=-b2a2kx.
再由方法一求出x 的取值范围.
四、说问题来源问题源于高级中数课本(上海教育出版社)高二年
级第
学期12.4例5:求椭圆x24+y2=1 中斜率为1 的平行弦的中
点轨迹.例5与2005上海春招22(2)两题题目条件一样,
解题方法也一样,只是数字与字母的区别,体现了近年来高
考试题“追根溯源,回归课本” ,“源于课本,高于课本” 的理念,因此我们在高考复习中应当充分重视教材,研究教材,汲取教材的营养价值,发挥课本的示范功能
五、说问题拓展拓展问题1:如图3(1),已知一椭圆,试在图
中作出
该椭圆的中心、对称轴、顶点、焦点
作法:(1)确定椭圆的中心方法同22(3).。