⑨为棱柱;⑪ 、⑫为球;⑬、⑯为棱台;⑭、⑮为棱锥.
可以分成七类.分别是棱柱、棱锥、棱台、圆柱、圆锥、圆
台和球.
2.观察问题1中图②⑤⑦⑨⑬⑭⑮⑯中组成几何体的每个面
的特点,以及面与面之间的关系,你能归纳出它们有何共同特
点吗?
提示:组成几何体的每个面都是平面图形,并且都是平面多边
形.
3.观察问题1中图①③④⑥⑧⑩⑪⑫中组成几何体的每个面
(4)平面是空间最基本的图形.在立体几何中,平面是无限延展
的,一般地,用平行四边形表示平面.
当平面水平放置时,通常把平行四边形的锐角画成45°,横边长
画成邻边长的两倍.
平面通常用希腊字母α,β,γ等来表示,如平面α、平面β、平面γ
等;也可以用表示平行四边形顶点的字母表示,如平面ABCD,
还可以用表示平行四边形顶点的两个相对顶点的字母表示,
几何体里面寻找一些点、线、面,并将它们列举出来.
图6-1-1
提示:面可以列举如下:
平面A1A2B2B1,平面A1A2D2D1,平面C1C2D2D1,平面B1B2C2C1,
平面A1B1C1D1,平面A2B2C2D2;
线可以列举如下:
直线AA1,直线BB1,直线CC1,直线DD1,直线A2B2,直线C2D2等;
之间的部分
称为棱台.由
正棱锥截得
的棱台称为
正棱台
图形及表示
相关概念
上底面:截面,
如图,可记作: 下底面:原棱锥的底面,
棱台ABC侧面:其余各面,
A1 B1 C1
侧棱:相邻两个侧面的公共边,
高:上底面、下底面之间的距
离
斜高:正棱台各侧面都是全等
的等腰梯形,这些等腰梯形的
高