温州大学考研真题822高等代数硕士研究生专业课考试试题(2015-2018年)
- 格式:pdf
- 大小:232.97 KB
- 文档页数:8
2020年硕士研究生招生考试试题(请考生在答题纸上答题,在此试题纸上答题无效)一、填空题(每小题2 分,共20分。
)1、我国先秦时代的青铜器取得了辉煌的成就,现藏中国国家历史博物馆的青铜器《》是殷商时期的代表作,是世界迄今出土最重的青铜器。
2、刘宋时画家陆探微创造了“ 秀骨清象”的清秀绘画形象,而______则因其创造的佛教形象独具风格,被称为“ 张家祥”。
3、元代山水四大家是指黄公望、______、倪瓒、王蒙。
4、北宋画家郭熙的山水画主张,经其子整理成《_________》,书中提出了“三远”法。
5、清初“四王”指的是王时敏、______、王翚、王原祁。
6、古埃及吉萨金字塔群中最大的金字塔是______。
7、圣索菲亚教堂是中世纪______艺术的代表性建筑,这一艺术还以镶嵌画著称。
8、标志文艺复兴盛期来临的三位大师分别是:达·芬奇、米开朗基罗、______。
9、《乌尔宾诺的维纳斯》一画出自意大利文艺复兴时期威尼斯画派的______之手。
10、《杜普教授的解剖课》是荷兰画家______的代表作。
二、名词解释(每小题5分,共25分)1、《人面鱼纹盆》:2、赵孟頫:3、《兰亭序》:4、掷铁饼者:5、卡拉瓦乔:三、简答题(每小题15分,共45分)1、简要介绍野兽主义这个现代艺术流派。
2、试分析顾恺之绘画理论与实践。
3、有人说马塞尔·杜尚是观念艺术的鼻祖,你怎么看?四、论述与写作(60分)以罗中立的《父亲》为副标题写一篇不少于600字的鉴赏小短文。
第 1 页,共 1 页2015年硕士研究生招生入学考试试题(A)(请考生在答题纸上答题,在此试题纸上答题无效)一、填空题(每空格1分,共20 分。
)1、享誉世界的中国四大佛教石窟是: ____________、____________、____________、____________。
2、中国画安题材可以分为人物画、花鸟画、____________。
D A BC2020年硕士研究生招生考试试题(请考生在答题纸上答题,在此试题纸上答题无效)一、简述题(40分,每题20分)1.请用建构主义的观点简要阐述“什么是数学知识?”2.请简要阐述中国数学双基教学的基本策略二、案例分析题(40分,每题20分)3. 有人说:“数学是追求精确、严谨的,而数学教育则具有一定的模糊性。
”请你谈谈对这句话的理解。
4. “化归思想”在数学问题解决中几乎无所不在、无处不在,请你谈谈“化归思想”在数学教学中的地位和作用。
三、数学问题解决(40分,每题20分)5.如图,线段AB 分别是和的平分线,求证:四边形ACBD 是一个轴对称图形。
6. 已知)(x f 为定义在R 上的不恒为零的函数,且对任意的a 、R b ∈恒有()()()f ab af b bf a =+求:①(0),(1)f f ; ②判断()f x 的奇偶性;③若(2)2,(2)()n n f a f n N -==∈,求n a a a +++ 21四、论述题(30分)7. 就目前自己的理解,您认为就如何进行数学概念教学?要求举例并阐述。
第1页,共 1页2015年硕士研究生招生入学考试试题(请考生在答题纸上答题,在此试题纸上答题无效)一、填空题:(每题5分,共50分)1. 在数学教育领域,ICMI组织的含义是▲;2.《怎样解题》对世界数学教育产生重大影响,其作者是▲;3.《几何原本》的作者是▲;4.微积分发明者的两位主要人物是▲;5.当今我国理论性、学术性公认最强的数学教育研究学术杂志是▲;6.数学开放题主要是我国学者▲从日本引进的;7.请写出一部我国古代著名的数学研究著作▲;8.勾股定理在西方又称之为▲;9.请写出一位当今我国公认著名的数学教育研究的学者▲;10.“淡化形式,注重实质”是我国数学教育学者▲提出来的。
二、简述题:(每题10分,共30分)1.请简述我国传统观念中提出的数学“三大能力”的具体含义。
2.试举例说明数学应用对数学教育的价值。
2018年硕士研究生招生考试试题
科目代码及名称: 812-文学理论
适用专业:文艺学、中国现当代文学、
(请考生在答题纸上答题,在此试题纸上答题无效)
一、专业概念解释(50分)
1. 诗无达诂(10分)
2. 修辞立其诚(10分)
3. 极简主义小说(10分)
4. 人生艺术化(10分)
5. 陌生化理论(10分)
二、阅读下列材料,然后回答所列问题。
(50分)
“文如其人”是中国古代文论中的一个常见的说法,而西方有个近似的说法叫“风格即人”。
“文如其人”见于宋代文豪苏轼的《答张文潜书》一文:“子由之文实胜仆,而世俗不知,乃以为不如;其为人深不愿人知之,其文如其为人。
”“文如其人”的大意是说,文品大可等同于人品,即你心里想的是什么便会把你所想的东西通过文字表达出来。
“风格即人”是18世纪法国启蒙主义思想家和文学家德·布封的一句名言。
有的人把它翻译成“风格就是人”。
布封强调作品思想的重要性。
他认为那些只描写“琐屑对象”的作品,不可能成为“传世
第 1 页,共 2 页。
高等代数考研试题及答案一、选择题(每题3分,共30分)1. 下列矩阵中,哪个不是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [1, -1; 2, 2]2. 设线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) 由矩阵 \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) 给出,那么 \( T(1, 2, 3) \) 的结果是:A. (3, 5, 3)B. (5, 3, 3)C. (1, 2, 3)D. (2, 3, 1)3. 多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 44. 设 \( V \) 是所有 \( n \) 次多项式的向量空间,\( T: V\rightarrow V \) 是一个线性变换,且 \( T(p(x)) = p'(x) \)。
如果 \( T \) 的特征值为 \( k \),那么 \( k \) 等于:A. 0B. 1C. -1D. \( n \)5. 下列哪个命题是正确的?A. 每个线性映射都可以用一个矩阵来表示。
B. 矩阵的乘积总是可交换的。
C. 两个相似矩阵必定是同阶矩阵。
D. 行列式的值总是正数或零。
6. 设 \( A \) 是一个 \( n \) 阶方阵,如果 \( A \) 的所有特征值的和等于 \( 0 \),那么 \( A \) 必定是:A. 正交矩阵B. 对角矩阵C. 零矩阵D. 反对称矩阵7. 如果一个 \( n \) 阶方阵 \( A \) 的所有元素都等于 \( 1 \),那么 \( A^n \) 的迹(trace)是:A. \( n \)B. \( n^n \)C. \( n! \)D. \( 0 \)8. 对于任意 \( n \) 阶方阵 \( A \),下列哪个选项是正确的?A. \( \det(A^2) = (\det A)^2 \)B. \( \det(A^T) = \det A \)C. \( \det(A + I) = \det A + 1 \)D. \( \det(A) = \det(A^T) \)9. 设 \( V \) 是一个向量空间,\( T: V \rightarrow V \) 是一个线性变换,如果 \( T \) 的一个特征向量 \( v \) 满足 \( T(v) = \lambda v \),那么 \( T \) 的逆变换 \( T^{-1} \)(如果存在)将 \( v \) 映射到:A. \( \lambda^{-1} v \)B. \( \frac{1}{\lambda} v \)C. \( v \)D. \( v + \lambda v \)10. 下列哪个矩阵是正交矩阵?A. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)B. \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)D. \( \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)二、填空题(每题4分,共20分)11. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det A \) 等于 _______。
2020年硕士研究生招生考试试题(请考生在答题纸上答题,在此试题纸上答题无效)222sin ()322211122636cos limcosln ,ln (1)2!()(),1,23636lim x x x x n nn L n n d t dtdx xx u duy z xdxn x y x y dx x y dy L a a -→-∞=→∞=+-⋅-+++==⎰⎰∑⎰1 计算题(每小题分,共分)(1)求微分(2)求极限(3)设求全微分(4)求定积分(5)求级数和(6)求是椭圆逆时针方向。
2 (每小题分,共分)(1) 假设,求证12221++211++lim .1lim 2.32()()[1,)()()[1,)lim (),lim '()lim '()0.[1,)nn x x x x a a a a nx x x f x f x f x dx dx x f x f x xf x xf x εδ→∞→∞∞→+∞→+∞→+∞=--=--++∞+∞=+∞⎰⎰(2) 用极限的定义证明(3) 设 在上连续, 收敛。
求证 绝对收敛.(4) 若 在上可微,且都存在、有限,求证(5) 构造一个在上可微()lim ()lim '().()()(0,)lim 0,().x x x g x g x g x h x h x xh x →+∞→+∞→+∞+∞=的函数,使得存在、有限,但不存在(6) 设是上的凸、增函数,二阶可导,且求证是常值函数⎰⎰⎰所围成的空间闭区域。
求分)设曲面S由方程=0给出。
求证F{2,分)求平面点集D x y x=<<为曲面5z=-温州大学2004年数学分析1、(12分)设0lim ()x x f x A →= ,0lim ()x x g x B →=,并且A B <.求证:存在0δ>,使当00x x δ<-< 时 成立 ()()f x g x < . 2、(16分)设数列{}n a 满足条件:对任何正整数n 成立 112n n n a a +-≤ . (1)求证:当n >m 时12111222n m n n ma a ---≤+++; (2)应用柯西收敛准则证明{}n a 收敛. 3、(16分)计算下列极限:(1) 2220lim ln(1)x x x a b x →-+ (0)a b >>,(2)112310lim 10nnnnn →+∞⎛⎫++++⎪⎝⎭. 4、(12分)(1)求证:2200sin cos sin cos sin cos x xdx dx x x x x ππ=++⎛⎛⎜⎜⎠⎠; (2)求积分 20sin sin cos xdx x xπ+⎛⎜⎠ 的值.5、(15分)设空间闭区域V 由曲面22z x y =+,222()z x y =+及圆柱面22(1)1x y +-=所围成,试求V 的体积.6、(10分)设()f x 在闭区间[]a b ,连续,01λ<<,求证:存在[]a b ξ∈,,使得()()(1)()f f a f b ξλλ=+-.7、(15分)设 2()(1)n nxf x x =+(0x ≤<+∞,2n ≥),(1)求0max ()n n x a f x ≤<+∞=;(2)求极限lim )n n a →+∞.8、(16分)设0n a >,1nn a+∞=∑收敛,n kk nr a+∞==∑,求证下列结论:(1){}n r 单调减少并趋于0;(2≤; (3)1n +∞=收敛.9、(16分)设222222(2,0(,)0,0x y x y x y f x y x y ⎧++++≠⎪=⎨⎪+=⎩ ,(1) 求(,)x f x y ,(,)y f x y 并讨论它们在点(0,0)处的连续性; (2)讨论(,)f x y 在点(0,0)处的可微性.10、(12)设0α>,对[0,)x ∈+∞考察级数1nxn x eα+∞-=∑,(1)求这个级数的和函数()f x ;(2)讨论这个级数在[0,)+∞的一致收敛性. 11、(10分)设()f t dt +∞-∞⎰存在,证明:()()sin g x f t tx dt +∞-∞=⎰在(,)-∞+∞一致连续.温州大学2005年数学分析1、(15分)(1)设ln(1),0()1,xx x f x e x --+≥⎧=⎨-<⎩,求证:(())f f x x =.(2)除上述函数及y x =,y x c =-+以外,试再给出一个函数使满足x ∀∈,(())f f x x = .2、 (15分)设()f a '存在,()()g x f x =,求证:(1) 若()0f a ≠,则()g x 在点a 可导.(2) 若()0f a =,则()g x 在点a 可导当且仅当()0f a '=. 3、(10分)设()f x 在区间开(,)a b 连续,(,)k x a b ∈ (1,2,,)k n =,求证:存在(,)a b ξ∈使122()[()2()()](1)n f f x f x nf x n n ξ=++++ .4、(15分)设()f x 在(,)-∞+∞内连续,并且是单调增加的奇函数,又设()(2)()xg x t x f x t dt =--⎰ .试判断()g x 的单调性和奇偶性并证明之.5、(15分)讨论(,)2f x y x y =+在点(0,0)处的可微性.6、(15分)设()f u 非零并且可微,22()yz f x y =-,求证: 211z z zx x y y y∂∂⋅+⋅=∂∂. 7、(20)(1)求222(,,)254f x y z x y z yz =++-在单位球面S :2221x y z ++=上的最小值和最大值;(2)求证:3(,,)x y z ∀∈成立不等式2222222222546()x y z x y z yz x y z ++≤++-≤++ .8、(15分)证明函数项级数1sin n nxn +∞=∑在开区间(0,2)π收敛但不一致收敛. 9、(30分)计算下列积分: (1)设()f x 在闭区间[0,1]连续,1()f x dx m =⎰,求11()()xdx f x f y dy ⎰⎰.(2)33(2))Lxy y dx x dy -+-⎰(L 为圆周224x y +=逆时向)(3)222()()()Syz dydz z x dzdx x y dxdy -+-+-⎰⎰(其中S 为锥面z =(0)z h ≤≤,法线朝下).温州大学2006年数学分析1、(15分)设A x f ax =→)(lim ,B x g Ax =→)(lim 而且在某)(0a U 内A x f ≠)(.(1)求证:B x f g ax =→))((lim ;(2)举例说明去掉条件“在某)(0a U 内A x f ≠)(”结论(1)不成立. 2、(20分)(1)求证:0→x 时xx x f 1sin 1)(=是无界量但不是无穷大量. (2)设)(x f 在],[b a 上连续,*x 是)(x f 在],[b a 上唯一的最大值点.如果],[}{b a x n ⊂使得)()(lim *x f x f n n =∞→,求证:*lim x x n n =∞→.3、(18分)设⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f m.试确定整数m 的取值范围,使得 (1))(x f 在0=x 处连续; (2))(x f 在0=x 处可导; (3))(x f '在0=x 处连续.4、(20分)(1)设)(x f 在],[b a 上连续,)(x f '在),(b a 中存在而且0)()(==b f a f .求证:存在),(b a ∈ξ使得)()(ξξf f ='.(2)试求方程x x sin 2π=在闭区间]2,0[π上的解.5、(12分)设)(x f 在]1,0[上可微,0)0(=f 而且当)1,0(∈x 时,1)(0<'<x f .求证:⎰⎰>1321)())((dx x f dx x f .6、(15分)(1)设0>n a )1(≥n .求证:n n a ∞=∑1与nnn a a +∑∞=11具有相同的敛散性.(2)讨论级数3cos )1(21n n n n a n ⎪⎭⎫ ⎝⎛-∑∞=(其中a 为常数)的敛散性.7、(16分)(1)试构造一个二元函数,使它在原点处可微但偏导数不连续,并加以说明. (2)设由),(y x f z =,)(xy y x ϕ+=所确定的隐函数)(x z z =可微,试求dxdz.8、(10分)计算第二型曲面积分:⎰⎰+++++++=Szy x dxdyz dzdx y dydz x I 222333)1()1()1(,其中S 是球面2222R z y x =++,0≥z 的上侧. 9、(12分)求函数项级数n nn x5sin41∞=∑的收敛域、一致收敛域及和函数的连续域. 10、(12分)(1)确定参变量α的取值范围使得下述含参变量广义积分收敛:⎰∞+-+= 02)1ln()(dx x x I αα.(2)确定参量函数)(αI 的连续域.2007年研究生入学考试试题请注意:全部答案必须写在答题纸上,否则不给分。