完井管柱的四种受力状态
- 格式:ppt
- 大小:1.56 MB
- 文档页数:88
石油工程管柱力学课程设计1. 管柱力学基础管柱力学是石油工程中不可或缺的一部分,它主要研究油井钻探和完井过程中涉及到的钻杆、液压缸、连接器、钻头等部件在承受外力作用时的应力、变形及破坏规律。
针对不同的井口工艺和操作要求,可以通过合理的管柱设计,来保障井口操作的顺利进行。
在管柱设计中,需要关注的主要参数有钢管壁厚、钢管外径、管长、管材质量等。
此外,还需对井底温度、井深、地层的物理力学性质等因素进行综合分析,以确保管柱的安全性与可靠性。
通常情况下,管柱的强度应该比作用力的强度要大,以保证管柱在工作时不会被破坏。
2. 管柱力学的综合应用在实际油田开发过程中,除了对单根管柱的分析研究之外,还需要考虑不同管柱连接方式之间的协调性和共同作用效果。
常见的管柱连接方式包括非扭转型(NC)与扭转型(TC)两种,其中扭转型联接更适用于坚硬的井下环境中。
另外,在深井钻探中,气阻效应也会对管柱的使用产生影响。
漏失控制也是需要关注的一个因素。
管柱在钻探过程中可能会出现事故,比如突发涌流和炸孔等,都会影响到工程的稳定进行。
因此,在管柱设计中,也需要考虑在控制漏失的前提下如何维持作业效率。
3. 钻杆选择与设计钻杆是立管钻井过程中的核心设备之一,它对钻井效率和作业质量的影响极大。
在钻杆的选择中,需要考虑地质条件、钻井设备的特点、工程目标等因素。
杆子的外形和长度、螺旋方向、杆组与组间的连接方式都是重要影响因素。
另外,钻杆的设计需要考虑其材料与热翘曲特性,以保证钻杆在挖掘过程中的稳定性和安全性。
钢管的选择也需要根据不同条件考虑,比如高强度钢、高温钢和非钢材等。
4. 工程实践在石油工程实践中,钻井作业中的管柱安全性与可靠性,是每个现场掘进工程师都需关注的重点问题。
从杆组的选择和设计到现场杆组的测量和监控,都需要严格遵守工艺标准,保证现场工作的顺利进行。
结合工程实际案例,设计出合理的管柱方案是至关重要的。
通过对工程数据的综合分析和应用管柱力学理论,可以更好地掌握现场钻掘过程中的动态变化,从而及时调整管柱设计和作业流程,保障钻掘作业的顺利进行。
钻柱工作状态及受力分析一、钻柱的工作状态在钻井过程中,钻柱主要是在起下钻和正常钻进这两种条件下工作。
在起下钻时,整个钻柱被悬挂起来,在自重力的作用下,钻柱处于受拉伸的直线稳定状态。
实际上,井眼并非是完全竖直的,钻柱将随井眼倾斜和弯曲。
在正常钻进时,部分钻柱(主要是钻铤)的重力作为钻压施加在钻头上,使得上部钻柱受拉伸而下部钻柱受压缩。
在钻压小和直井条大钻压,则会出现钻柱的第一次弯曲或更多次弯曲(图1)。
目前,旋转钻井所用钻压一般都超过了常用钻铤的临界压力值,如果不采取措施,下部钻柱将不可避免地发生弯曲。
在转盘钻井中,整个钻柱处于不停旋转的状态,作用在钻柱上的力,除拉力和压力外,还有由于旋转产生的离心力。
离心力的作用有可能加剧下部钻柱的弯曲变形。
钻柱上部的受拉伸部分,由于离心力的作用也可能呈现弯曲状态。
在钻进过程中,通过钻柱将转盘扭矩传送给钻头。
在扭矩的作用下,钻柱不可能呈平面弯曲状态,而是呈空间螺旋形弯曲状态。
根据井下钻柱的实际磨损情况和工作情况来分析,钻柱在井眼内的旋转运动形式可能是自转,钻柱像一根柔性轴,围绕自身轴线旋转;也可能是公转,钻柱像一个刚体,围绕着井眼轴线旋转并沿着井壁滑动;或者是公转与自转的结合及整个钻柱或部分钻柱做无规则的旋转摆动。
从理论上讲,如果钻柱的刚度在各个方向上是均匀一致的,那么钻柱是哪种运动形式取决于外界阻力(如钻井液阻力、井壁摩擦力等)的大小,但总以消耗能量最小的运动形式出现。
因此,一般认为弯曲钻柱旋转的主要形式是自转,但也可能产生公转或两种运动形式的结合,既有自转,也有公转。
在钻柱自转的情况下,离心力的总和等于零,对钻柱弯曲没有影响。
这样,钻柱弯曲就可以简化成不旋转钻柱弯曲的问题。
在井下动力钻井时,钻头破碎岩石的旋转扭矩来自井下动力钻具,其上部钻柱一般是不旋转的,故不存在离心力的作用。
另外,可用水力荷载给钻头加压,这就使得钻柱受力情况变得比较简单。
二、钻柱的受力分析钻柱在井下受到多种荷载(轴向拉力及压力、扭矩、弯曲力矩)作用,在不同的工作状态下,不同部位的钻柱的受力的情况是不同的。
井下管柱力学分析及优化设计一、本文概述随着石油工业的发展,井下管柱作为石油开采过程中的关键组成部分,其力学性能及优化设计日益受到业界的广泛关注。
本文旨在全面探讨井下管柱的力学特性,以及针对其在实际工作环境中的受力情况进行详细分析,从而提出有效的优化设计策略。
通过对井下管柱的力学分析,可以深入理解其在石油开采过程中的行为规律,预测潜在的安全风险,并为提高管柱的承载能力和延长使用寿命提供理论支持。
优化设计的提出将有助于降低开采成本,提高石油开采效率,为石油工业的可持续发展做出贡献。
本文的研究不仅具有重要的理论价值,而且具有广泛的应用前景。
二、井下管柱力学基础在石油、天然气等地下资源开采过程中,井下管柱作为重要的设备之一,其力学特性对于确保开采过程的安全和效率具有决定性的影响。
因此,深入理解和掌握井下管柱的力学基础,是优化设计井下管柱结构、提高开采效果的前提。
井下管柱的力学行为主要受到轴向力、弯曲力、剪切力以及压力等多种力的影响。
这些力主要来源于地层应力、流体压力、温度变化、管柱自身的重量以及操作过程中的外力。
其中,轴向力主要由管柱自身的重量和地层应力引起,弯曲力则是由地层弯曲和管柱自身的挠曲造成,剪切力则可能由流体流动、温度变化等因素产生。
在力学分析中,我们通常采用弹性力学、塑性力学以及断裂力学等理论工具,对井下管柱在各种力作用下的行为进行深入的研究。
例如,通过弹性力学,我们可以分析管柱在弹性范围内的应力、应变分布,以及管柱的变形情况;而塑性力学则可以帮助我们理解管柱在塑性变形阶段的力学行为,以及管柱的承载能力;断裂力学则可以揭示管柱在断裂过程中的力学规律,为预防管柱断裂提供理论依据。
井下管柱的力学行为还受到流体压力的影响。
在开采过程中,地层流体(如石油、天然气、水等)的压力会对管柱产生压力作用,从而影响管柱的力学行为。
因此,在力学分析中,我们还需要考虑流体压力对管柱的影响,以及管柱与流体的相互作用。
完井屈曲受力分析完井管柱屈曲变形后,一方面弯曲管柱与井壁产生摩擦力,会减少井口释放的悬重。
另一方面管柱沿轴向产生位移,会导致产生封隔器的脱封。
文章通过建立静力方程分析管柱的受力,为井下作业设计提供帮助,避免上述井下作业事故的发生。
标签:完井;屈曲变形;受力分析引言在完井过程中,管柱下部承受的轴向力过大,管柱会发生正弦屈曲变形和螺旋屈曲变形。
完井管柱的螺旋屈曲会减少管柱的有效通过空间,有可能造成起、下作业工具或完井仪器时遇卡或落井。
1 几何关系管柱在竖直井中,弯曲如图1。
选取直角坐标系x,y,z,管柱的半径为r。
x沿井眼中心线向上为正。
图1 井下管柱坐标图(1)(2)2 静力平衡方程在管柱上任一点x处截取一微元段dr或dx,其上作用有内力矢F(x)和-F (x+dx),内力距矢M(x)和M(x+dx)及分布的外力f:f=-qi-Nsin?兹j+Ncos?兹k (3)其中,q为管柱单位长度重量(N/m),N为井壁作用与管柱上的法向支反力。
则微元体在上述内、外力共同作用下的静力平衡方程为■=F×■(4)■=rFxcos?兹■-Fy(5)3 物理方程完井管柱发生屈曲变形后,力矩My,Mz与变形y、z有如下关系:My=EI■=-EIr■ (6)Mz=-EI■=-EIr■(7)4 屈曲方程的导出及求解将物理方程代入平衡方程可得:Fy=rFxcos?兹■+EIr■ (8)Fz=rFxsin?兹■-EIr■ (9)将其代入可得:■=EIr2sin?兹■+cos?兹■■=-EIr2■■■积分得:Mx=Mx0+EIr2■■■-■■ (10)消去N并简化可以得到:■+■-6(■)2■+■■=0 (11)即为管柱的屈曲方程。
轴力Fx(x)可积分求出:Fx(x)=F0-qx (12)根据方程可以计算出正弦弯曲临界载荷Fcrs和螺旋弯曲临界载荷Fcrk:Fcrs=3.30qm(13)Fcrk=5.62qm (14)螺旋弯曲对应的变形为:(15)式中:m=■;E-管柱材料弹性模量;q-每米管柱在空气中的重量,N/m;Fe-管柱受到的等效轴向力,N;?啄-油套环空间隙,m;I-管柱横截面惯性矩。
完井管柱受力与完井施工方案制订的因素分析董锐【摘要】Completion string will be affected inside the well by different external forces along with different working conditions .The external forces contain gravity effect ,piston effect ,spiral bend effect ,swelleffect ,temperature effect and friction effect .At the same time ,stress effect on completion string will change in line with changeable completiontypes .To establish a safe and sound completion scheme ,it is suggested to consider all kinds of effects , make a special effort to analyze working conditions of completion string and downhole tools and determine the key point to be calculated .%完井管柱在井内随着工况的不同会受到不同外力因素的影响,主要有重力效应、活塞效应、螺旋弯曲效应、膨胀效应和温度效应等,同时,完井管柱由于完井方式的不同其效应受力也会有所变化;因此,要制订安全合理的施工方案就要充分考虑各种效应的影响,着重分析完井管柱及井下相关工具的工作状态与环境,确定需要计算的关键点。
【期刊名称】《江汉石油职工大学学报》【年(卷),期】2016(029)002【总页数】3页(P58-60)【关键词】完井管柱;受力分析;施工方案【作者】董锐【作者单位】中石化江汉石油工程有限公司井下测试公司,湖北武汉 430040【正文语种】中文【中图分类】TE243完井生产管柱往往需要完成测试、酸压、采油等多种工况,其设计和施工参数的合理选择是制订施工方案的重要环节,而准确地对完井管柱进行受力分析则是制订安全合理的施工工艺方案、确定生产施工管柱结构的重要依据。