高压输电线路结构设计选取
- 格式:doc
- 大小:26.00 KB
- 文档页数:6
高压输电线路铁塔结构设计几点解析杨晓持摘要:随着我国经济水平的高速发展,城镇化的速度也随之加快。
这对于改变城乡之间的差距有着重要的意义,然而这就要求电力部门对此加以重视。
针对电网进行改造使其升级来调整战略,但是随着电网建设改造力度的加大,城镇化老旧的问题成为线路路径的最大制约因素之一。
输电线路铁塔承受着下压力的同时还承受着上拔力,因此就要对这一基础设计等方面进行全面的设计降低工程造价、施工难度和保护危害等缺点。
关键词:高压;输电线路;铁塔结构;设计;几点解析1、概述高压输电线路铁塔输电线路铁塔简称电力铁塔,根据结构型式和受力特点,铁塔可分为拉线塔和自立塔两大类。
按其形状一般分为:酒杯型、猫头型、上字型、干字型等,按用途分有:耐张塔、直线塔、转角塔、换位塔(更换导线相位位置塔)、终端塔和跨越塔等。
它们的结构特点是各种塔型均属空间桁架结构,杆件主要由单根等边角钢或组合角钢组成,材料一般使用Q235(A3F)和Q345(16Mn)两种(随着电压等级的不断提高,Q390、Q420、Q460等高强钢也常在铁塔中使用),杆件间连接采用螺栓连接,靠螺栓受剪力连接,整个塔由角钢、连接钢板和螺栓组成,个别部件如塔脚等由几块钢板焊接成一个组合件,因此热镀锌防腐、运输和施工架设极为方便。
对于呼高在60m以下的铁塔,在铁塔的其中一根或两根(双回路塔)主材上设置脚钉,以方便施工作业人员登塔作业。
2、输电线路铁塔结构原理和选型基本原则输电线路铁塔又叫电力铁塔,按照一般形状来分可以分为:酒杯型、上字型、干字型、桶型和猫头型五种。
按照用途来划分的话就是:耐张塔、转角塔、换位塔等,结构特点均属于空间桁架结构。
使用材料一般为Q235和Q345两种,杆件由单根等边角钢或者组合角钢组成。
杆件之间是靠着螺栓受剪力而连接的,而整个塔就是由角钢、连接钢板和螺栓组成的。
对于个别的部件如塔角等就是由几块钢板焊接成一个组合件的,不同的铁塔型式在造价、施工等方面的要求也是不同的,铁塔工程建造的费用大概是整个工程的百分之三十或者百分之四十。
高压输电线路铁塔结构设计要点分析摘要:高压输电线路铁塔作为架空高压输电线路的重要组成部分,其结构的合理设计是现代电力系统运行与发展的重要保障。
随着我国电力事业的快速发展,对铁塔的结构提出了更高的要求。
基于此,本文对高压输电线路铁塔结构设计要点进行分析。
关键词:高压输电线路;铁塔结构;设计要点引言随着国内电网建设规模的逐步扩大,在电力系统发展进程中推动高压输电线路的建设已经成为必然趋势。
高压输电线路在整个供配电系统中扮演着非常重要的角色,它能够把电能从遥远的山区地方输送给城市电力负荷区域,为城市提供平衡的供电,对国民经济发展促进作用不言而喻。
一、输电线路铁塔结构设计遵循原则作为电力供应与输送系统中起着关键作用的输电线路铁塔,分布在各个电力系统的干线与分支线路中,起着不可估量的桥梁作用。
在电力输送系统中扮演着重要角色的输电铁塔,在结构设计方面更是需要高标准,这对设计人员来说就是一个相当严峻的考验,如何能使设计出来的电力铁塔更适合当地的工况要求,一直是困扰设计人员的难题。
任何一条线路工程的杆塔型式主要取决于线路的电压等级、外荷载大小、沿线的地形、交通运输以及经济发展状况。
(1)电压等级越高,其电气间隙、绝缘要求、对地距离等就越大,则,塔头尺寸就越大,铁塔高度也越高;同时,电压等级越高,输送容量就越大,要求的导线截面也越大,导线截面增大则意味着杆塔所承受的外荷载也越大。
同时,外荷载的大小还受气象条件的影响,如风速、覆冰厚度等。
(2)杆塔型式还取决于线路所经地区的地形情况,地形越差,杆塔的刚度要求则越高,根据以往工程经验,对于平原地区多用扁塔,而对于山区地形,为了加强杆塔的纵向刚度,则多用方塔。
(3)沿线的交通运输状况决定了杆塔的型式和材料要求,如交通运输不方便的山区线路,采用钢管塔和混凝土塔的运输及施工费用往往是角钢塔的数倍甚至数十倍。
(4)沿线的经济发展状况同样影响到杆塔型式的选择。
经济发达地区,征地费用是影响到投资的主要因素,因此,拉线塔则不如自立式塔;同时,沿线的经济状况也影响到导线的排列方式,经济越发达的地区由于走廊紧张,铁塔型式的选择上则要求尽可能缩小线路走廊宽度。
浅析220kV高压输电线路窄基钢管塔结构优化设计摘要:窄基钢管塔是一种走廊紧凑、占地面积小新型铁塔,是钢管塔技术在城镇规划区以及城镇郊区地区线路工程的全新应用,与常规铁塔相比,外形美观、结构简单,与城镇周边环境更加和谐,具有良好经济和社会效益,本文通过截面选择、杆件布置、经济性对比等方面分析、为窄基塔规划、设计提供有重要参考。
关键词:高压输电线路;窄基塔;优化设计引言随着我国经济建设发展,城镇规划区的土地日益紧张,高压输电线路多经过成镇绿化带、公路等路径拥挤地段。
对220kV 高压输电线路工程,由于荷载较大,采用钢管杆虽可满足走廊占地要求,但塔重增加较多,经济性较差。
与角钢塔相比,窄基钢管塔结构简单、外形美观,与城市环境更加协调。
与钢管杆相比,窄基塔经济性较好(节约钢材 25%以上),具有良好的经济和社会效益。
一、主材构件断面的优化(一)构件风压对比经过分析计算,窄基塔塔身风荷载的比重约整个内力的为 35~45%,而线条风荷载和塔身自重引起的内力约占整个内力的45~50%和10~12%左右。
通过合理选材降低塔身风载对窄基铁塔设计有重大意义。
可以看出,当角钢(或组合角钢)与钢管的截面面积基本相同时,由于体型系数不一样,钢管承受风压投影面积AS比角钢略大,钢管的AS•μs值是角钢的0.6~0.8倍,即钢管构件所受风载为角钢的0.6~0.8倍。
窄基塔主材采用钢管,钢管构件所受的风荷载是角钢构件的0.8倍左右,钢管构件所受的总应力比角钢减少 9~10%,同时有效减小钢管塔的基础力,意义重大。
(二)构件稳定性比较角钢构件有平行轴和最小轴的区别,两者回转半径i差别较大。
钢管构件在任意方向的回转半径i是相同的。
通过表2 的比较,可以看出截面面积基本相同的条件时,钢管的回转半径是单根角钢的1.3倍。
同一计算长度L时,受压构件稳定系数取决于构件长细比λ=L/i。
角钢的稳定系数远小于钢管。
经计算,材料为Q345时,多数角钢构件mN=1.0,部分mN<1.0;材料为Q420 时,mN<1.0的角钢构件比材料为Q345时更多。
架空输电线路中导线的选型1、导线的选型原则送电线路的导线和地线长期在旷野、山区或湖海边缘运行,需要经常耐受风、冰等外荷载的作用,气温的剧烈变化以及化学气体等的侵袭,同时受国家资源和线路造价等因素的限制。
因此,在设计中特别是大跨越地段,对电线的材质、结构等必须慎重选取。
选定电线的材质、结构一般应考虑以下原则:⑴导线材料应具有较高的导电率。
但考虑国家资源情况,一般不应采用铜线。
⑵导线和地线应具有较高的机械强度和耐振性能。
⑶导线和地线应具有一定的耐化学腐蚀,抗氧化能力。
⑷选择电线材质和结构时,除满足传输容量外还应保证线路的造价经济和技术合理。
2、导线截面的选择架空送电线路导线截面一般按经济电流密度来选择,并应根据事故情况下的发热条件、电压损耗、机械强度和电晕进行校验。
必要时,通过技术经济比较确定;但对110KV及以下线路,电晕往往不成为选择导线截面的决定因素。
大跨越的导线截面宜按允许载流量选择,并应通过技术经济比较确定。
1)按经济电流密度选择导线截面按经济电流密度选择导线截面所用的输送容量,应考虑线路投入运行后5~10年电力系统的发展规划,在计算中必须采用正常进行方式下经常重复出现的最大负荷。
但在系统还不明确的情况下,应注意勿使导线截面选的过小。
导线截面的计算公式为式中S——导线截面mm2P ——输送容量kwU e ——线路额度电压kvJ ——经济电流密度A/ mm 2cos φ—功率因素经济电流密度可以在《导体和电器选择设计技术规定DLT 5222-2005》选择经济电流密度中查取。
2)按电晕条件校验导线截面随着我国运行电压不断升高,导线、绝缘子及金具发生电晕和放电概率增加, 220KV 及以上电压线路的导线截面,电晕条件往往起主要作用。
导线产生电晕会带来两个不良后果:①增加了送电线路的电能损失;②对无线电通信和载波通信产生干扰。
关于电晕损失,若直接计算出送电线路的电晕损失,其优点是数量概念很清楚,缺点是计算繁琐。
110kV输电线路工程中导线选型的比较与分析【摘要】针对110kV输电线路工程实际情况,本文在结合《国家电网公司“两型三新”线路设计建设导则》的基础上,对导线结构及型号进行了全面应用研究,通过对导线的电气特性和机械特性进行详细的比较与分析可知,JLHA3-335导线的工作性能优于其它型号导线,因而为本线路工程的实施提供了技术参考,具有较大的实际应用价值。
【关键词】110kV线路;电气特性;机械特性;JLHA3-3351.引言合川思居110kV输变电工程线路部分。
线路起于大石110kV变电站110kV 出线构架,止于110kV合高线开断π接点。
线路由西北向东南走线,新建线路长约2×12.9km,导线截面为2×300mm2。
全线均位于合川区境内,沿线高程:260~320m;沿线地形地貌:丘陵地形100%。
沿线地质:土30%,松砂石30%,岩石40%,无不良地质情况。
架空输电线路由导地线、绝缘子串、杆塔、接地装置等部分组成。
其中导线承担传导电流的作用,是电能传输的介质。
导线在架线线路工程一般占本体投资的30%左右,又导线的选型决定架空输电线路杆塔、基础、绝缘子和金具强度的选型。
因此必须认真对待导线的选型。
现在我国及国外大多数架空输电线路采用技术相对成熟的钢芯铝绞线,但随着科学技术的发展产生了新型节能导线,其具有更好的输电性能和机械特性。
对于导线选择我们有了更多选择,现目前正推广使用高导电率钢芯铝绞线、铝合金芯铝绞线和中强度全铝合金绞线三种节能导线。
在导线的选型过程首先明确线路传输容量,其次因不同型号的导线输电性能不同,根据传输容量合理选择不同型号导线的截面,最后根据所选择的导线作出技术经济性能分析,确定导线型号。
因此本文结合国内外导线的制造情况,在满足电气性能和机械特性要求的前提下,对不同型号的导线从表面电场强度、电晕、地面电场强度、无线电干扰、可听噪声等计算和校核,经技术经济比较,推荐JLHA3-335型铝包钢芯铝绞线作为本工程导线选型。
高压输电线路设计规范范本随着社会的发展和经济的快速增长,电力需求也日益增加。
高压输电线路作为电力传输的重要环节,其设计规范的制定对于保障电力供应的稳定性和安全性至关重要。
本文将探讨高压输电线路设计规范的范本。
一、引言高压输电线路设计规范的制定是为了确保电力传输的可靠性和安全性。
设计规范的范本应该包括线路的结构、材料、施工、运行和维护等方面的要求,以及对环境和社会的影响进行评估。
二、线路结构设计1. 线路类型:根据输电距离和负荷要求,确定线路的类型,包括架空线路、地下电缆和海底电缆等。
针对不同类型的线路,制定相应的设计要求。
2. 杆塔设计:根据线路类型和地形条件,确定杆塔的高度、间距和材料等。
考虑到抗风、抗震和抗冰的能力,确保杆塔的稳定性和可靠性。
3. 绝缘子设计:选择适合线路电压等级和环境条件的绝缘子,确保绝缘子的绝缘性能和耐久性。
三、材料选择和施工要求1. 导线和地线:根据输电容量和电压等级,选择合适的导线和地线材料。
考虑导线的导电性能、耐腐蚀性和机械强度等因素。
2. 绝缘材料:选择符合国家标准的绝缘材料,确保其绝缘性能和耐久性。
对绝缘材料的使用和施工要求进行详细说明。
3. 施工要求:确定线路施工的技术要求和安全措施,包括杆塔的安装、导线的张力调整和绝缘子的安装等。
确保施工的质量和安全。
四、线路运行和维护1. 运行管理:制定线路运行的管理制度和操作规程,包括巡检、检修和故障处理等。
确保线路的正常运行和及时处理故障。
2. 维护保养:制定线路的定期维护计划,包括杆塔的防腐涂层修复、导线的清洗和绝缘子的检测等。
确保线路设备的正常运行和延长使用寿命。
五、环境和社会影响评估1. 环境评估:对线路建设和运行对周围环境的影响进行评估,包括土地利用、水资源和生态环境等。
制定相应的环境保护措施,减少对环境的影响。
2. 社会影响评估:评估线路建设和运行对周围社会的影响,包括居民生活、交通和景观等方面。
制定相应的社会管理措施,减少对社会的不利影响。
科技资讯2016 NO.16SCIENCE & TECHNOLOGY INFORMATION动力与电气工程25科技资讯 SCIENCE & TECHNOLOGY INFORMATION 我国输电线路建设的升级增加了高压铁塔的承重荷载,从而影响了铁塔基础的稳定性和安全性。
铁塔基础一般易受滑坡、水文地质等非人为因素及施工工艺不良、设计方案欠合理等人为因素的影响,即可能造成铁塔基础沉降、位移或变形,甚至引起铁塔倒塌。
输电线路工程中的人力消耗、材料、进度和造价等的占比较大。
据此,在高压输电线路铁塔基础工程中,应针对不同的影响因素,选取相应的铁塔基础型式。
分别针对在软土地基与岩石地基环境下,高压输电线路铁塔基础选型的设计与优化。
1 软弱地基环境下铁塔基础选型的优化设计输电线路工程应按既定的路径敷设线路,因此铁塔将不可避免地分布在地质条件复杂的环境中,应根据输电线路铁塔的受力特征,解析其基础型式的经济性和安全性。
根据实践经验,影响高压输电线路铁塔基础选型的因素包括:铁塔所在位置所决定的土力学性质;铁塔与基础的相互作用和受力变形特征。
因此,在联合式高压输电线路铁塔基础设计中,应明确铁塔基础的受力规律。
1.1 基础的受力规律针对联合式输电线路铁塔基础,其主要特征是埋深浅,因此可通过整体浇制基础来解决板式基础上拨、基坑开挖难度大及基础根开小等问题,且应先确定高压铁塔基础受力的规律,即利用ANSYS有限元软件分析高压铁塔基础的荷载,由此得到基础底部边缘所受上部荷载压力的最大值,此时基础底部所受拉应力最大,究其原因是铁塔基础的主要制作材料一般为钢筋混凝土,而其刚度与土壤的差别较大。
据分析,土体位移点的最大值出现在基础底部,且高压铁塔基础底部中心点到土层的距离与其沉降位移量呈反比,但无论土层如何加深,应力依然存在。
据此,若将联合式基础应用在软弱土塔位中,则应先准确计算出土层地基的承载力,并标明铁塔基础底部的尺寸;而若将其应用在土层较硬的环境中,铁塔基础下部极易出现受压、弯曲等问题,则在高压铁塔基础设计时,应先详细勘察线路敷设沿线的地质情况,然后再据此确定配筋比例,以免配筋偏差破坏铁塔基础。
输电线路铁塔结构设计选型浅述前言:如今是一个科技信息的时代,在这样的时代中,电力是必不可少的能源支柱,如今也是一个灯红酒绿到处繁荣的时代,生活中到处都离不开电,因此,國家也特别重视我国电力行业的发展,电力行业的发展推动了我国经济的发展。
电力建设中输电线路塔桥的建设是电力建设的重要组成部分,如何用最少的资本获得最优秀的塔桥设计已经成为电力建设的重要内容。
1. 高压输电线路铁塔结构设计选型的基本项目目前,我国设计的高压输电线路铁塔基本都是固定的模式,只是根据当地的自然条件,改变塔身高度以适应环境要求,且应用时很少铁塔会用到其能承受的最大垂直或者水平档距,所以结构中裕度是有的。
同类铁塔,塔身高度可能不同塔底部设计也可能因地而异,其他部位结构基本上都相同。
高压输电时,会有大电流通过导线,导线弧垂会加大,增加了对塔的压力,塔与塔之间的安全距离受到限制,因此设计铁塔的关键就是选择较高杆塔,择位而立,保证安全距离,同时对塔身坡度、塔身隔面、塔身曲臂、塔身横担的设计也尤为重要,而这些才是高压输电线路铁塔结构设计选型的基本项目。
1.1中横担结构铁塔结构选型横担是铁塔中重要的组成部分,它的作用是用来安装绝缘子及金具,以支承导线、避雷线,并使之按规定保持一定的安全距离。
横担的类型有很多,按用途可分为:直线横担;转角横担;耐张横担,按材料可分为:铁横担;瓷横担;合成绝缘横担。
横担高度的选择尤为重要,横担立面高度高,主材受力越小,但斜材长度增加;反之,主材受力加大,斜材长度减小,因此选择合适的高度不仅能节约材料,而且能够保证铁塔安全。
设计时,中导横担平面选择矩形布置,具体内容如下:宽度逐步递增,铁塔耗量线型增加,无极值存在。
为了保证后续人员操作方便,横担宽度取1.2米,边横担呈现鸭嘴型,并且边横担平面导线挂点处开口宽度取500mm。
选用这种选型时,如果横担主材按平行轴设计,铁塔电算重量6596Kg;按最小轴设计时铁塔电算重量6619Kg,以节约为原则,应选取平行轴设计为最优。
超高压电力输电线路的设计与优化在现代社会中,电力作为基础能源之一,在各行各业中扮演着不可替代的重要角色。
然而,电能的输送过程中,传统的输电线路会面临着一系列的问题,如电能损耗、电压降落、输电距离限制等。
为了解决这些问题,超高压电力输电线路应运而生。
一、超高压电力输电线路的定义与特点超高压电力输电线路是指输电电压达到或超过1000千伏的电力输电线路。
与传统的输电线路相比,其具有以下几个突出的特点。
首先,超高压电力输电线路利用高电压传输电能,能够大幅度减少电能损耗。
根据电力传输的基本原理,电线的电流和电压成反比例关系。
通过提高输电电压,可以减少输电电流的大小,进而降低电阻损耗,提高输电效率。
其次,超高压电力输电线路具有优秀的长距离传输能力。
相较于传统的输电线路,超高压电力输电线路的电压水平更高,电能损失较小,因而可以有效地解决电力输送距离的限制问题,实现电能的远距离输送。
此外,超高压电力输电线路能够有效解决电能的电压降落问题。
电能在输送过程中,受到电线电阻的阻碍,导致电压的降低。
而超高压电力输电线路通过提高输电电压,可以减少电流的大小,降低电线电阻产生的电压降落,从而保证电能的稳定输送。
二、超高压电力输电线路的设计原则超高压电力输电线路的设计是一个复杂而严谨的过程,需要考虑到多个因素,以确保线路的性能和可靠性。
在设计超高压电力输电线路时,应遵循以下原则。
首先,要根据输电线路的功率需求来确定合适的输电电压等级。
根据输电的需要,选择适当的输电电压,可以在保证电力传输效率的同时,减少输电线路的损耗。
其次,要根据输电线路的长距离传输特点,选择适当的线路类型。
在超高压电力输电中,常用的线路类型包括单回路和双回路。
当需要远距离的输电时,可以选择双回路线路,以保证输电的可靠性。
同时,要根据输电线路周围的环境条件,选择适宜的线路材料和结构。
超高压电力输电线路需要经受各种恶劣的自然环境条件,如高温、低温、风沙等。
因此,在设计中需要选择合适的材料和结构方式,以确保输电线路的稳定性和耐久性。
高压输电线路铁塔结构基础设计分析摘要随着我国电力产业的快速发展,国家电网的覆盖范围越来越大,高压输电线路铁塔结构基础也逐渐向着多样化、复杂化的方向发展。
输电线路在使用过程中会受到各种各样的作用力,这些力都是依靠铁塔结构基础传输到地基当中,因此铁塔基础的任何部分出现问题或破损,都会对整个输电线路产生巨大的影响。
因此对铁塔结构基础的类型进行系统地分析探讨,详细说明铁塔结构基础的受力情况、经济效益和施工工艺,为高压输电线路铁塔结构基础设计提供了重要的理论指导。
关键词:高压输电线路;铁塔结构基础;设计一、铁塔结构基础的类型(一)混凝土台阶式基础混凝土台阶式基础底板内不置入受力钢筋,此外基础底板的台阶拥有不小于1.0的高宽比,是我国使用率最高的铁塔结构基础。
因为这种结构只有立柱配筋,台阶没有钢筋,因此这种结构的混凝土消耗量比较大,而钢筋的消耗量比较小,比较容易校正,通常将塔脚板和地脚螺栓连接起来固定铁塔,这种施工工艺比较简单,有助于缩短施工工期,提高施工效率。
(二)掏挖基础掏挖基础结构是在土胎中置入底板,能够充分发挥原状土的承载性能,这种结构不需要支模,也不需要土壤回填,有效减轻了施工模板的运输难度,减少了施工工程量。
从环境效益角度分析,掏挖基础能够避免对周围环境造成破坏,拥有较高的环境效益。
但是掏挖基础结构容易受到土壤性质、地下水分布等因素的影响,因此在使用时有着严格的规定。
(三)岩石嵌固式基础嵌固式基础通常应用在强风化或中等风化的岩石地段,此外由于其它因素的影响而无法使用直锚式岩石基础的地段,也可以使用嵌固式基础,该结构的使用范围比较宽泛,这种结构能够有效减少岩石的挖掘量,不需要回填土处理,因此非常有利于环境保护。
(四)斜柱板式基础斜柱板式基础在国内的使用频率比较高,是高压输电线路铁塔基础结构中最为常见的一种类型。
在施工过程中,斜柱板式基础的基础立柱坡度需要根据塔腿材料进行合理设计,因为塔腿主材角钢是直接插入底板的,能够有效减小来自基础柱顶的水平力,而且减小了立柱正截面的强度和立柱的截面。
高压输电线路的优化布置与安全评估随着经济的快速发展和城市化的推进,对电力的需求越来越高。
而高压输电线路作为电能传输的重要途径,其布置和安全评估显得尤为重要。
本文将从优化布置和安全评估两个方面来探讨高压输电线路的相关问题。
一、高压输电线路的优化布置高压输电线路的优化布置包括线路选址和线路排布两个方面。
线路选址是指在一个区域内确定合适的点进行输电线路起点和终点的布置;线路排布则是指在选址确定后,确定各个输电塔的位置和线路走向。
在线路选址方面,需要考虑以下几个方面:1. 土地利用和环境保护:选择距离城市较远、人口密度低的地区进行线路选址,以防止对居民的影响。
同时,要进行环境评估,确保线路建设不对自然环境造成重大破坏。
2. 地形条件和地质条件:选择地势平坦、土壤稳定的区域,能够减少建设难度和输电线路的维护成本。
同时,还需要考虑地质灾害的风险,避免选址在地震、滑坡等灾害频发区域。
3. 输电距离和电力损耗:选择离供电源和用电负荷较近的地点,可以减少输电距离和线路材料的使用,降低电力损耗,提高输电效率。
在线路排布方面,需要考虑以下几个因素:1. 输电能力:根据负荷需求确定输电线路的容量和导线的型号,以保证线路的稳定运行和电力的传输。
2. 占地面积和迁移费用:选择尽可能少占用土地的线路排布方式,以减少土地征用和拆迁的费用。
3. 线路长度和施工成本:选择合理的线路走向和输电塔的间距,以减少线路的总长度和施工的困难,降低工程成本。
二、高压输电线路的安全评估高压输电线路的安全评估需要从以下几个方面进行考虑:1. 杆塔结构的稳定性:杆塔作为支撑输电线路的重要组成部分,其稳定性直接关系到线路的安全运行。
需要对杆塔的设计和施工进行严格把关,确保其能够承受预期的荷载,并在各种自然灾害下保持稳定。
2. 导线的安全性:导线是输电线路中电能传输的核心组成部分。
需要对导线的材料、拉力和温度等参数进行评估,确保其能够承受正常运行时的负荷,并在异常情况下能够保持稳定。
高压输电线路铁塔选型与设计浅析摘要:本文就高压输电线路铁塔选型与设计的相关问题进行了探讨。
首先针对选型与设计过程中需要考虑的因素,包括线路参数、地形条件、环境要求等进行了详细说明。
同时强调了随着低碳、环保理念的推广,对铁塔选型与设计提出了更高的要求。
最后,提出了在设计中应注重降低材料的消耗与能源消耗,减少对环境的负面影响的建议,通过本文的研究,可以为相关工程师和决策者提供参考和借鉴,促进高压输电线路铁塔选型与设计水平的提升。
关键词:输电线路;路铁塔;选型与设计高压输电线路是将发电厂产生的电能远距离传输到用户终端的重要基础设施。
而作为高压输电线路的关键组成部分,铁塔的选型与设计对于线路的安全性、经济性和可靠性具有重要影响。
通过科学合理的选型与设计,可以有效提升线路的运行效率,降低运营成本,并确保线路的稳定供电。
探索低碳、环保的铁塔选型与设计方案,以期为相关工程师和决策者提供参考和借鉴。
1.高压输电线路杆塔分类和选型1.1输电线路杆塔分类按结构形式分类:钢管塔:主要由钢管组成的塔身,适用于平原和山区等不同地形条件。
角钢塔:主要由角钢组成的塔身,适用于平原地区和较小荷载的场合。
混凝土塔:主要由混凝土材料制成的塔身,具有较高的强度和稳定性,适用于需要长期使用或环境恶劣的场合。
组合塔:采用不同材料和结构相互组合而成的塔身,能够满足特定需求和条件。
按用途和功能分类:支撑塔(角塔):用于支撑导线、绝缘子串和地线等,承担主要荷载的传递任务。
触发塔(耐张塔):改变主干线导线的方向和传力方式,通常设置在转折点或终端塔附近。
跨越塔(跨越角塔):用于越过河流、道路、铁路和其他障碍物,在两侧延伸导线。
耐张塔(拉正塔):通过对导线进行拉力调整,使导线保持合适的拉力状态。
按电压等级分类:220kV塔:用于220千伏电压等级的输电线路,通常采用较高的塔身和绝缘子串。
500kV塔:用于500千伏电压等级的输电线路,需要具备更高的承载能力和稳定性。
10kV配电架空线路设计要点分析随着城市化进程的加快,电力需求不断增长,配电线路作为电力输送的重要组成部分,也受到了越来越多的关注。
在10kV配电线路设计中,架空线路是一种常见的输电方式。
本文将从线路走向、材料选用、线路布局、结构设计等方面进行要点分析,为相关从业者提供一些参考。
一、线路走向1.地势条件:在进行10kV配电架空线路设计时,需要对线路所处地势进行充分的考虑。
在设计中需要避免或适当考虑遇到山区、水域、高压输电线路等情况,特别是要避免与其他电力设施、农田、居民区等发生碰撞或影响。
2.线路长度:线路走向需合理规划,避免过长或过短的情况发生。
过长的线路会造成线损增加、电压下降等问题,而过短的线路则会增加建设和维护成本。
3.环境影响:线路走向设计还需考虑周围环境对线路的影响,如考虑到植被、土壤类型、气候条件、自然灾害等因素。
二、材料选用1.导线选用:在10kV配电架空线路设计中,导线是重要的组成部分。
在选择导线时需考虑导线的导电性能、机械强度、抗腐蚀性能等。
同时需要综合考虑导线的成本、维护成本和使用寿命等方面。
2.绝缘子选用:绝缘子在架空线路中起着支撑和绝缘作用。
选用时需考虑绝缘子的机械强度、耐候性、耐电性能等因素,确保线路安全可靠。
3.杆塔选用:杆塔作为线路的支撑结构,需选用合适的材料和结构。
在山区或沼泽地等特殊地形中,需要选用相应的特殊材料,以适应不同的环境条件。
三、线路布局1.平行线路:为防止电磁干扰和故障传播,平行的线路需尽量减少相互影响。
在设计中要避免平行线路之间距离过短,以减少潜在的影响。
2.交叉线路:交叉线路的设计需考虑多个线路的相互影响以及潜在的干扰。
在设计中需要合理规划线路的高度、间距和交叉方式,避免产生故障。
3.线路间距:在对线路进行布局时,需要考虑线路的间距。
要尽量避免不同线路之间的电流干扰和相互影响,保证线路的安全运行。
四、结构设计1.线路抄留设计:在10kV配电架空线路设计中,线路的抄留设计是十分重要的一环。
高压电网 110kV 输电线路设计分析摘要:目前我国内110kV供电系统的线路大部分都是采用赤裸式导线,小部分还有采取架空的绝缘导体,这样既有效地改善了供电的稳定性,也减少了故障发生的次数,同时比传统的供电系统具有较小的架空空间,这样能够使得架空式的路线从狭小空间里直接穿过,有着更高的技术和灵活性,节省了建造道路所使用的材料,也节约了架空式输电路线所要求和占据的空间,避免了路线的资源和电能被浪费,防止了导线发生锈蚀和变形等现象,最重要的一点就是增加了输电路线的寿命。
110kV的架空式输电线路的主要特点就是:输电线路比较长,供电半径也比较大,但是其缺点也十分明显,就是各个线路之间的联络变得少了,而且输电路线的保护比较简陋。
关键词:高压电网;110kv;输电线路1 高压路线110kV输电路线设计要点输电道路就是把剩余的电能从发动机和工厂中输送出去进入变电所的一种电力设施,目前而言,国内高压配电道路就是泛指输出的电压大于110kV的输电道路。
为了确定输电路线的垂直型,我国输电系统路线通常都会选用单独一条或多个线的设计形式,但在一些能够顺应地形的情况下,将其设计得成为一个独立的水平面线状,而且造型也很优美。
进行建筑工程线路的设计常用的工作是通过分解建筑物的结构和技术手段来进行,实现建筑工程施工过程中的代码化,把建筑物项目精简到可以独立进行计算操作的单位。
2 输电路线具体设计2.1 电线选择电线作为110kV输电线路中重要的一种物理材料,它的产品品质和使用性能直接影响着输电的安全和稳定可靠度,在对于输电线路的使用方法进行选择时必须十分谨慎。
在我们刚刚开始进行高压输送机和供电线路建造施工时,要根据高压输送机和供电网的具体位置以及它们在高压输送机和供电系统中的地位和作用,选择一种合适的材料和配套供电线,确保它们都有助于充分发挥它们所规定的作用,尽量合理地考虑选择一种防热、传递效果好、性价比高的材料,目前在市场上使用较多的主要原子材料主要是铝,它不仅化学性能好,且它的使用寿命也相对较长,可以达到110kV输电线路按照需长期施工和运行的技术要求,结合其他具体的要求,最好选用钢芯铝绞线。
高压输电线路架设方案1. 引言高压输电线路的架设是供电系统建设中的一个重要环节。
为了确保输电线路的安全性和可靠性,制定一个合理的架设方案至关重要。
本文将提出一个高压输电线路架设的方案,旨在满足安全、可靠、高效的要求。
2. 方案概述本方案将采用以下步骤进行高压输电线路的架设:1. 线路路径选择:根据地形、环境等因素,选择一条合适的线路路径。
2. 杆塔布置:根据线路长度和负载要求,布置适当数量的杆塔。
3. 杆塔类型选择:根据地质条件、负载要求等因素,选择适合的杆塔类型。
4. 绝缘子选型:根据电压等级和气候条件,选择合适的绝缘子。
5. 导线选择:根据负荷及输电距离等因素,选择合适的导线材料和截面。
6. 地线敷设:根据地质情况和安全要求,敷设地线。
7. 绝缘子串型结构设计:根据线路电压等级和绝缘子的特性,设计合适的串型结构。
8. 地线接地设计:根据安全要求和接地电阻要求,设计适当的地线接地。
3. 方案优势本方案具有以下优势:- 安全性:通过合理的线路路径选择和杆塔布置,能够确保线路的安全性。
- 可靠性:选择适当的杆塔类型、绝缘子和导线,增强线路的抗风、抗震和耐久性,提高线路的可靠性。
- 高效性:通过优化的导线选择和绝缘子串型结构设计,提高输电效率。
4. 方案实施本方案实施的步骤如下:1. 进行现场调查和勘测,确定线路路径和杆塔布置。
2. 根据调查结果,进行杆塔类型选择和绝缘子选型。
3. 根据线路长度和负荷要求,选择导线材料和截面。
4. 进行地线敷设和地线接地设计。
5. 设计绝缘子串型结构,确保电压分配均匀。
6. 编制详细施工图纸。
7. 实施线路架设。
8. 进行验收和调试。
5. 结论本方案提出了一个高压输电线路架设的方案,通过合理的线路路径选择、杆塔布置、杆塔类型选择、绝缘子选型、导线选择、地线敷设、绝缘子串型结构设计和地线接地设计,能够满足高压输电线路的安全、可靠和高效要求。
在方案实施中,应注意进行现场勘测和调查,确定合适的施工方案,确保线路架设的顺利进行。
国家电网公司110~500kV输电线路典型设计铁塔制图和构造规定输电线路典型设计工作组2005年11月目录一.图纸幅面尺寸 (1)841X594 (1)二.图标与工程名 (2)三.图纸内容 (2)四.铁塔构造 (3)Q345 (7)L125*8 (7)五.图面一般规定 (10)六.常用图型式 (12)2L80 132L110 (13)七.螺栓、角钉、垫圈规格表 (15)M16X45 (15)八.工艺符号说明 (16)九.塔脚板型式 (17)一.图纸幅面尺寸注:1、0#图不得加宽;2、1#、2#、3#图不宜加宽,可按(长边/8)的倍数加长,最长不超过1931mm;3、4#、5#图不得加长和加宽,5#图用于手册;4、选用图纸幅面时,同册图纸宜以一种规格的图幅为主,尽可能不要大小图幅混用。
二.图标与工程名各院提交的施工图纸的图标暂先采用各院现在使用的工程设计图标。
工程名为:国家电网公司110~500kV输电线路典型设计三.图纸内容1.总图1)单线图以最高呼称高为准,布置于总图的左边,由左向右按呼称高递减连续布置其它接腿。
塔身正侧面宽度不同或结构布置不同时,应分别绘制正侧面;2)材料汇总表放在总图右上侧。
统计汇总材料应按各段结构图和不同呼称高分别进行,并按类别(角钢、钢板、螺栓、脚钉、垫圈)、钢号(Q345、Q235)、规格(小规格、大规格)顺序排列;3)有关本塔特殊要求的说明;2.结构图下平面2)各段结构图应绘制单线图,单线图比例为1:100,并放在结构图的左上角,并标注上、下口宽、垂直高、准线差尺寸和段号,如下图所示:3)4)分段间的螺栓数量应计入节点板所在段号内;不计数量的螺栓只表示螺栓的种类及数量,不表示规格。
四.铁塔构造1、基本构造1)构件接头采用对接;不同规格的构件对接时,应以外边缘对齐,接头螺栓排列在各自准线上;2)主材接头设置在节点时,上、下段斜材的准线应交于各自主材准线(如铁塔瓶口、塔身变坡处),如图所示:6)制弯构件,选择顺序应为连接板、短构件、长构件;7)热镀锌构件长度不宜超过10米(可根据加工厂锌锅长度适当加长),宽度不宜超过0.75米;8)两构件连接面间的夹角大于2°时,构件应局部开、合角或制弯(如隔面主材等);9)构件间连接,出现空隙时应设置垫圈或垫板(当垫圈数量超过2个或8mm时应采用垫板);10)横担悬臂部分超过3m,应采用预拱,横担预拱值可根据实际外荷载在无风情况下的验算查看其位移(*.DIS文件),一般可取横担悬臂长度的1/50~100;11)塔腿各主材应设置一个接地孔(孔径17.5mm),离基础顶面距离宜为~1.0m;2、螺栓排列1)角钢准线注:1、根据需要,角钢准线需多排,则标出准线位置。
高压输电线路铁塔结构设计分析发表时间:2016-04-22T11:33:29.540Z 来源:《电力设备》2015年第10期供稿作者:卢燕坤[导读] 广西泰能工程咨询有限公司笔者对高压输电线路铁塔进行了简要的概述,随后分析了高压输电线路铁塔的设计结构。
(广西泰能工程咨询有限公司)摘要:高压输电线路中,铁塔是其中最常见的一种输电设施,起到了支撑还有保护高压输电线的作用。
文中,笔者对高压输电线路铁塔进行了简要的概述,随后分析了高压输电线路铁塔的设计结构。
关键词:高压输电线路铁塔结构设计基本原则要点引言:在现代电力系统中,高压输电线铁塔起到了非常重要的作用。
它是架起和保护高压输电线路的重要组成部分,其设计结构是否合理,直接关系到电力系统运行的安全与发展。
目前我国电力事业发展迅速,对铁塔的设计结构也有了更高的要求。
一高压输电线路铁塔概述在我国的经济建设中,远距离的电力输送主要运用高压输电线路,高压输电线路已经成为了目前我国经济建设中的主要命脉。
高压输电线路中的铁塔主要起到支撑和保护高压输电线路的作用,使高压输电线路上的避雷针以及导线可以保持在安全距离之内,同时使的地面上的跨越物以及其他的建筑物可以与高压导线处在安全距离之内。
导线的自重、其上的覆冰以及风载、还有年平均气温对其的影响,都是铁塔本身需要承受的荷载。
一定情况下,风的作用会使得导线发生微幅的震动,这种震动会直接引起塔身震动,风力比较大时,铁塔可能会由于震动而造成塔身的破坏。
为了避免这种情况的发生,铁塔一般都需要确保自身有足够抗破坏的轻度。
还有一些特殊的原因,例如导线产生断裂,面对这种情况,铁塔是否有足够的强度来应对由于导线断裂而造成的塔身破坏,这也是铁塔性能的一个重要的衡量标准。
由于我国输电电压等级的不断提高,铁塔的体积和重量都随之越来越大,很多地区都建成了500kV的输电网,而且其电压等级还在逐渐增加,很多山区还有需要过江等的一些大跨越的铁塔的应用,对现下的铁塔提出了更高的要求。
探究高压输电线路结构设计选取
摘要:通过多年从事高压输电线路铁塔结构设计选型的实践经验,主要对我国现阶段高压输电线路设计中,铁塔结构设计选型的相关问题进行详细的分析,仅供同行参考。
关键词:高压输电;铁塔结构;设计;选型
abstract: through the years in high voltage power lines tower structure design selection of experience, mainly to the our country present stage high voltage transmission line design, selection of the eiffel tower structure design a detailed analysis of the related problems, only for reference to fellow.
keywords: high voltage transmission; tower structure; design; selection
中图分类号:s611文献标识码:a 文章编号:
电力事业是中国的一个重要支柱产业,它直接关系到国民经济的发展。
高压输电铁塔是电力部门主要的电力传输工具,随着我国经济的迅速发展,铁塔的需求量也在逐渐增加。
需要大量质量好、适应性强的铁塔。
这不仅给电力行业的施工企业提供了广阔的市场,同时也给国内其它行业的施工企业带来了新的机遇和挑战。
输电铁塔结构设计的质量目前只能靠铁塔出厂前的铁塔试组装把关。
如何在铁塔出厂前通过合理的设计使铁塔就位率达 100%,减少工
程损失,对铁塔试组装和检查具有重要的意义。
1高压输电线路铁塔结构设计选型的基本项目
我国现阶段设计的高压输电线路铁塔都是成型成套的,一般根据当地的气象等环境状况,一类塔型中有多种高度的铁塔,且应用时很少铁塔会用到其能承受的最大垂直或者水平档距,所以结构中裕度是有的。
而同类铁塔中,除塔底部不同外,其他部位的结构都是一样的,所选择的地脚螺栓型号也是一致的。
因为高压输电线路导线本身具备足够的载流能力,根本原因是线路中某些线段的铁塔呼撑高太低,大电流通过时,导线弧垂加大,对地距离满足不了安全要求,所以设计的重点就是选择较高杆塔,择位再立。
1.1 中横担结构布置和最佳高度选择
横担立面高度越高,主材受力越小,但斜材长度增加;反之,主材受力加大,斜材长度减小;这就存在一个最佳高度优化解。
中导横担平面矩形布置:宽度逐步递增,铁塔耗量线型增加,无极值存在。
考虑安装、检修时,人员通行方便,横担宽度取 1.2m。
边横担鸭嘴型布置。
边横担平面导线挂点处开口宽度取 500mm。
横担主材按平行轴布置时,铁塔电算重量6596kg;按最小轴布置时铁塔电算重量 6619kg,故取平行轴布置。
立面斜材均为零杆,按单斜材布置;平面按双斜材布置。
1.2 上、下曲臂结构的选型
常见的上、下曲臂外侧面呈直线或曲线布置,曲线布置因上下曲臂连接点出现拐点,计算证明,拐点小主材内力略小,变化不大,
却易产生不平衡力;拐点大节点不平衡力可能超限,电算不通过。
与其相比,直线布置曲臂主材节点内力平衡。
故本塔型上、下曲臂外侧面按直线布置。
当上下曲臂高度为定值时,上曲臂高度越小,塔材重量越轻;但因受到间隙圆的限制,本塔型上曲臂高度为5m,下曲臂高度为 8m。
上、下曲臂节间配置:上曲臂 5 个节间最小轴或 4 个节间平行轴布置;下曲臂 7 个节间最小轴或 6 个节间平行轴布置;主材角钢规格未变。
但平行轴方案应力较小,且可节省8根斜材。
单基塔材电算重量6596 kg;最小轴方案单基塔材电算重量6674 kg。
显然,采用平行轴布置较为经济。
斜材按常规布置。
1.3塔身最佳坡度的选择
动态规划应用于塔身坡度优化较早。
直线塔塔身侧面为与曲臂外侧取相同坡度,一般采用矩形断面布置,故正、侧面为两个坡度变量。
为便于求解,可先假定侧面坡度,求正面最佳坡度;然后再以正面最佳坡度为定值,求侧面最佳坡度。
必要时,可反复迭代,直至求出正、侧面最佳坡度。
1.4塔身隔面的选型
塔身横隔面一般设在荷载点或变截面处。
构造横隔面设置的间距,一般不大于塔身正面平均宽度的 5 倍。
横隔虽可分配剪力和扭力,增强塔身刚度,但设置过多没有必要。
计算发现,横隔与主材连接节点因汇交杆件较多,易产生不平衡力。
参考国外铁塔隔面配置和规划院84塔设计经验,本塔除瓶口和塔身塔腿连接面设置横隔面外,整个塔身内未设置横隔。
杆件受力比较均匀。
根据本塔
布置,塔腿隔面横材采用平行轴布置比最小轴受力小,腹材杆件少;重量较轻。
2 强化铁塔结构设计选型的具体措施
在我国高压输电线路在建设初期,一般对地高度的裕度不是很大,铁塔的呼撑高通常都不是同类塔型中最高的,所以在设计中可直接选择塔型的更高者。
但是在高压输电线路铁塔的设计中,结构设计选择如果存在不合理的现象,必然导致塔脚的根开增大,不利于铁塔的安全性与稳定性。
另外,如果高压输电线路铁塔长期处于停电进行作业的状态,电网的安全可靠性就差。
因此,问题的焦点就是如何强化路铁塔结构设计选型的具体措施。
2.1 改进水平材验算方法
水平材验算过去我们均按安装工况杆件内力叠加人重弯矩考虑。
人为加大了杆件应力。
参照近年来所搞国外工程的标书规定,本塔水平材验算仅考虑人重弯矩。
不与其它荷载组合,一般受力杆件均能满足要求。
我国新版《架空送电线路杆塔设计技术规定》dl/t 5154- 2002 也按此原则做了明确的规定。
2.2 杆件连接紧凑,减少节点板用量
我国塔材单基耗量与国外同类型塔相比,一般较重。
除因压应力稳定计算公式和钢材的机械性能有所差别等因素外,节点板用量较高是一差距。
节点构造设计改革目前已引起很多设计院的重视。
zb1_mv塔在节点构造设计上做了一些工作,如上、下曲臂连接节点构造常规习惯用大板正、侧面连接。
加之上、下曲臂内侧主材负端
距较大,连接板上仍需设置加劲板和加劲角钢,增加其节点刚度。
节点板单基耗量约 90kg;本塔上、下曲臂外侧主材直线布置,改为短角钢外包连接,可大大减小上、下曲臂内侧主材负端距,避免了各主材连接螺栓过于集中,达到节点连接更加紧凑、刚度增强,减小节点连板的目的,单基耗量40 kg。
另外还改进了直线塔地线支架和横担的相互连接方式,也减少了节点板面积。
提高螺栓强度等级。
可减少螺栓数量,但效果并不明显,经验证,受孔壁挤压控制者较多。
参考国外铁塔杆件连接方式,多螺栓连接的斜材杆件,一般与主材直接相连,不仅可减少连接板用量,主
材与板的连接螺栓也随之减少,而且其螺栓抗剪强度和孔壁挤压强度取值均比我国要高。
值得学习研究。
2.3加长杆件构造长度,减少包铁连接数量
以前铁塔杆件长度受到塔厂镀锌设备的限制,杆件长度一般不超过 8m,塔材需多段连接。
目前,很多塔厂已更新改进,采用较大的镀锌锅,镀锌杆件长度可达到 10~12m,为设计采用较长杆件创造了条件,可减少杆件包铁数量和减小因连接构造误差难免产生的不利影响,能进一步降低塔材耗量,节约加工成本。
3结论
在高压输电线路铁塔结构设计选型过程中,随着计算机容量的扩大,铁塔电算速度加快,机时明显缩短。
只要优化过程编制合理,设计参数选择恰当,先编好一个塔的基本电算数据,全部优化过程
最多可在一天内完成。
用动态规划与满应力计算相结合,将铁塔几何尺寸、结构布置优化和杆件强度及稳定计算同时应用于送电线路铁塔设计,成为现实。
加之基础设计程序化。
甚至可扩大到铁塔和基础同时进行方案优化设计,不仅证明可行,而且确实有效。
其以数据论证,说服力较强,优越性比凭借经验和判断进行设计的传统方法日益显著。
注:文章内所有公式及图表请用pdf形式查看。