工程力学 约束力小结
- 格式:doc
- 大小:112.00 KB
- 文档页数:3
工程力学知识点全集总结一、力的作用1. 力的概念力是物体相互作用的结果,可以改变物体的运动状态或形状。
力的大小用力的大小和方向来描述,通常用矢量表示。
2. 力的分类根据力的性质,力可以分为接触力和非接触力两种。
根据力的性质和作用对象的不同,可以将力分为压力、拉力、剪切力、弹性力、重力等不同类型的力。
3. 力的合成与分解多个力共同作用在物体上时,可以将它们的效果看作是一个力的合成。
而反之,一个力也可以根据其方向和大小,被分解为若干个分力。
4. 力的平衡当物体受到多个力的作用时,如果这些力的合力为零,则称物体处于力的平衡状态。
5. 力的矩力的矩是力的大小与作用点到物体某一点的距离的乘积,力矩的方向垂直于力的方向和力臂的方向。
物体在力的作用下发生转动,与力的大小、方向以及力臂的长度有关。
6. 自由体图自由体图是指将某个物体从其他物体中分离出来,然后在自由体上画出受到的所有力的作用线,用以分析物体所受力的平衡情况。
二、刚体静力学1. 刚体的概念刚体是指在受力作用下,形状和尺寸不发生改变的物体。
刚体的转动可以分为平移和转动两种。
2. 刚体的平衡条件刚体的平衡条件包括平衡的外力条件和平衡的力矩条件。
当刚体受到多个力的作用时,这些力的合力为零,力矩的合力矩也为零时,刚体处于平衡状态。
3. 简支梁的受力分析简支梁是指两端支持固定并能够转动的梁,在受力作用下会产生弯曲和剪切。
可以利用简支梁受力分析的原理,对梁在受力作用下的受力和变形进行研究。
4. 梁的受力分析在工程实践中,梁的受力分析是非常重要的。
在不同受力条件下,梁的受力分析方法会有所不同。
通常会用到力学平衡、力学方程等知识来分析和计算梁的受力情况。
5. 摩擦力摩擦力是指物体在相对运动或相对静止的过程中,由于接触面间的不规则性而产生的力。
摩擦力的大小和方向与接触面的性质、力的大小和方向等因素有关。
6. 斜面上的力学问题斜面上的力学问题是工程力学中的一个常见问题,包括斜面上的物体受力情况、斜面上的滑动、斜面上的加速度等内容。
工程力学第一章在该刚体内前后任意移动, 而不改变它对该刚体的作用。
I白比味 在空间的位移不受任何限 H曰*的制的物体称为自由体。
2. 非自由体:位移受到限制的物体称为非自由体。
3•约束由周围物体所构成的、限制非自由体位移的釦生、、亠" 注意: 物体向约束所限制的方向有运动趋势时,就会有约束力•另外,有约束,不一定有约束力4:讨论约束主要是分析,有哪些约束力?约束力的方向是?最终要确定约 束力的大小和方向。
5:柔性约束,约束力的数目为 1方向离开约束物体。
光滑接触面约束,约 束数目1。
注意:□接触面为两个面时,约束力为分布的同向平行力系, 可用其合理表示。
②若一物体以尖点与另一个物体接触,可将尖点是为小圆 弧。
再者,一般考虑物体的自重,忽略杆的自重,除非题目要求考虑。
光滑圆柱铰链约束:01固定铰支座(直杆是被约束物体),约束力数目为2;推论(力在刚体上的可传性)作用于刚体的力, 其作用点可以沿作用线或对非自曲体的某些位移起限制作用Q中间铰约束按合力讨论,有一个约束力,方向未知:安分力讨论,有两个约束力,方向可以假设(正交) 注意:销钉和杆直接接触传递力,杆和杆之间不直接传递力。
O3可动铰支座仅限制物体在垂直与接触面方向的移动。
约束力数目为1 向心推力轴承,约束力数目为2;止推轴承有三个约束力强调:无约束的方向一定没有约束力!平面约束:(1)柔性约束:有一个约束力,离开物体;(2)光滑接触面(线、点)约束:有一个约束力,指向物体;(3)光滑BI柱较链约束扎固定餃支座约束:有两个正交约束力,方向可以假设;B.中间较约束:有两个正交约束力,方向可以假设;G可动较支座或辗轴约束:有一个约束力,方向可以假设;空间约束:(1)空间球较约束:有三个正交约束力,方向可以假设;(2)向心轴承约束:有两个正交约束力,方向可以假设;(3)向心推力轴承约束:有三个正交约束力,方向可以假设;第二章矢量表达式:R = F i+F2+F. + F4= ^Y ii-↑结论:力在某轴上的投影,等于力的模乘以力与该轴正向间夹角的余弦审平面汇交力系平衡问题的解题步專:K选取研究对象;2.画受力3.列平衡方程,求解未知力。
工程力学课程总结工程力学作为理工科专业基础课程,对于培养学生的科学素养和解决实际工程问题具有重要意义。
本文将对工程力学课程进行全面的总结,梳理课程核心知识点,以帮助读者更好地掌握这门学科。
一、课程概述工程力学课程主要包括静力学、动力学和材料力学三个部分。
静力学研究在平衡状态下的物体受力情况,动力学研究物体运动与受力之间的关系,而材料力学则关注物体在受力作用下的变形与破坏规律。
二、核心知识点1.静力学(1)力的分解与合成:掌握力的分解与合成方法,能够解决复杂受力问题。
(2)受力分析:学会对物体进行受力分析,确定受力大小、方向和作用点。
(3)平衡方程:了解平衡方程的推导过程,熟练运用平衡方程解决静力学问题。
2.动力学(1)牛顿运动定律:掌握牛顿运动定律的基本原理,能够运用其解决实际问题。
(2)运动方程:了解运动方程的建立过程,能够求解物体在受力作用下的运动规律。
(3)动量定理与动量守恒:理解动量定理和动量守恒定律,并能应用于碰撞、爆炸等实际问题。
3.材料力学(1)应力与应变:掌握应力与应变的概念,了解其计算方法。
(2)弹性力学:了解弹性力学的基本理论,能够求解弹性体的受力与变形问题。
(3)强度理论与破坏准则:了解材料的强度理论和破坏准则,能够预测材料的破坏行为。
三、课程总结通过学习工程力学课程,我们掌握了以下技能:1.能够对物体进行受力分析,解决静力学问题。
2.能够运用牛顿运动定律和运动方程解决动力学问题。
3.能够求解弹性体的受力与变形问题,预测材料的破坏行为。
4.提高了解决实际工程问题的能力,为后续专业课程学习打下坚实基础。
第三版工程力学(大连理工大学出版社)第一、二章知识点总结教材主编:邹建奇、李妍、周显波第一篇静力学第一章静力学基本知识1.力的三要素:大小、方向、作用点。
2.力的平衡:二力平衡、三角形法则与平行四边形法则。
3.约束与约束力:(1)光滑接触面约束:(2)柔体约束:(3)光滑铰链约束:①固定铰链;②可动铰链。
(4)链杆约束:(5)轴承约束:①向心轴承;②止推轴承。
4.画受力图步骤:(1)确定研究对象,将其从周围物体中分离出来,并画出其简图,称为画分离体图。
研究对象可以是一个,也可以由几个物体组成,但必须将它们的约束全部解除。
(2)画出全部的主动力和约束力。
主动力一般是已知的,故必须画出,不能遗漏,约束力一般是未知的,要从解除约束处分析,不能凭空捏造。
(3)不画内力,只画外力。
内力是研究对象内部各物体之间的相互作用力,对研究对象的整体运动效应没有影响,因此不画。
但外力必须画出,一个也不能少,外力是研究对象以外的物体对该物体的作用,它包括作用在研究对象上全部的主动力和约束力。
(4)要正确地分析物体间的作用力与反作用力,当作用力的方向一经假定,反作用力的方向必须与之相反。
当研究对象由几个物体组成时,物体间的相互作用力是内力,也不必画,若想分析物体间的相互作用力必须将其分离出来,单独画受力图,内力就变成了外力。
第二章力系的简化与平衡章节复习框架平面力系1.平面汇交力系(1)几何法--力多边形法则:依据了的平行四边形法则或三角形法则(如图示例所示)。
推广到由n个力组成的平面汇交力系,可得如下结论:平面汇交力系的合力是将力系中各力矢量依次首尾相连得折线,并将折线由起点向终点作有向线段,该有向线段(封闭边)表示该力系合力的大小和方向,且合力的作用线通过汇交点。
表达式为:iRFF∑=(2)解析法:①在力F所在的平面内建立直角坐标系Oxy,x与y轴的单位矢量为i、j,有力的投影定义可得。
⎪⎩⎪⎨⎧=⋅==⋅=),cos(),cos(jFFjFFiFFjFFyx力F的解析式为:jFiFFyx+=。
工程力学总结范本工程力学是研究物体在力的作用下产生的运动和变形规律的一门学科。
它是应用力学的基础科学,广泛应用于各个工程领域。
工程力学的研究对象主要包括刚体和弹性体,通过力学的方法来分析和解决工程问题。
工程力学主要包括静力学和动力学两个方面。
静力学研究物体处于平衡状态时的力学性质,主要包括受力分析、结构稳定、结构荷载等内容。
动力学研究物体运动和变形的力学性质,主要包括质点运动、刚体运动和变形、振动与波动等内容。
在静力学方面,我们学习到了力的合成和分解、平衡条件、支持反力和杆件内力分析等内容。
通过力的合成和分解,我们能够将一个力分解为若干个分力,从而更好地进行受力分析。
平衡条件告诉我们在平衡状态下物体所受的合外力和合外力矩都为零。
支持反力和杆件内力分析是静力学中非常重要的内容,它们可以帮助我们确定杆件的受力情况,从而设计出合理的工程结构。
在动力学方面,我们学习到了质点运动、刚体运动和变形、振动与波动等内容。
质点运动是研究质点在空间中运动的规律,通过运动学分析我们可以得到质点的位置、速度和加速度等信息。
刚体运动和变形是研究刚体在受力作用下的运动和变形规律,通过动力学分析我们可以得到刚体的运动方程和受力情况。
振动与波动是研究物体围绕平衡位置作周期性运动的规律,通过振动和波动的分析,我们可以了解到物体的振动频率和波长等参数。
工程力学在实际工程中具有广泛的应用。
在结构设计方面,工程力学可以帮助我们分析和确定结构的受力情况,从而设计出满足强度和刚度要求的结构。
在土木工程中,工程力学可以帮助我们分析土体的力学性质,从而确定土的承载能力和变形特性,保证工程的安全可靠。
在机械工程中,工程力学可以帮助我们分析和设计机器的运动和传动系统,从而实现机器的正常运转。
在航空航天工程中,工程力学可以帮助我们研究飞机和航天器的运动和变形特性,确保其在飞行过程中的安全和稳定。
总之,工程力学是工程学科中不可或缺的基础学科,它通过力学的方法研究物体的运动和变形规律,为工程实践提供了重要的理论基础。
大学工程力学实训总结引言大学工程力学实训是大学工程力学课程的实践环节,通过实际操作和实验来加深对工程力学理论的理解和应用能力。
本文旨在总结我在大学工程力学实训中的学习收获和体会,并对实验中遇到的问题进行分析和改进。
实验一:弹簧刚度测量实验一旨在通过实际测量弹簧的刚度,加深对弹簧刚度概念的理解和计算方法的掌握。
在实验中,我们首先根据弹簧拓展的长度和所加力的关系绘制力-拓展图,然后计算出弹簧刚度的数值。
通过实验测量和计算,我对弹簧刚度的概念有了更深入的理解,同时也掌握了计算弹簧刚度的方法。
在实验过程中,我还注意到测量误差的存在,因此在今后的实验中需要更加严谨地操作和测量,以减小误差。
实验二:静态平衡实验二是关于静态平衡的实验,通过实际操作引入力矩的概念,加深对静态平衡条件的理解和应用能力。
在实验中,我们用不同的物体组合进行平衡实验,并在实验过程中测量力矩和杆的长度。
通过实验数据的计算和分析,我对静态平衡条件有了更加深入的理解,并且学会了如何通过力矩平衡方程来计算未知力或未知长度。
在实验中,我还发现当不平衡力较小时,杆的长度对平衡条件的影响较大,因此在实际应用中需要注意调整杆的长度。
实验三:动态平衡实验三是关于动态平衡的实验,通过旋转实验装置来研究转动物体的平衡条件和影响因素。
在实验中,我们使用转动台和配重块进行动态平衡实验。
通过调整配重块的位置,使转动物体保持平衡。
在实验中,我对旋转物体的平衡条件和影响因素有了更加深入的了解,并且学会了如何通过不同的调整方法来实现动态平衡。
在实验过程中,我还注意到转动摩擦力的存在,对平衡条件产生了一定的影响,因此在实际应用中需要考虑摩擦力的影响。
实验四:简支梁挠度测量实验四是关于简支梁的挠度测量实验,通过实验测量和计算等方法来学习和掌握梁的挠度计算和测量。
在实验中,我们通过在简支梁上加重和测量挠度的方式,来研究梁的挠度和加载对梁的影响。
通过实验数据的计算和分析,我对简支梁的挠度计算和测量方法有了更深入的理解,并且学会了如何通过力和挠度的关系来计算梁的弹性模量。