脱硝工艺介绍
- 格式:docx
- 大小:47.56 KB
- 文档页数:10
干法脱硝工艺引言干法脱硝工艺是一种对烟气中的氮氧化物进行治理的技术方法。
它可以有效地减少烟气中的二氧化氮(NO2)和一氧化氮(NO)等有害气体的排放,达到净化空气、保护环境的目的。
工艺原理在干法脱硝工艺中,主要的工艺原理是通过将烟气与脱硝剂进行接触反应,使氮氧化物转化为氮气并排放出去。
常用的脱硝剂包括硫化氢(H2S)、硫酸(H2SO4)等。
工艺流程干法脱硝工艺一般包括以下几个主要的步骤:1. 烟气采样与处理首先需要对烟气进行采样,并通过一系列的处理步骤,去除其中的杂质和湿度,以保证接下来的脱硝反应能够顺利进行。
2. 脱硝剂喷射将脱硝剂喷射到烟气中,使其与氮氧化物发生反应。
脱硝剂可以通过喷射或喷淋的方式加入烟气中,以增大接触面积,提高反应效率。
3. 反应器烟气和脱硝剂在反应器中进行充分的混合和接触,以促进氮氧化物的转化和脱除。
反应器可以采用干式喷淋塔、旋风分离塔等不同的结构形式。
4. 气体分离经过反应后,烟气中的固体颗粒和液态产物需要进行分离和处理。
一般采用旋风分离器等设备,将固体颗粒收集并送至处理系统。
5. 排放处理最后,经过处理后的烟气可以直接排放或者经过进一步处理后再排放。
工艺优势干法脱硝工艺相比于湿法脱硝工艺具有以下一些优势:•适用范围广:干法脱硝工艺适用于各种不同类型的锅炉和燃煤设备,具有很强的适应性。
•能耗低: 干法脱硝工艺不需要额外的水处理系统,无需对烟气进行冷却,因此能耗较低。
•操作简单: 干法脱硝工艺操作相对简单,维护成本较低。
同时,不会产生废水,对环境影响小。
工艺改进与展望干法脱硝工艺目前仍存在一些问题,例如脱硝剂的选择、反应效率等方面的改进空间。
下一步,可以进一步优化脱硝剂的组合及使用方式,提高脱硝效率。
同时,也可以研究开发更多种类的高效脱硝剂,以应对不同的脱硝需求。
结论干法脱硝工艺是一种有效的治理氮氧化物排放的技术方法。
通过合理的工艺流程和操作控制,可以实现对烟气中氮氧化物的高效去除,降低对环境的污染。
尾气脱硝技术工艺尾气脱硝技术工艺是指通过对尾气进行处理,去除其中的氮氧化物(NOx)的一种技术。
尾气脱硝技术的应用可以有效减少空气污染物的排放,改善环境质量,保护人民群众的健康。
一、尾气脱硝技术的原理尾气脱硝技术的原理主要有选择性催化还原(SCR)和非选择性催化还原(SNCR)两种。
SCR技术是通过将氨水或尿素溶液喷入尾气中,经过催化剂的作用,将氮氧化物转化为氮气和水,从而实现脱硝的效果。
SNCR技术则是在高温下将氨水或尿素直接喷入尾气中,通过非选择性催化剂的作用,使氮氧化物发生还原反应,从而减少尾气中的氮氧化物含量。
二、尾气脱硝技术工艺流程尾气脱硝技术工艺一般包括催化剂选择、氨水或尿素喷射、反应器设计和催化剂再生等步骤。
1. 催化剂选择:选择合适的催化剂是尾气脱硝工艺的关键。
常用的催化剂有V2O5-WO3/TiO2、TiO2/WO3、TiO2/V2O5等。
催化剂的选择应根据尾气中氮氧化物的性质、温度和流量等因素进行。
2. 氨水或尿素喷射:氨水或尿素溶液是SCR和SNCR技术中的还原剂。
在催化剂前方的适当位置喷射氨水或尿素溶液,与尾气中的氮氧化物发生反应,将其转化为无害的氮气和水。
3. 反应器设计:反应器的设计应考虑到尾气的温度、压力和流量等因素。
合理的反应器设计可以提高尾气与还原剂的接触效率,提高脱硝效果。
4. 催化剂再生:催化剂在使用过程中会受到积灰和硫化物的污染,影响脱硝效果。
因此,需要定期对催化剂进行再生或更换,以保证其脱硝效果。
三、尾气脱硝技术的应用尾气脱硝技术广泛应用于发电厂、钢铁厂、水泥厂、化工厂等工业领域。
这些工业过程中会产生大量的尾气,其中含有大量的氮氧化物。
通过应用尾气脱硝技术,可以将尾气中的氮氧化物减少到国家排放标准以内,达到环保要求。
四、尾气脱硝技术的优势和挑战尾气脱硝技术具有以下优势:高效、可靠、经济、环保。
通过尾气脱硝技术,可以将尾气中的氮氧化物减少到较低水平,降低空气污染物的排放,改善环境质量。
窑厂的脱硫脱硝工艺
窑厂的脱硫脱硝工艺主要是通过吸收剂吸收烟气中的硫dioxide(SO2)和nitrogen oxide(NOx)等有害气体,将其转化为水和硫酸二氧化物等化合物,达到减少气体污染物排放的目的。
常用的脱硫脱硝工艺包括湿法脱硫和选择性催化还原(SCR)技术。
湿法脱硫工艺是目前最常见的脱硫工艺之一。
该工艺使用石灰石或其他吸收剂作为脱硫剂,将烟气与吸收剂接触,通过反应将SO2转化为硫酸钙。
具体工艺流程包括喷气吸收塔、氧化塔、活性碳喷射和石灰石浆液喷射等。
选择性催化还原(SCR)技术是目前应用较广泛的脱硝技术。
该工艺通过将氨水溶液喷射到烟气中,与NOx反应生成氮和水。
具体工艺流程包括氨水喷射系统、催化剂层和脱硝反应塔等。
此外,还有其他脱硫脱硝工艺如干法脱硫、电磁脱硝技术等。
不同工艺的选择取决于窑厂的具体情况,包括烟气成分、排放要求、成本等因素。
一、脱硝工艺简述1、脱硝工艺介绍氮氧化物(NOx)是在燃烧工艺过程中由于氮的氧化而产生的气体,它不仅刺激人的呼吸系统,损害动植物,破坏臭氧层,而且也是引起温室效应、酸雨和光化学反应的主要物质之一。
世界各地对NOx的排放限制要求都趋于严格,而火电厂、垃圾焚烧厂和水泥厂等作为NOx气体排放的最主要来源,其减排更是受到格外的重视。
目前全世界降低电厂锅炉NOX排放行之有效的主要方法大致可分为以下四种:(1)低氮燃烧技术,即在燃烧过程中控制氮氧化物的生成,主要适用于大型燃煤锅炉等;低NOX燃烧技术只能降低NOX 排放值的30~50%,要进一步降低NOX 的排放, 必须采用烟气脱硝技术。
(2)选择性催化还原技术(SCR,SelectiveCatalyticReduction),主要用于大型燃煤锅炉,是目前我国烟气脱硝技术中应用最多的;(3)选择性非催化还原技术(SNCR,SelectiveNon-CatalyticReduction),主要用于垃圾焚烧厂等中、小型锅炉,技术成熟,但其效率低于SCR法;投资小,建设周期短。
(4)选择性催化还原技术(SCR)+选择性非催化还原技术(SNCR),主要用于大型燃煤锅炉低NOx排放和场地受限情况,也比较适合于旧锅炉改造项目。
信成公司将采用选择性非催化还原法(SNCR)技术来降低电厂锅炉NOx排放。
为此,将电厂SNCR脱硝法介绍如下:2、选择性非催化还原法(SNCR)技术介绍1)SNCR脱硝简述SNCR 脱硝技术是一种较为成熟的商业性NOx控制处理技术。
SNCR 脱硝方法主要是将还原剂在850~1150 ℃温度区域喷入含NOx 的燃烧产物中, 发生还原反应脱除NOx , 生成氮气和水。
SNCR 脱硝在实验室试验中可达到90%以上的NOx脱除率。
在大型锅炉应用上,短期示范期间能达到75%的脱硝效率。
SNCR 脱硝技术是20世纪70 年代中期在日本的一些燃油、燃气电厂开始应用的, 80年代末欧盟国家一些燃煤电厂也开始了SNCR 脱硝技术的工业应用, 美国90 年代初开始应用SNCR 脱硝技术, 目前世界上燃煤电厂SNCR脱硝工艺的总装机容量在2GW 以上。
热风炉脱硝工艺热风炉脱硝是一种通过在燃烧过程中去除烟气中氮氧化物(NOx)的技术。
热风炉脱硝工艺通常采用尿素法或氨法,这两种方法都是在高温烟气中注入氨基化合物,与NOx反应生成氮气和水的过程。
以下是热风炉脱硝的一般工艺流程:热风炉燃烧:在热风炉中,煤或其他燃料被燃烧产生高温烟气。
燃烧过程中,会生成氮氧化物(NOx),这些物质对环境有害。
脱硝剂注入:尿素法:尿素是一种常用的脱硝剂。
在烟气中注入尿素,通过高温反应生成氨,然后与NOx反应生成氮气和水。
氨法:直接在烟气中注入氨气,与NOx发生反应生成氮气和水。
脱硝催化剂:有些脱硝系统采用催化剂,如SCR(Selective Catalytic Reduction,选择性催化还原)技术。
催化剂通常是一种金属氧化物,能够促进NOx的还原反应。
脱硝反应:在高温烟气中,脱硝剂与NOx发生反应,将其还原为氮气和水。
这个反应通常发生在脱硝催化剂的表面,或在高温条件下直接在烟气中进行。
脱硝效率控制:控制脱硝剂的投入量和脱硝剂与烟气中NOx的混合均匀性,以提高脱硝效率。
通过监测和调整反应条件,使脱硝效果最优化。
废渣处理:生成的废渣,包括未反应的脱硝剂和产生的氮氧化物,需要进行处理。
通常通过过滤或其他技术将废渣从气体中分离,并在废渣处理系统中进行处理或回收。
热风炉脱硝工艺的选择取决于具体的工业过程和环境要求。
这些工艺有助于减少大气污染物排放,提高能源利用效率,符合环保和能源节约的要求。
实施这些技术通常需要一定的投资,但长期来看,对环境和企业可持续发展都具有积极的影响。
脱硫脱硝工艺简介
1、石灰石-石膏湿法脱硫
工艺流程:石灰石与水混合搅拌制成吸收浆液,在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应吸收脱除二氧化硫,最终产物为石膏。
脱硫后的烟气经过除雾器除去雾滴,从烟囱排放。
2、脱硝
(1)SNCR法(选择性非催化还原法)
工艺流程:SNCR工艺以炉膛为反应器,在850-1050℃温度范围内,在无催化剂的作用下,直接向炉膛内喷入还原剂氨水或尿素,与NOx发生反应,将NOx还原为N2从而降低NOx排放浓度,此种工艺的的脱硝效率在30-50%之间。
(2)SCR法(选择性催化还原法)
工艺流程:在锅炉310-410℃位置引出烟气进入SCR反应器,在催化剂的作用下烟气中NOx与还原剂NH3发生反应生成N2,从而降低NOx排放浓度,经过脱硝后的烟气再引入锅炉,此种工艺的脱硝效率在80%以上。
sncr脱硝工艺流程SNCR(Selective Non-Catalytic Reduction)是一种常用的脱硝工艺,通过加入氨水或尿素来与烟气中的氮氧化物(NOx)进行反应,从而将其还原为氮气和水。
下面是SNCR脱硝工艺流程的详细介绍。
1.脱硝剂储存和供给:氨水或尿素作为脱硝剂,需要储存和供给到反应系统中。
储存通常采用专用的储罐,并通过泵站将脱硝剂供给到喷射装置。
2.反应器:反应器是进行脱硝反应的核心组件,通常包括喷射装置和混合区。
脱硝剂通过喷射装置喷射到烟气中,与烟气中的氮氧化物发生反应。
混合区通过搅拌装置等手段,将脱硝剂与烟气充分混合,以提高反应效果。
3.温度和浓度控制:脱硝反应对温度和氨氧比(NH3/NOx)有一定的要求。
通常需要在反应系统中设置温度控制器和氨氧比控制器,以确保反应在最佳条件下进行。
4.排放净化:反应后的烟气中可能还会残留一定量的氨、氮氧化物等物质,需要进行净化处理。
常见的处理方式有湿式脱硝、干式脱硝等。
湿式脱硝通常采用喷雾塔或湿式电除尘器将烟气中的颗粒物、氨和氮氧化物吸收或捕集,通过水洗或吸附剂反应后,排放净化后的烟气。
干式脱硝则通过调节烟气温度和添加吸附剂等方式,将烟气中的污染物吸附或化学转化,最终排放净化后的烟气。
5.控制系统:SNCR脱硝工艺通常需要配备一套完善的控制系统,以监测和控制反应过程中的各个参数,包括温度、压力、流量等。
控制系统可以自动调节脱硝剂供给、喷射装置位置和角度等参数,以实现最佳的脱硝效果。
总之,SNCR脱硝工艺是一种利用氨水或尿素与烟气中的氮氧化物进行反应,将其还原为无害物质的方法。
通过适当的脱硝剂供给、喷射装置设计和控制系统调节,可以实现高效、稳定和可靠的脱硝效果。
为了符合环保要求,通常会将脱硝后的烟气进行进一步的净化处理,以确保排放的烟气符合相关的排放标准。
脱硫脱硝工艺流程脱硫脱硝是指通过化学或物理方法,将燃烧过程中产生的二氧化硫和氮氧化物去除的工艺。
这两种化合物是燃煤、燃油等燃料燃烧时产生的主要污染物之一,对环境和人体健康都有着严重的危害。
因此,脱硫脱硝工艺在工业生产中具有非常重要的意义。
下面将介绍脱硫脱硝的工艺流程。
脱硫工艺流程:1. 石膏湿法脱硫工艺,石膏湿法脱硫是目前应用最为广泛的脱硫工艺之一。
其工艺流程主要包括石膏烟气脱硫装置、石膏浆液制备系统、石膏浆液输送系统、石膏浆液再生系统等部分。
在燃煤锅炉烟气中喷射石膏浆液,石膏浆液中的氢氧化钙与二氧化硫发生化学反应,生成硫酸钙和水。
硫酸钙在除尘器中与烟气中的粉尘结合,形成石膏颗粒,最终被捕集下来。
2. 石灰石湿法脱硫工艺,石灰石湿法脱硫工艺是另一种常用的脱硫工艺。
其工艺流程包括石灰石烟气脱硫装置、石灰石浆液制备系统、石灰石浆液输送系统、石灰石浆液再生系统等部分。
在燃煤锅炉烟气中喷射石灰石浆液,石灰石浆液中的氢氧化钙与二氧化硫发生化学反应,生成硫酸钙和水。
硫酸钙在除尘器中与烟气中的粉尘结合,形成石膏颗粒,最终被捕集下来。
脱硝工艺流程:1. SCR脱硝工艺,SCR(Selective Catalytic Reduction)脱硝工艺是目前应用最为广泛的脱硝工艺之一。
其工艺流程主要包括氨水喷射系统、脱硝催化剂反应器、脱硝催化剂再生系统等部分。
在燃煤锅炉烟气中喷射氨水,烟气中的氮氧化物与氨水在脱硝催化剂的作用下发生化学反应,生成氮气和水。
脱硝催化剂可以是钒钛催化剂、钼钒催化剂等。
再生系统用于对脱硝催化剂进行再生,使其恢复活性。
2. SNCR脱硝工艺,SNCR(Selective Non-Catalytic Reduction)脱硝工艺是另一种常用的脱硝工艺。
其工艺流程主要包括尿素喷射系统、脱硝反应器等部分。
在燃煤锅炉烟气中喷射尿素,烟气中的氮氧化物与尿素在高温下发生化学反应,生成氮气、水和二氧化碳。
这种工艺不需要催化剂的参与,因此成本较低。
SCR脱硝技术工艺及应用SCR脱硝技术是目前应用最广泛的烟气脱硝技术之一。
其原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水。
SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
SCR脱硝技术具有脱硝效率高、运行可靠、便于维护等优点,但也存在催化剂失活和尾气中残留等缺点。
SCR脱硝技术的应用范围广泛,包括火电厂、钢铁厂、化工厂等。
1. SCR脱硝技术原理SCR脱硝技术的原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物(NOx)反应生成无害的氮和水。
还原剂与NOx的反应原理还原剂与NOx的反应可以表示为以下化学方程式:4NH3 + 4NO + O2 → 6H2O + 4N2该反应是可逆反应,需要在一定的温度和压力下进行。
在催化剂的作用下,该反应可以向右进行,生成无害的氮和水。
催化剂的作用催化剂是SCR脱硝技术的关键。
催化剂可以降低反应的活化能,从而提高反应的速率。
目前,SCR脱硝技术中常用的催化剂有三元催化剂和二元催化剂。
三元催化剂由钒(V)、钼(Mo)和铌(Nb)等金属组成。
二元催化剂由钒(V)和钼(Mo)等金属组成。
反应温度和压力的影响反应温度和压力对SCR脱硝技术的影响较大。
反应温度越高,反应速率越快,但催化剂的活性越低。
反应压力越高,反应速率越快,但催化剂的寿命越短。
一般来说,SCR脱硝技术的反应温度范围为300-400℃,压力范围为1-2MPa。
2. SCR脱硝工艺流程SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
还原剂的准备还原剂通常为液氨。
液氨由氨罐储存,在进入SCR系统之前需要进行蒸发。
烟气预处理烟气预处理的目的是去除烟气中的杂质,以提高催化剂的活性和使用寿命。
烟气预处理通常包括以下步骤:酸碱洗涤:去除烟气中的酸性和碱性物质。
干燥:去除烟气中的水分。
除尘:去除烟气中的粉尘。
催化剂床层催化剂床层是SCR脱硝技术的核心部分。
脱硝工艺流程
脱硝是指将燃烧过程中产生的氮氧化物(NOx)减少到合适的排放标准以下的工艺。
脱硝工艺流程包括选择适当的脱硝方法、设计脱硝设备、操作和维护等步骤。
脱硝方法主要有选择性催化还原法(SCR)和非选择性催化还原法(SNCR)两种。
选择适当的脱硝方法取决于排放要求、
燃料类型和负荷特性等因素。
在SCR法中,首先将烟气预处理,使其与氨水进入脱硝反应
器进行反应。
反应器内放置了催化剂,在催化剂的作用下,氨水和氮氧化物进行反应生成氮气和水蒸气。
最后,将脱硝后的烟气排放至大气中。
在SNCR法中,通过直接喷射尿素溶液或氨水进入燃烧室内,与燃烧时生成的氮氧化物反应。
该反应在高温下进行,形成氮气和水蒸气,从而实现脱硝的目的。
脱硝设备的设计需要考虑多个因素,例如烟气温度、压力、氨水浓度和氨氧比等。
烟气温度一般在200-400摄氏度之间,氨
水浓度在12-25%之间,氨氧比一般在0.8-1.2之间。
脱硝设备的操作需要严格控制氨气的投加量和温度等参数,以确保脱硝效果达到要求。
此外,还需要对脱硝设备进行定期维护和清洁,以保证其正常运行和长期稳定性。
脱硝工艺流程的实施有助于降低氮氧化物的排放,改善空气质
量,减少对环境的污染。
随着环保要求的不断提高,脱硝工艺流程也在不断完善和创新,以满足更严格的排放标准。
scr脱硝技术工艺流程
SCR(Selective Catalytic Reduction)脱硝技术是一种采用氨水或尿素水作为还原剂,通过氨水在催化剂上与氮氧化物反应,将NOx转化为N2和H2O的方法。
其工艺流程一般包括以下步骤:
1. 脱硝剂制备:首先,制备氨水或尿素水作为还原剂。
氨水可以通过氨气和水的反应得到,尿素水可以通过尿素和水的反应得到。
2. 燃料氧化:将燃料进行完全燃烧,以生成热量和NOx。
3. 烟气预处理:将燃烧后的烟气经过除尘处理,除去其中的灰尘和大颗粒物。
4. 脱硝反应:将预处理后的烟气与脱硝剂(氨水或尿素水)混合,进入脱硝催化剂层。
在催化剂的作用下,氨水或尿素水中的氨和NOx发生氧化还原反应,将NOx转化为N2和H2O。
5. 余氨去除:脱硝反应后,烟气中可能会残留一定量的氨气。
为了避免氨气对环境造成污染,需要进行余氨的去除。
一般采用氨氧化法或吸收剂法来去除残余氨气。
6. 排放:经过脱硝处理后,烟气中的NOx已经转化为无害的氮气和水,排放到大气中。
SCR脱硝技术流程的具体实施细节可能受到具体设备和工艺
参数的影响,上述步骤仅为一般的概述。
实际应用中,根据不同的工艺和设备要求,可能会有一些变化和调整。
SCR脱硝工艺原理和流程介绍
选择性催化还原脱硝技术
在氮氧化物(NOx)选择催化还原过程中,通过加氨(NH3),在320~400℃,TI-V-W(Mo)催化剂的作用下,可以把NOx转化为氮气(N2)和水(H2O)。
还原剂:液氨、尿素、氨水
SCR脱硝工艺流程
烟气从锅炉省煤器或空预器出来,与氨气充分混合,经过导流片和整流板均布后进入催化剂层进行脱硝反应,反应后的烟气至下游的空预器或省煤器。
SCR脱硝工艺特点
脱硝效率较高;
技术成熟,运行可靠,便于维护;
系统阻力小。
SCR脱硝主要技术指标
脱硝效率大于90%;
氨逃逸率小于3ppm;
SO2/SO3转化率小于1%。
莱特莱德脱硫脱硝研究中心以烟气脱硫脱硝、废气处理、脱硫除尘、火电厂改造等技术为依托,主营废气处理设备、脱硫脱硝设备、脱硫除尘设备、烟气脱硫设备、锅炉脱硫除尘器、湿式脱硫除尘器、水膜脱硫除尘器等产品。
拥有先进的氨法脱硫、干法脱硫、湿法脱硫、锅炉脱硫脱硝、双碱法脱硫、电厂脱硫脱硝工艺。
脱硝工艺流程脱硝工艺是指利用化学或物理方法将燃煤锅炉排放的氮氧化物(NOx)进行去除的过程。
由于NOx是大气污染的主要来源之一,因此脱硝工艺在环保领域具有重要的意义。
本文将介绍脱硝工艺的基本流程和常见的脱硝方法。
脱硝工艺的基本流程通常包括预处理、脱硝反应和后处理三个阶段。
预处理阶段主要是对燃料进行预处理,以确保燃烧过程中NOx的生成量最小化。
脱硝反应阶段是通过化学或物理方法将燃烧产生的NOx转化为无害的氮气或氮氧化合物。
后处理阶段则是对脱硝后的废气进行处理,以确保排放的废气符合环保标准。
常见的脱硝方法包括选择性催化还原(SCR)、选择性非催化还原(SNCR)和燃烧气体再循环(FGR)等。
下面将分别介绍这些脱硝方法的工艺流程。
首先是SCR脱硝工艺。
SCR脱硝是利用催化剂将NOx与氨气在一定温度下进行反应,生成氮气和水蒸气的过程。
SCR脱硝工艺流程包括氨水喷射系统、催化反应器和氨逸度控制系统。
废气经过预处理后,与适量的氨气在催化反应器中进行反应,生成无害氮气和水蒸气,从而实现脱硝的目的。
其次是SNCR脱硝工艺。
SNCR脱硝是利用氨水或尿素溶液在高温下与废气中的NOx进行非催化还原反应,生成氮气和水的过程。
SNCR脱硝工艺流程包括氨水喷射系统、反应器和氨逸度控制系统。
废气经过预处理后,与适量的氨水或尿素溶液在反应器中进行非催化还原反应,从而实现脱硝的目的。
最后是FGR脱硝工艺。
FGR脱硝是通过将一部分燃烧产生的废气回收到锅炉燃烧室中,降低燃烧温度,从而减少NOx的生成量的过程。
FGR脱硝工艺流程包括废气回收系统和废气再循环控制系统。
废气经过预处理后,一部分废气被回收到锅炉燃烧室中,降低燃烧温度,从而减少NOx的生成量,实现脱硝的目的。
综上所述,脱硝工艺是利用化学或物理方法将燃煤锅炉排放的NOx进行去除的过程。
常见的脱硝方法包括SCR、SNCR和FGR等。
每种脱硝方法都有其独特的工艺流程,但其基本流程都包括预处理、脱硝反应和后处理三个阶段。
脱硝工艺介绍脱硝工艺(SNCR)是一种常用于降低燃煤电厂、工业锅炉和废气处理中NOx排放的工艺。
脱硝工艺的目的是将NOx转化为N2和水蒸气,以减少对大气的污染。
SNCR脱硝工艺的基本原理是在燃烧过程中向燃烧室内注入氨(NH3)或尿素(NH2CONH2)等还原剂。
这些还原剂在高温下分解产生氨基自由基(NH2)和亚氨基自由基(NH)等活性氮氢物种。
这些活性物种与NOx进行反应,生成N2和水蒸气。
SNCR脱硝工艺与SCR(Selective Catalytic Reduction,选择性催化还原)脱硝工艺不同,它不需要使用催化剂。
相反,SNCR脱硝工艺依赖于燃烧过程中高温下生成的活性氮氢物种与NOx进行快速反应。
SNCR脱硝工艺的关键控制参数包括还原剂的注入位置、注入速率和还原剂与燃烧气体的混合均匀程度。
通常情况下,还原剂的注入位置选择在燃烧室内的NOx生成区域以确保与NOx充分反应。
此外,还原剂的注入速率和燃烧气体的混合均匀程度也会影响脱硝效果。
SNCR脱硝工艺的优点是工艺简单、技术成熟、适用范围广,并且不需要使用昂贵的催化剂。
然而,与SCR脱硝工艺相比,SNCR脱硝工艺的脱硝效率较低,通常在30%到60%之间。
此外,还原剂的选择、注入位置和注入速率等参数需要经过仔细优化,以确保脱硝效果和经济性的平衡。
除了工艺参数的优化,SNCR脱硝工艺的脱硝效果还受到燃料类型、燃烧方式、燃烧温度和燃烧气体氧含量等因素的影响。
例如,当燃料中的挥发分较高时,还原剂的注入位置和速率需进行适当调整。
此外,SNCR 脱硝工艺对于低温脱硝效果较好,适用于低温燃烧过程。
总之,SNCR脱硝工艺是一种常用于降低NOx排放的工艺,能够在不使用催化剂的情况下实现NOx的转化和去除。
该工艺的脱硝效率依赖于还原剂的注入位置、注入速率和与燃烧气体的混合均匀程度,以及燃料类型、燃烧方式、燃烧温度和燃烧气体氧含量等因素。
尽管SNCR脱硝工艺的脱硝效率相对较低,但其简单、成熟和经济的特点使其成为脱硝工艺领域的重要选择。
燃煤锅炉脱硝工艺燃煤锅炉脱硝工艺燃煤锅炉脱硝是一种重要的大气污染治理措施,可以有效降低燃煤锅炉排放的氮氧化物(NOx)浓度,减少大气污染物的排放量,提高环境质量。
以下是一些关键的脱硝工艺,可以帮助我们更好地理解和应用。
SCR脱硝工艺SCR(Selective Catalytic Reduction,选择性催化还原)是一种常用的燃煤锅炉脱硝工艺。
其基本原理是通过将氨气(NH3)或尿素溶液喷射到燃煤锅炉排气中,利用SCR催化剂将氮氧化物催化还原成无害的氮和水,从而实现脱硝效果。
SCR脱硝工艺具有高效、稳定的特点,广泛应用于火电厂和工业锅炉等领域。
SNCR脱硝工艺SNCR(Selective Non-Catalytic Reduction,选择性非催化还原)是另一种常见的燃煤锅炉脱硝工艺。
该工艺通过在燃烧过程中向锅炉炉膛中加入氨水溶液,提供还原剂和氮氧化物之间的反应条件,从而使氮氧化物发生还原反应,减少脱硝剂对硫酸盐的转化。
SNCR脱硝工艺具有简单、灵活的特点,适用于各种锅炉。
脱硝催化剂SCR和SNCR脱硝工艺中使用的催化剂对于脱硝效果起着至关重要的作用。
常见的SCR催化剂包括V2O5、TiO2等,而SNCR催化剂则主要是氨化铵(NH4OH)。
催化剂的选择和催化剂浓度的控制对脱硝的效果具有重要影响,需要根据不同的锅炉和排放条件进行优化。
脱硝效果评估脱硝工艺的效果可以通过测量燃煤锅炉的排气中氮氧化物(NOx)浓度来评估。
常见的评估方法包括使用化学分析仪器进行在线监测,以及对锅炉排放进行采样后进行实验室分析。
准确评估脱硝效果可以为优化工艺和改进控制措施提供依据。
脱硝技术前景随着环境保护意识的增强和大气污染治理的要求日益严格,燃煤锅炉脱硝技术在未来具有广阔的应用前景。
继续改进和创新脱硝工艺,提高脱硝效率和降低成本,将是今后的研究重点。
同时,与其他大气污染治理技术相结合,实现多污染物联合治理也是未来发展的方向。
脱硫脱硝工艺流程介绍
脱硫脱硝工艺流程:
一、预处理步骤:
1、进口空气洗涤:在进入脱硫脱硝装置前,将未经处理的烟气经过湿式洗涤器,去除大部分粉尘和杂质,净化烟气。
2、湿法脱硝:采用烟气中的水蒸汽作为吸收剂,在低pH液态压力下使烟气中的氮氧化物发生氨的溶解,以及沉淀成无机盐,实现对氮氧化物的脱除。
3、活性炭吸附:将经过湿式处理后的烟气经过活性炭吸附器,有效去除有机污染物,如苯、苯乙烯、甲苯和二甲苯等有害物质。
4、干式脱硫:采用活性碳吸附法对烟气中的二氧化硫进行脱硫,以实现对水中的有害物质的脱除。
二、优化步骤:
1、烟气再循环:将活性炭吸附塔的烟气回流到烟气洗涤器,以便活性炭的再利用。
2、水污染控制:将湿法脱硝装置排放的废水经过处理,然后将其进行集中处理,以保证废水的质量。
三、系统控制步骤:
1、烟气流量控制:通过安装烟气流量计来控制烟气的进气量,以确保设备的正常运行。
2、烟气温度控制:安装烟气温度控制器,实现对烟气温度的控制,以保证设备的正常运行。
3、烟气压力控制:安装烟气压力控制器,实现对烟气压力的控制,以确保设备的正常运行。
图6-1 典型火电厂SCR法烟气脱硝工艺流程图脱硝工艺介绍1脱硝工艺在锅炉系统中的位置图1 LNB、SNCR和SCR在锅炉系统中的位置目前成熟的燃煤电厂氮氧化物控制技术主要包括燃烧中脱硝技术和烟气脱硝技术,其中燃烧中脱硝技术是指低氮燃烧技术(LNB),烟气脱硝技术包括SCR、SNCR所示。
和SNCR/SCR联用技术等,其在锅炉系统中的位置如图1所示。
1.1烟气脱硝工艺应用气脱硝工艺应用目前进入工业应用的成熟的燃煤电厂烟气脱硝技术主要包括SCR、SNCR和SNCR/SCR联用技术。
联用技术。
1)SNCR 脱硝技术是指在锅炉炉膛出口900~1100℃的温度范围内喷入还原剂(如氨气)将其中的NOx 选择性还原成N 2和H 2O 。
SNCR 工艺对温度要求十分严格,对机组负荷变化适应性差,对煤质多变、机组负荷变动频繁的电厂,其应用受到限制。
大型机组脱硝效率一般只有25~45%,SNCR 脱硝技术一般只适用于老机组改造且对NOx 排放要求不高的区域。
排放要求不高的区域。
2)SCR 烟气脱硝技术是指在300~420℃的烟气温度范围内喷入氨气作为还原剂,在催化剂的作用下与烟气中的NOx 发生选择性催化反应生成N 2和H 2O 。
SCR 烟气脱硝技术具有脱硝效率高,成熟可靠,应用广泛,经济合理,适应性强,特别适合于煤质多变、机组负荷变动频繁以及对空气质量要求较敏感的区域的燃煤机组上使用。
SCR 脱硝效率一般可达80~90%,可将NOx 排放浓度降至100mg/m 3(标态,干基,6%O 2)以下。
)以下。
3)SNCR/SCR 联用技术是指在烟气流程中分别安装SNCR 和SCR 装置。
在SNCR 区段喷入液氨等作为还原剂,在SNCR 装置中将NOx 部分脱除;在SCR 区段利用SNCR 工艺逃逸的氨气在SCR 催化剂的作用下将烟气中的NOx 还原成N 2和H 2O 。
SNCR/SCR 联用工艺系统复杂,而且脱硝效率一般只有50~70%。
图6-1 典型火电厂SCR法烟气脱硝工艺流程图
脱硝工艺介绍
1脱硝工艺
图1 LNB、SNCR和SCR在锅炉系统中的位置
目前成熟的燃煤电厂氮氧化物控制技术主要包括燃烧中脱硝技术和烟气脱硝技术,其中燃烧中脱硝技术是指低氮燃烧技术(LNB),烟气脱硝技术包括SCR、SNCR和SNCR/SCR
1.1
联
80~90%
气在SCR催化剂的作用下将烟气中的NOx还原成N
2和H
2
O。
SNCR/SCR联用工艺系统复杂,而
且脱硝效率一般只有50~70%。
三种烟气脱硝技术的综合比较见表1。
表1 烟气脱硝技术比较
烟气中,与烟气中的NOx混合后,扩散到催化剂表面,在催化剂作用下,氨气(NH
3
)将烟气
中的NO和NO
2还原成无公害的氮气(N
2
)和水(H
2
O)(图3-6)。
这里“选择性”是指氨有选
择的与烟气中的NOx进行还原反应,而不与烟气中大量的O
2
作用。
整个反应的控制环节是烟气在催化剂表面层流区和催化剂微孔内的扩散。
图2 SCR反应示意图
SCR反应化学方程式如下:
4NO + 4NH
3 + O
2
→ 4N
2
+ 6H
2
O (3-1)
2NO
2 + 4NH
3
+ O
2
→ 3N
2
+ 6H
2
O (3-2)
在燃煤烟气的NOx中,NO约占95%,NO
2
约占5%,所以化学反应式(3-1)为主要反应,实际氨氮比接近1:1。
SCR技术通常采用V
2O
5
/TiO
2
基催化剂来促进脱硝还原反应。
脱硝催化剂使用高比表面积
专用锐钛型TiO
2作为载体,(钒)V
2
O
5
作为主要活性成分,为了提高脱硝催化剂的热稳定性、
机械强度和抗中毒性能,往往还在其中添加适量的WO
3、(钼)MoO
3
、玻璃纤维等作为助添
加剂。
催化剂活性成分V
2O
5
在催化还原NOx 的同时,还会催化氧化烟气中SO
2
转化成SO
3
(反
应
NH
4。
后处理
2
)以
➢会增加锅炉烟道系统阻力900~1200Pa;
➢系统运行会增加空预器入口烟气中SO3浓度,并残留部分未反应的逃逸氨气,两者
在空预器低温换热面上易发生反应形成NH
4HSO
4
,进而恶化空预器冷端的堵塞和腐蚀,因此
需要对空预器采取抗NH
4HSO
4
堵塞的措施。
2.2S CR技术分类
烟气脱硝SCR工艺根据反应器在烟气系统中的位置主要分为三种类型(图3):高灰型、低灰型和尾部型等。
1)高灰型SCR工艺:脱硝催化剂布置在省煤器和空预器之间,烟气中粉尘浓度和SO2含量高,工作环境相对恶劣,催化剂活性下降较快,需选用低SO
2
氧化活性、大节距、大体积催化剂,但烟气温度合适(300~400℃),经济性最高,是目前燃煤电厂烟气脱硝的主流布置形式。
2)低灰型SCR工艺:脱硝催化剂位于除尘器和脱硫设施之间,烟气中粉尘浓度低,但
SO
2含量高,可选用低SO
2
氧化活性、小节距、中体积催化剂,但为了满足催化剂反应活性
温度要求,需相应配置高温除尘系统,目前此项工艺仅在日本有所应用。
3)尾部型SCR工艺:脱硝催化剂位于脱硫设施后,烟气中粉尘浓度和SO2含量都很低,
2.3
喷氨格栅(AIG)喷人烟气中,与烟气混合后进入SCR催化反应器。
液氨法在国内的运行业绩较多。
2)氨水法(图5):通常是用25%的氨水溶液,将其置于存储罐中,然后通过加热装置使其蒸发,形成氨气和水蒸汽。
可以采用接触式蒸发器法或采用喷淋式蒸发器法。
氨水法对储存空间的需求较大,且运行中氨水蒸发需要消耗大量的能量,运行费用较高,国内业绩非常少。
3)尿素法:分为水解技术与热解技术。
其中水解技术包括AOD法(由SiiRTEC NiGi 公司提供),U2A法(由Wahlco公司和Hammon公司提供,图6)和NOxOUT Ultra热解技
术(Fuel tech公司提供,图7)。
目前在国内只有国电青山电厂采用了尿素水解技术,该脱硝机组已于2011年8月27日通过168h试运,但其技术经济性与稳定性还有待验证。
热解技术在国内有部分运行业绩,如华能北京热电厂(4×830t/h锅炉)、京能石景山热电厂(4×670t/h锅炉)、华能玉环电厂(4×1000MW机组)等。
相对液氨法尿素法制氨初投资及运行费用均较高。
图6 尿素水解制氨工艺流程图
图7 尿素热解制氨工艺流程图
三种还原剂的性能比较见表2:
储、卸车、制备、采购及运输路线方面尚无要求,但由于尿素需要使用专用设备热解或水
解制备氨气,设备投资成本高,而且尿素价格高,制氨过程中需要消耗大量的热量,运行成本高,所以在国内仅有少量的城市电厂因安全和占地等因素不得已使用尿素作为脱硝剂。
虽然尿素制氨有水解和热解两种工艺,但由于水解法存在启动时间长、跟踪机组负荷变化的速度较慢、腐蚀严重等问题,国内使用尿素作为脱硝剂几乎全部采用尿素热解工艺作为制氨工艺。
3催化剂系统
3.1
3~7%)
范围为6.9~9.2mm,比表面积约410~539m2/m3,单位体积的催化剂活性高,相同脱硝效率下所用催化剂的体积较小,一般适合于灰含量低于30g/m3的工作环境(可用极限范围为50g/m3以内)。
为增强催化剂迎风端的抗冲蚀磨损能力,通常上端部约10~20mm长度采取硬化措施。
➢平板式催化剂:以不锈钢金属筛板网为骨架,采取双侧挤压的方式将活性材料与金属板结合成型。
其结构形状与空预器的受热面相似,节距6.0~7.0mm,开孔率达到80~90%,防灰堵能力较强,适合于灰含量高的工作环境。
但因其比表面积小(280~350m2/m3),要达到相同的脱硝效率,需要体积数较大。
此外采用板式催化剂设计的SCR 反应器装置,相对
荷载大(体积大)。
全世界目前只有两家平板式催化剂制造商,分别是德国庄信万丰雅佶隆(JM ARGILLON)和日本日立(BHK)两家公司。
➢波纹式催化剂:由丹麦托普索(Topsoe)和日立造船(Hitachi Zosen)生产。
它以玻璃纤维作为骨架,孔径相对较小,单位体积的比表面积最高。
此外,由于壁厚相对较小,单位体积的催化剂重量低于蜂窝式与平板式。
在脱硝效率相同的情况下,波纹式催化剂的所需体积最小,且由于比重较小,SCR 反应器体积与支撑荷载普遍较小。
由于孔径较小,一般适用于低灰含量的烟气环境。
图9蜂窝式催化剂和平板式催化剂单元形状比较。
)。
应为间距不小于6.7mm,板厚不小于0.7mm;如选用蜂窝式催化剂,应为节距不小于8.2mm 的18孔催化剂,且应为顶端硬化类型,硬化长度在20mm以上。
➢催化剂中的活性成分V2O5含量通常小于1.5%,在这个范围内,V2O5含量越大活性越高,但最佳运行温度相差较大。
对于活性成分含量较高的催化剂,在300~350℃易发挥其最佳活性;对于活性成分含量适中的催化剂,其最佳使用温度为350~400℃;对于活性成分含量较低的催化剂,其最佳使用温度为375~425℃。
对于不同配方的催化剂,在其最佳的使用温度范围之外,活性均降低。
对于平均温度较高的工程,尤其超过420℃以上的运行环境,
需要增加催化剂中的WO
含量来提高催化剂的抗烧结能力,延缓催化剂因局部超高温(如大
3
于450℃)烧结所引起的活性惰化。
根据摸底测试试验结果(省煤器出口烟温最高达到
含量。
405℃),本项目应选用活性成分含量较低的催化剂,并适当提高WO
3
➢受烟气及飞灰的影响,催化剂活性随运行时间逐渐降低:运行初期,惰化速率最快;超过2000h后,惰化速率趋缓。
为了充分发挥每层催化剂的残余活性,最大限度利用现有催化剂,通常采用“X+1”模式布置催化剂,初装X层,预留一层。
需要强调指出,为了SCR运行的经济性,在蜂窝式催化剂选型时宜考虑选择壁厚不小于0.8mm的催化剂,以便将来采用清洗或再生技术,延长催化剂的使用寿命。
典型“2+1”布置形式的催化剂寿命管理
6-11),
X+1”的
3.3
6-35)
器与声波吹灰器联用方案以满足脱硝系统稳定运行要求。
图6-35 声波吹灰器和蒸汽吹灰器形状比较
图6-36 声波吹灰器和蒸汽吹灰器安装形状比较
4反应器与催化剂安装
脱硝反应器的支撑钢架及烟道、反应器壳体等,采取现场制作组装,利用150t履带吊和50t汽车吊相结合的方式进行安装。
安装机械布置在锅炉烟道两侧。
根据现场空间、催化剂支撑钢梁布置方式、SCR反应器的催化剂安装门及吊装方式,催化剂的安装系统(图6-40~6-42)设计如下:
➢在反应器的外侧平台处设催化剂吊装轨道、电动葫芦及吊装孔,以便将运送到现场的催化剂模块从地面吊装到催化剂安装平台上。
➢在吊装孔处将催化剂模块放置到轮式平板小车上,运载到反应器后墙的催化剂安装门外等待安装。
➢将耙式蒸汽吹灰器退出一个行程,使催化剂安装门对应的反应器内部空间没有吹灰器耙管。
在上一层催化剂的支撑钢梁下与吹灰器耙管的上方安装带手动葫芦的临时单轨吊,。