结晶方法和结晶器-化工
- 格式:ppt
- 大小:1.34 MB
- 文档页数:3
Messo型卧式结晶器在化工行业的使用摘要:详细介绍了Messo型卧式结晶器的工作原理,以及在己二酸行业中,结晶器日常操作要点。
关键词:结晶器真空绝热冷却结晶结晶己二酸(ADA)是重要的脂肪族二元酸,主要用来制造尼龙66、聚氨酯、合成树脂及增塑剂等。
近几年,由于己二酸市场价格暴涨,行业盈利十分丰厚,吸引了众多企业投资新建己二酸生产装置,目前国内生产己二酸的厂家近十余家,截止到2013年6月,我国己二酸的生产能力已经增加到165万t/a。
目前,在国内己二酸行业中,己二酸溶液结晶分离采用的是真空冷却法,与其相对应的结晶分离设备是Messo型卧式结晶器:一、Messo型卧式结晶器结构简述己二酸生产使用的Messo型卧式结晶器,共有12个隔室,相邻两室由虹吸管连通,每个隔室分别与顶部冷凝器及真空系统连接,以保持每个室真空度的不同,在结晶过程中,第1室至第12室真空度及温度依次降低,己二酸溶液在一定真空度下绝热蒸发降温,从而己二酸溶液达到过饱和而结晶析出。
为使溶液使溶液内的晶核或结晶能均的生长,并避免析出的结晶沉淀在底部,各个室内在溢流管附近都设有推进式搅拌器。
己二酸浆料在经过结晶器过程中,在设备内壁上易结疤形成附着层。
这些附着层逐渐积累,最后使整个隔室空间减小,结晶效果很差,结晶质量降低,为避免结晶器结疤影响操作,各室均设有热水清洗管道。
可根据需要进行自动程序控制或手动控制清洗虹吸管及结晶器内壁。
真空系统采用三级汽喷射泵组+真空泵组合,以达到很低的真空度。
二、真空绝热冷却结晶原理真空绝热冷却结晶是使溶剂在真空下蒸发而使溶液绝热冷却的结晶法。
此法适用于具有正溶解度特性而溶解度随温度的变化率中等的物系。
结晶器内维持较高的真空度,当溶液送入绝热保温的密闭结晶器后,由于与真空度相对应的溶液沸点远低于进料溶液温度,溶液势必发生闪急蒸发而绝热冷却到与结晶器压强相对应的平衡温度(在真空条件下,闪蒸效应出现的蒸汽,瞬间即可以抽走,随后开始降温过程,当达到稳定状态后,溶液的温度冷却到与结晶器压强相对应的平衡温度)。
蒸发结晶工艺及设备蒸发结晶工艺及设备一、引言蒸发结晶是一种常用的分离纯化技术,广泛应用于化工、制药、食品等行业。
本文将详细介绍蒸发结晶的工艺流程以及相关设备。
二、蒸发结晶工艺流程1. 原料准备在进行蒸发结晶之前,需要准备好相应的原料。
原料可以是溶液、悬浮液或浸出液等。
2. 进料与预热将原料通过进料系统加入到蒸发器中,并在进料系统中进行预热。
预热可以提高进入蒸发器的温度,促进溶质的溶解度。
3. 蒸发器蒸发器是进行蒸发过程的核心设备。
有多种类型的蒸发器可供选择,如单效、多效、闪蒸等。
根据具体情况选择适合的蒸发器。
4. 转移热量在蒸发过程中,需要通过传热介质将热量转移到原料中。
常用的传热介质有水、汽等。
传热介质与原料之间通过换热器进行热量交换。
5. 浓缩与结晶在蒸发过程中,水分逐渐蒸发,原料逐渐浓缩。
当溶质浓度达到一定程度时,开始出现结晶现象。
结晶可以通过控制温度、压力和溶质浓度来实现。
6. 结晶分离结晶后的固体颗粒需要与溶液分离。
常用的分离方式有离心、过滤、沉淀等。
选择合适的分离方式可以提高产品纯度和产量。
7. 溶剂回收在蒸发结晶过程中,溶剂会随着水分一起蒸发。
为了节约资源和降低成本,可以通过回收溶剂来减少损耗。
8. 产品收集与干燥结晶后的产物需要进行收集和干燥。
收集可以通过输送带、斗式提升机等设备实现,干燥可以通过空气流动、真空等方式进行。
三、蒸发结晶设备1. 蒸发器蒸发器是实现蒸发过程的核心设备。
常见的蒸发器有单效蒸发器和多效蒸发器。
单效蒸发器适用于低浓度溶液,多效蒸发器适用于高浓度溶液。
2. 换热器换热器用于传递热量,将热量从传热介质转移到原料中。
常见的换热器有管壳式换热器、板式换热器等。
3. 结晶器结晶器用于实现结晶过程。
常见的结晶器有搅拌结晶器、静态结晶器等。
搅拌结晶器通过搅拌来促进结晶,静态结晶器则通过控制温度和压力来实现。
4. 分离设备分离设备用于将固体颗粒与溶液分离。
常见的分离设备有离心机、过滤机等。
溶液结晶的方法、结晶器结构与工作原理根据析出固体的方式不同,可将结晶分为溶液结晶、熔融结晶、升华结晶和沉淀结晶等多种类型。
工业上使用上最为广泛的是溶液结晶,采用降温或移除溶剂的方法使溶液达到过饱和状态,析出溶质作为产品。
此外,也可按照操作是否连续,将结晶操作分为间歇式和连续式,或按有无搅拌装置分为搅拌式和无搅拌式等。
一、溶液结晶的方法溶液结晶是指晶体从溶液中析出的过程。
溶液结晶的基本条件是溶液的过饱和,一般经过以下过程:不饱和溶液、饱和溶液、过饱和溶液、晶核的形成、晶体生长。
1、冷却法冷却法也称降温法,它是通过冷却降温使溶液达到过饱和的方法。
冷却结晶基本上不除去溶剂,靠移去溶液的热量以降低温度,使溶液达到过饱和状态,从而进行结晶。
这种方法适用于溶解度随温度降低而显著下降的情况。
冷却又分为自然冷却、间壁冷却和直接接触冷却。
自然冷却法是使溶液在大气中冷却结晶,其设备结构和操作均最简单,但冷却速率慢、生产能力低且难于控制晶体质量。
间壁冷却法是工业上广为采用的结晶方法,靠夹套或管壁间接传热冷却结晶,这种方式消耗能量少,应用较广泛,但冷却传热速率较低,冷却壁面上常有晶体析出,在器壁上形成晶垢或晶疤,影响冷却效果。
直接接触冷却器以空气或制冷剂直接与溶液接触冷却。
这种方法克服了间壁冷却的缺点,传热效率高,没有结疤问题,但设备体积庞大;采用这种操作必须注意的是选用的冷却介质不能与结晶母液中的溶剂互溶或者虽互溶但应易于分离,而且对结晶产品无污染。
2、蒸发法蒸发法是靠去除部分溶剂来达到溶液过饱和状态而进行结晶的方法,适用于溶解度随温度变化不大的情况。
蒸发结晶消耗的能量较多,并且也存在着加热面容易结垢的问题,但对可以回收溶剂的结晶过程还是合算的。
蒸发结晶设备常在真空度不高的减压下操作,目的在于降低操作温度,以利于热敏性产品的稳定,并减少热能损耗。
3、真空冷却法真空冷却法又称闪蒸冷却结晶法。
它是溶剂在真空条件下闪蒸蒸发而使溶液绝热冷却的结晶法。
⼗种常见的⼯业结晶器结构原理⼯业结晶的⽅法溶液结晶是指晶体从溶液中析出的过程。
对于⼯业结晶按照结晶过程中过饱和度形成的⽅式,可将溶液结晶分为两⼤类:移除部分溶剂的结晶和不移除溶剂的结晶。
⼀、不移除溶剂的结晶法不移除溶剂的结晶称冷却结晶法,它基本上不去除溶剂,溶液的过饱和度是借助冷却获得,故适⽤于溶解度随温度降低⽽显著下降的物系。
⼆、移除部分溶剂的结晶法按照具体操作的情况,此法⼜可分为蒸发结晶法和真空冷却结晶法。
蒸发结晶是使溶液在常压(沸点温度下)或减压(低于正常沸点)下蒸发,部分溶剂汽化,从⽽获得过饱和溶液。
此法适⽤于溶解度随温度变化不⼤的物系,例如NaCl及⽆⽔硫酸钠等。
真空冷却结晶是使溶液在较⾼真空度下绝热闪蒸的⽅法。
在这种⽅法中,溶液经历的是绝热等焓过程,在部分溶剂被蒸发的同时,溶液亦被冷却。
因此,此法实质上兼有蒸发结晶和冷却结晶共有的特点,适⽤于具有中等溶解度物系的结晶。
此外,也可按照操作连续与否,将结晶操作分为间歇式和连续式,或按有⽆搅拌分为搅拌式和⽆搅拌式等。
常见的⼯业结晶器⼀、冷却结晶器间接换热釜式冷却结晶器是⽬前应⽤最⼴泛的⼀类冷却结晶器。
冷却结晶器根据其冷却形式⼜分为内循环冷却式和外循环冷却式结晶器。
空⽓冷却式结晶器是⼀种最简单的敞开型结晶器,靠顶部较⼤的敞开液⾯以及器壁与空⽓间的换热,以降低⾃⾝温度从⽽达到冷却析出结晶的⽬的,并不加晶种,也不搅拌,不⽤任何⽅法控制冷却速率及晶核的形成和晶体的⽣长。
冷却结晶过程所需冷量由夹套或外部换热器提供。
①内循环冷却式结晶器内循环式冷却结晶器其冷却剂与溶剂通过结晶器的夹套进⾏热交换。
这种设备由于换热器的换热⾯积受结晶器的限制,其换热器量不⼤。
②外循环冷却式结晶器外循环式冷却结晶器,其冷却剂与溶液通过结晶器外部的冷却器进⾏热交换。
这种设备的换热⾯积不受结晶器的限制,传热系数较⼤,易实现连续操作。
⼆、蒸发结晶器蒸发结晶器与⽤于溶液浓缩的普通蒸发器在设备结构及操作上完全相同。
一、工业结晶方法简介什么是结晶?在一定的温度下,一种可溶性的溶质在某种溶剂中的溶解度是一定的,并且不同温度下溶解度不同,一般来说温度升高,溶解度增大。
当降低溶液温度或减少溶剂量时,溶质将以固体形态从溶液中析出,这一过程叫做结晶。
工业生产中常用的结晶操作方法大致分为六种:1、冷却结晶:通过降低溶液的温度使溶液达到过饱和而结晶。
适用于溶解度随温度降低而显著减小的盐类结晶操作。
2、蒸发结晶:将溶剂部分汽化,使溶液达到过饱和而结晶。
这是最早采用的一种结晶方法。
适用于溶解度随温度升高而变化不大的盐类结晶操作,例如食盐的生产。
3、真空结晶:使热溶液在真空状态下绝热蒸发,除去一部分溶剂,使部分热量以汽化热的型式被带走,降低溶液温度,实际上是同时用冷却和蒸发结晶方法,使溶液达到过饱和而结晶。
这种方法适用于中等溶解度的盐类和有机酸,例如硫酸铵、己二酸等。
4、喷雾结晶;5、盐析结晶;6、升华结晶;根椐结晶的方法,可将常用的结晶器分为四大类:冷却型结晶器、蒸发型结晶器、真空蒸发冷却结晶器和盐析结晶器。
我们采用的精己二酸结晶器,典型的卧式真空多级闪蒸结晶器CMSMPR(Continuous Mixed-Suspension Mixed-Product Removal Crystallizer),具有全混悬浮,全混出料,连续结晶,不宜结垢,处理量大的特点。
二、结晶原理晶体从溶液中析出一般可分为三个阶段:过饱和溶液的形成、晶核的生成和晶体的成长阶段。
过饱和溶液析出过量的溶质产生晶核,然后晶核长大形成宏观的晶体。
晶体成长过程是溶质的扩散过程和表面反应过程串联的联合过程。
表面反应过程的速率一般较快,所以扩散过程是晶体成长速率的控制步骤。
通常,晶体成长速率随溶液的过饱和度或过冷度的增加而增大。
在结晶操作中,晶核的生成和晶体的成长同时进行。
这两个过程的速率的大小,对结晶的效果和产品的质量有很大的影响。
三、晶体成核过程对产品质量影响机理分析晶体的成核速率是决定晶体产品粒度分布的首要动力学因素。
oslo结晶器和fc结晶器原理Oslo结晶器和FC结晶器原理引言:结晶器是一种用于实现物质结晶过程的设备。
在化学、冶金、生物、材料等领域中,结晶过程被广泛应用于纯化、提纯、晶体生长和材料制备等方面。
本文将介绍两种常见的结晶器——Oslo结晶器和FC结晶器,分别探讨其工作原理和应用特点。
一、Oslo结晶器的原理Oslo结晶器是一种常用的连续结晶设备,其原理基于湿式结晶的过程。
它主要包括稳定器、冷却器、搅拌器和收集器等部分。
Oslo结晶器通过控制温度、溶液浓度和搅拌速度等参数,使溶液中的溶质逐渐凝结成晶体。
Oslo结晶器的工作原理可概括为以下几个步骤:1. 溶液进入稳定器:溶液首先进入稳定器,通过稳定器中的调节装置控制温度和浓度,以保持溶液在稳定的状态。
2. 溶液进入冷却器:稳定的溶液随后进入冷却器,在冷却器中通过降低溶液温度,使溶质逐渐达到过饱和状态。
3. 溶液进入搅拌器:过饱和的溶液进入搅拌器,通过搅拌器中的机械搅拌或气体搅拌等方式,引入扰动,促进晶体的形核和生长。
4. 溶液进入收集器:晶体在搅拌器中逐渐生长,随着溶液流动,晶体被带到收集器中,从而实现结晶过程。
Oslo结晶器的特点:1. 高效连续:Oslo结晶器能够实现高效连续的结晶过程,大大提高了生产效率。
2. 粒度可控:通过调节温度、浓度和搅拌速度等参数,可以控制晶体的粒度和形状,满足不同需求。
3. 适用范围广:Oslo结晶器适用于各种溶液的结晶过程,具有较广泛的应用领域。
二、FC结晶器的原理FC结晶器是一种常见的批式结晶设备,其原理基于气体扩散结晶的过程。
它主要包括反应器、冷却器和收集器等部分。
FC结晶器通过控制温度、压力和流速等参数,使气体中的溶质逐渐凝结成晶体。
FC结晶器的工作原理可概括为以下几个步骤:1. 溶液进入反应器:溶液首先进入反应器,通过加热使其达到过饱和状态。
2. 过饱和气体进入冷却器:过饱和的气体进入冷却器,通过降低温度,使气体中的溶质逐渐凝结成晶体。
2022,32(2)孙群山 连续结晶技术工业化实验 连续结晶技术工业化实验孙群山 广西西陇化工有限公司 博白 537617摘要 在硫酸法钛白生产线的亚铁结晶和分离单元,通过成功进行新型连续结晶工业化实验。
发现连续结晶技术具有连续性、全自动化、更节能、七水亚铁质量好等优越性,可以在硫酸法钛白行业推广和应用。
关键词 连续结晶 工业化实验 节能减排孙群山:助理工程师。
毕业于河南广播电视大学无机化工专业。
从事钛白粉生产企业的技术管理与研发工作。
联系电话:13972614515,E mail:sunqunshan@126 com。
硫酸法钛白生产的原料钛铁矿中总钛含量约45%~50%,总铁含量约33%~37%。
酸解单元是用浓硫酸把固体的钛铁矿通过化学反应,制备成可溶性钛、铁等硫酸盐溶液。
因此,酸解钛液中,不可避免含有大量的可溶性硫酸亚铁。
为满足水解钛液工艺要求,需要设置硫酸亚铁结晶和分离单元,依据结晶原理,降低钛液温度,使得钛液中可溶性的铁盐达到过饱和而结晶析出,以FeSO4·7H2O结晶形态,从钛液中除去。
硫酸法钛白生产的结晶和分离单元工艺,最初使用硫酸亚铁结晶的方法是冷冻结晶工艺。
但因不适合钛白的生产装置大型化的要求,而被真空结晶替代。
目前节能减排要求越来越高,真空结晶法因需消耗大量蒸汽,造成综合能耗很高,已完全不合时宜。
近几年来,一系列低能耗亚铁结晶先进技术应运而生,如等梯度降温结晶、VCE结晶等。
本文阐述亚铁结晶另一种先进的、新型技术———连续结晶。
连续结晶技术吸取了真空闪蒸和冷冻结晶各自的优势,同时实现了连续化作业,有利于钛白粉生产的连续化和大型化。
经过持续改进,最终2020年7月在广西西陇化工有限公司工业化实验成功。
从实验结果来看,该技术具有连续性、自动化程度高、更节能、不用蒸汽、亚铁质量好等优越性,可以在硫酸法钛白行业推广和应用,进一步推动钛白行业可持续、绿色发展。
1 结晶方法简介在硫酸法钛白生产中,目前结晶方法有冷冻结晶、真空结晶、等梯度真空结晶、VCE结晶、及本文所述新型的连续结晶,共有五种工艺技术[1,2]。