2017-2018年人教版八年级下《一次函数》期末复习试卷含答案
- 格式:doc
- 大小:121.50 KB
- 文档页数:7
一次函数1、下列问题中,变量y 与x 成一次函数关系的是( )A. 路程一定时,时间y 和速度x 的关系B. 长 10 米的铁丝折成长为C. 圆的面积y 与它的半径xy 米,宽为x 米的长方形D. 斜边长为 5 的直角三角形的直角边y 和x2、函数A.x ≠1B.x >- 1 的自变量C.x≥-x 的取值范围为(1 D.x≥- 1 且)x≠13、图象中所反映的过程是:小敏从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中 x 表示时间, y 表示小敏离家的距离,根据图象提供的信息,以下说法错误的是()A. 体育场离小敏家 2.5 千米B. 体育场离早餐店 4 千米C. 小敏在体育场锻炼了15 分钟D.小敏从早餐店回到家用时30 分钟4、已知如图,正比例函数y=kx (k≠0)的函数值y 随 x 的增大而增大,则一次函数y=x+k 的图象大致是()A. B. C. D.5、一次函数y=-x+6 的图像不经过()A. 第一象限B.第二象限C.第三象限D.第四象限6、已知A(﹣ 4, y1), B( 2,y2)在直线y=﹣1/2x+20 上,则y1、 y2大小关系是()A.y 1> y2B.y 1=y2C.y 1<y2D. 不能比较7、已知某一次函数的图象与直线y=﹣x+1 平行,且过点(8, 2),那么此一次函数为()A.y= ﹣x﹣2B.y= ﹣x+10C.y=﹣x﹣6D.y=﹣x﹣108、在同一平面直角坐标系中,直线与直线的交点不可能在()A. B. C. D.9、如图,已知函数y=3x+b 和 y=ax﹣3的图象交于点P(﹣ 2,﹣ 5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x >﹣5B.x >﹣2C.x >﹣3D.x <﹣210、某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图 . 若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟11、已知直线y=﹣x+8 与 x 轴、 y 轴分别交于点 A 和点 B, M是 OB上的一点,若将△ ABM 沿 AM折叠,点B 恰好落在x 轴上的点B′处,则直线AM的函数解析式是()A.y= ﹣x+8B.y= ﹣x+8C.y=﹣x+3D.y=﹣x+312、如图,直线y= x+4 与x 轴、 y 轴分别交于点 A 和点B,点C、D 分别为线段AB、OB的中点,点P 为直线OA上一动点,PC+PD值最小时点P 的坐标为()A.(﹣ 3, 0)B. (﹣ 6, 0)C. (﹣,0)D. (﹣, 0)13、“五四”青年节期间,校团委对团员参加活动情况进行表彰,计划分为优秀奖和贡献奖,为此联系印刷公司设计了两种奖状,A,B 两家公司都为学校提出了相同规格和单价的两种奖状,其中优秀奖的奖状 6 元/ 张,贡献奖的奖状 5 元 / 张,经过协商, A 公司的优惠条件是:两种奖状都打八折,但要收制版费50 元;B 公司的优惠条件是:两种奖状都打九折;根据学校要求,优秀奖的个数是贡献奖的2 倍还多10 个,如果设贡献奖的个数是x 个 .(1)分别写出校团委购买A, B 两家印刷厂所需要的总费用y1(元)和y2(元)与贡献奖个数x 之间的函数关系式;(2)校团委选择哪家印刷公司比较合算?请说明理由.14、某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200 斤 . 超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800 斤,乙养殖场每天最多可调出900 斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:到超市的路程(千米) 运费 ( 元/ 斤·千米 )甲养殖场200 0.012乙养殖场140 0.015设从甲养殖场调运鸡蛋x 斤,总运费为W元(1)试写出 W与 x 的函数关系式 .(2)怎样安排调运方案才能使每天的总运费最省?参考答案1、 B2、 D3、 B4、 A5、 C6、 A7、 B.8、 D9、 B10、 A11、 C12、 C13、解:( 1)由题意y1=4.8 (2x+10 ) +4x+50=13.6x+98 ,y2 =5.4 ( 2x+10) +4.5x=15.3x+54.(2)当 y1>y2时, 13.6x+98 ∴当贡献奖个数小于等于>15.3x+54 ,解得 x<25,∵x为整数,25 个时,选 B 公司比较合算;当贡献奖个数大于25 个时,选 A 公司比较合算.14、解:从甲养殖场调运了x 斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:解得: 300≤x≤800,总运费 W=200×0.012x+140×0.015 ×(1200﹣x)=0.3x+2520∵W随 x 的增大而增大,∴当x=300 时, W最小 =2610 元,,( 300≤x≤800),∴每天从甲养殖场调运了300 斤鸡蛋,从乙养殖场调运了900 斤鸡蛋,每天的总运费最省.。
一次函数一、填空题(每小题3分,共18分)1.在平面直角坐标系中,已知一次函数y =2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1____________y 2.(填“>”“<”或“=”)2.当x =____________时,函数y =2x -1与y =3x +2有相同的函数值. 3.如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是____________. 4.表格描述的是y 与x 之间的函数关系:则m 与n 的大小关系是5.如图,直线y =kx +b 经过A(-2,-1)和B(-3,0)两点,则不等式-3≤-2x -5<kx +b 的解集是____________.6.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.汽车到达乙地时油箱中还余油____________升. 二、选择题(每小题3分,共30分) 7.下列函数是一次函数的是( )A .-32x 2+y =0B .y =4x 2-1 C .y =2x D .y =3x8.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y =1x -3 B .y =1x -3C .y =x -3D .y =x -3 9.若正比例函数的图象经过点(-1,2),则这个图象必经过点( ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)10.(阜新中考)对于一次函数y =kx +k -1(k ≠0),下列叙述正确的是( ) A .当0<k <1时,函数图象经过第一、二、三象限 B .当k >0时,y 随x 的增大而减小C .当k <1时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点(-1,-2)11.如图,直线y =ax +b 过点A(0,2)和点B(-3,0),则方程ax +b =0的解是( )A .x =2B .x =0C .x =-1D .x =-312.(雅安中考)若式子k -1+(k -1)0有意义,则一次函数y =(1-k)x +k -1的图象可能是( )13.要使直线y =(2m -3)x +(3n +1)的图象经过第一、二、四象限,则m 与n 的取值范围分别为( ) A .m >32,n >-13 B .m >3,n >-3C .m <32,n <-13D .m <32,n >-1314.(阜新中考)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15 cm ,9只饭碗摞起来的高度为20 cm ,那么11只饭碗摞起来的高度更接近( ) A .21 cm B .22 cm C .23 cm D .24 cm15.惠农种子公司以一定价格销售“丰收一号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间函数关系如图所示.下列四种说法:①一次购买30千克种子时,付款金额为1 000元;②一次购买种子数量不超过10千克时,销售价格为50元/千克;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折;④一次购买40千克种子比分两次购买且每次购买20千克种子少花200元钱,其中正确的个数是( )A .1B .2C .3D .416.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时,点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)三、解答题(共52分)17.(8分)已知:y与x+2成正比例,且当x=1时,y=-6.(1)求y与x之间的函数解析式;(2)若点M(m,4)在这个函数的图象上,求m的值.18.(10分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.19.(10分)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.20.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图1所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图2所示.(1)直接写出y与x之间的函数解析式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?21.(12分)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____________km/h,H点坐标为____________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?参考答案1.<2.-33.m ≤04.m >n5.-2<x ≤-16.6 7.D 8.D 9.D 10.C 11.D 12.C 13.D 14.C 15.C 提示:①②③正确,④错误.16.C17.(1)根据题意,设y =k(x +2).把x =1,y =-6代入,得-6=k(1+2).解得k =-2.∴y 与x 的函数解析式为y =-2(x +2),即y =-2x -4.(2)把点M(m ,4)代入y =-2x -4,得4=-2m -4.解得m =-4.18.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2. (2)S △BOC =12×2×2=2.19.(1)32当x =-1时,y =-2×(-1)+1=3, ∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k<-1,解得2<k <4.20.(1)y =⎩⎪⎨⎪⎧2x (0≤x ≤15),-6x +120(15<x ≤20).(2)设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p =kx +b(10≤x ≤20).把(10,10),(20,8)代入,得⎩⎪⎨⎪⎧10k +b =10,20k +b =8.解得⎩⎨⎧k =-15,b =12.∴p =-15x +12(10≤x ≤20).当x =15时,p =-15×15+12=9.∴第10天的销售金额为2×10×10=200(元);第15天的销售金额为2×15×9=270(元). (3)当y ≥24时,①24≤2x ≤30,解得12≤x ≤15;②24≤-6x +120<30,解得15<x ≤16.综上可知“最佳销售期”的范围是12≤x ≤16,共有5天.对于函数p =-15x +12(10≤x ≤20),y 随x 值的增大而减小,∴当x =12时,y max =-15×12+12=9.6.即在此期间,销售单价最高为9.6元/千克.21.(1)20 (32,20)(2)设直线AB 的解析式为y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得y 1=-20x +30.∵AB ∥CD ,∴设直线CD 的解析式为y 2=-20x +b 2.将点C(1,20)代入解析式,得b 2=40.∴y 2=-20x +40.设直线EF 的解析式为y 3=k 3x +b 3.将点E(43,30),H(32,20)代入解析式,得k 3=-60,b 3=110.∴y 3=-60x +110.解⎩⎪⎨⎪⎧y =-60x +110,y =-20x +40,得⎩⎪⎨⎪⎧x =1.75,y =5.∴点D 坐标为(1.75,5).30-5=25(km).∴小芳出发1.75小时后被妈妈追上,此时距家25 km.(3)将y =0代入直线CD 解析式,得-20x +40=0.解得x =2;将y =0代入直线EF 的解析式,得-60x +110=0.解得x =116.2-116=16(h)=10(分钟).答:小芳比预计时间早10分钟到达乙地.。
2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
2018年八年级下《一次函数》期末专题培优复习(人教版
有答案)
CO
M b-6)3的值等于
三、解答题
19、已知函数y=(2m+1)x+m-3
(1)若函数图象经过原点,求m的值
(2)若函数的图象平行于直线y=3x-3,求m的值
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围
6=4,B’(-4,0)
(2)设OM=m则B’M=BM=8-m,m2+42=(8-m)2,m=3,M(0,3)
设直线AM的解析式为y=kx+b
23、解(1)当y=0时, x+1=0,解得x=﹣2,则A(﹣2,0),
当x=0时,y= x+1=1,则B(0,1);
(2)AB= = ,当AP=AB时,P点坐标为(﹣,0)或(,0);
当BP=BA时,P点坐标为(2,0);
当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,
设P(t,0),则OA=t+2,OB=t+2,
在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);
(3)如图2,设D(x, x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴ 2 2+ 2 x=4,解得x=2,此时D点坐标为(2,2);
当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴ 2 (﹣x)﹣ 2 2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),
综上所述,D点坐标为(2,2)或(﹣6,﹣2)
故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2)24、(1)2;(0,3);。
《第19章一次函数》一、选择题1.直线y=kx+b交坐标轴于A(﹣6,0),B(0,7)两点,则不等式kx+b>0的解集为()A.x<﹣7 B.x>7 C.x>﹣6 D.x<12.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<13.直线y=kx+b与坐标轴交于A(﹣3,0)、B(0,﹣5)两点,则不等式kx+b<0的解集为()A.x>3 B.x<﹣3 C.x>﹣3 D.x<34.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<05.已知直线y=3x+m与x轴交点的坐标为(6,0),则关于x的不等式3x+m≤0的解集是()A.x≤6 B.x<6 C.x≥6 D.x>6二、非选择题6.如图是直线y=﹣2x+2的图象,则方程﹣2x+2=0的解是,不等式﹣2x+2<0的解集为,不等式﹣2x+2>2的解集为.7.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,与直线y=x交于点A.(1)试求k与b;(2)结合图象写出不等式组0<kx+b<x的解集.8.已知直线y=2x+m与两坐标轴围成三角形的面积为24.(1)求m的值;(2)x取何值时y>5.9.某超市计划投入一笔资金采购一批紧销商品,经过市场调查发现:如果月初出售可获利15%,并把本利再投资其他商品,到月末又可获利10%,如果月末出售可获利30%.但要付出仓储费用700元.请问:根据超市的资金状况,如何购销获利较多?10.某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号A型B型成本(元/台)22002600售价(元/台)28003000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?11.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行驶8千米时,收费应为元;(2)从图象上你能获得哪些信息(请写出2条);①;②;(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.12.如图,l1表示神风摩托车厂一天的销售收入与摩托车销售量的关系;l2表示摩托车厂一天的销售成本与销售量的关系.(1)写出销售收入与销售量之间的函数关系式;(2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本;(4)当一天的销售超过多少辆时,工厂才能获利?(利润=收入﹣成本)13.四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.14.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?15.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?16.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.《第19章一次函数》参考答案与试题解析一、选择题1.直线y=kx+b交坐标轴于A(﹣6,0),B(0,7)两点,则不等式kx+b>0的解集为()A.x<﹣7 B.x>7 C.x>﹣6 D.x<1【考点】一次函数与一元一次不等式.【专题】计算题.【分析】根据题意画出图形,再根据当y>0时,图象在x轴上方,结合图象可直接得到答案.【解答】解:如图所示:∵直线y=kx+b交x轴于A(﹣6,0),∴不等式kx+b>0的解集为x>﹣6,故选:C.【点评】此题主要考查了一次函数与一元一次不等式的关系,关键是掌握当y>0时,图象在x轴上方;当y<0时,图象在x轴上方.2.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<1【考点】一次函数与一元一次不等式;解一元一次不等式;一次函数的性质;一次函数图象上点的坐标特征.【专题】计算题;压轴题;数形结合.【分析】根据一次函数y=ax+b的图象过第一、二、四象限,得到b>0,a<0,把(2,0)代入解析式y=ax+b求出=﹣2,解a(x﹣1)﹣b>0,得x﹣1<,代入即可求出答案.【解答】解:∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A.【点评】本题主要考查对一次函数与一元一次不等式的关系,一次函数的性质,一次函数图象上点的坐标特征,解一元一次不等式等知识点的理解和掌握,能根据一次函数的性质得出a、b的正负,并正确地解不等式是解此题的关键.3.直线y=kx+b与坐标轴交于A(﹣3,0)、B(0,﹣5)两点,则不等式kx+b<0的解集为()A.x>3 B.x<﹣3 C.x>﹣3 D.x<3【考点】一次函数与一元一次不等式.【分析】由于函数值y随x的增大而减小,而当x=﹣3时,y=0,因而不等式kx+b <0的解集是x>﹣3.【解答】解:直线y=kx+b交坐标轴于A(﹣3,0)、B(0,﹣5)两点,即当x=﹣3时,y=0,而函数值y随x的增大而减小,因而不等式kx+b<0的解集是x>﹣3.故选C.【点评】认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解决本题的关键.4.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<0【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A 与点B之间的横坐标的范围.【解答】解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.5.已知直线y=3x+m与x轴交点的坐标为(6,0),则关于x的不等式3x+m≤0的解集是()A.x≤6 B.x<6 C.x≥6 D.x>6【考点】一次函数与一元一次不等式.【专题】计算题.【分析】由函数的解析式知:该一次函数的函数值y随x的增大而增大;已知函数与x轴的交点为(6,0);因此不等式解集为可求出.【解答】解:∵直线y=3x+m与x轴的交点为(6,0),∴y随x的增大而增大,当x≤6时,y≤0,∴关于x的不等式3x+m≤0的解集是x≤6,故选A.【点评】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.二、非选择题6.如图是直线y=﹣2x+2的图象,则方程﹣2x+2=0的解是x=1 ,不等式﹣2x+2<0的解集为x>1 ,不等式﹣2x+2>2的解集为x<0 .【考点】一次函数与一元一次不等式;一次函数与一元一次方程.【专题】计算题;数形结合.【分析】根据图象经过点(1,0)可以求得方程的解,可以求得不等式﹣2x+2<0的解集,根据图象经过(0,2)可求得不等式﹣2x+2>2的解集;【解答】解:∵函数图象经过(1,0),所以程﹣2x+2=0的解是x=1,不等式﹣2x+2<0的解集为x>1;∵函数图象经过(0,2),∴不等式﹣2x+2>2的解集为x<0.故答案为:x=1,x>1,x<0.【点评】本题考查的是一次函数与一元一次不等式及一元一次方程,能利用数形结合求出不等式的取值范围是解答此题的关键.7.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,与直线y=x交于点A.(1)试求k与b;(2)结合图象写出不等式组0<kx+b<x的解集.【考点】一次函数与一元一次不等式;两条直线相交或平行问题.【专题】数形结合;待定系数法.【分析】(1)将已知两点的坐标代入到y=kx+b中,利用待定系数法即可求得k、b 的值;(2)满足不等式组0<kx+b<x就是一次函数的图象位于正比例函数的图象的下方且位于x轴的上方,据此求解.【解答】解:(1)∵直线y=kx+b经过A(3,1)和B(6,0)两点,∴,解得:;(2)∵与直线y=x交于点A,点B的解析式为(6,0),∴不等式组0<kx+b<x的解集为3<x<6.【点评】本题考查了一次函数与一元一次不等式及两条直线平行或相交的问题,利用待定系数法确定一次函数的解析式是解答本题的关键,难度中等偏上.8.已知直线y=2x+m与两坐标轴围成三角形的面积为24.(1)求m的值;(2)x取何值时y>5.【考点】一次函数图象上点的坐标特征.【专题】计算题;分类讨论.【分析】(1)把直线y=2x+m与x轴的交点坐标是(﹣,0)与y轴的交点坐标是(0,m),根据三角形的面积是24可得m值,从而求出直线解析;(2)由(1)中的解析式列出关于x的不等式,通过解不等式来求x的取值范围.【解答】解:(1)由直线y=2x+m得到:当x=0时,y=m.当y=0时,x=﹣.则依题意有|﹣|•|m|=24,即=24,解得,m=±4;(2)由(1)可得,直线的解析式是y=2x+4或y=2x﹣4.当y=2x+4时,由y>5得到:2x+4>5.解得x>;当y=2x﹣4时,由y>5得到:2x﹣4>5.解得x>.【点评】本题考查了一次函数图象上点的左边特征.在求m的值时,要注意有2个值.9.(2012春•黔江区校级月考)某超市计划投入一笔资金采购一批紧销商品,经过市场调查发现:如果月初出售可获利15%,并把本利再投资其他商品,到月末又可获利10%,如果月末出售可获利30%.但要付出仓储费用700元.请问:根据超市的资金状况,如何购销获利较多?【考点】一次函数的应用.【分析】分别求出不同方案下的函数关系式,并分不同情况进行讨论从而得出答案.【解答】解:设商场投入资金x元,第一种投资情况下,获总利用y1元表示.第2种投资情况下获总利用y2元表示.由题意得:y1=x(1+15%)(1+10%)﹣xy1=0.265x.y2=x(1+30%)﹣x﹣700y2=0.3x﹣700(1)当y1>y2时,0.265x>0.3x﹣700,x<20000;(2)当y1=y2时,0.265x=0.3x﹣700,x=20000;(3)当y1<y2时,0.265x<0.3x﹣700,x>20000.答:(1)当投资超过20000元时,选择第二种投资方式;(2)当投资为20000元时,两种选择都行;(3)当投资在20000元内时,选择第一种投资方式.【点评】题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.通过计算比较哪个方案更好.10.(2010•太康县模拟)某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号A型B型成本(元/台)22002600售价(元/台)28003000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?【考点】一次函数的应用;一元一次不等式的应用.【专题】图表型.【分析】(1)设生产A型冰箱x台,则B型冰箱为(100﹣x)台,由题意列式求解x 的取值范围,确定方案;(2)根据解析式y随x的增大而减小求最小值.【解答】解:(1)设生产A型冰箱x台,则B型冰箱为(100﹣x)台,由题意得:47500≤(2800﹣2200)x+(3000﹣2600)×(100﹣x)≤48000解得:37.5≤x≤40∵x是整数∴x取38,39或40有以下三种生产方案:方案一方案二方案三A型/台383940B型/台626160(2分)文字叙述也可;(2)设投入成本为y元,由题意有:y=2200x+2600(100﹣x)=﹣400x+260000∵﹣400<0∴y随x的增大而减小∴当x=40时,y有最小值,即生产A型冰箱40台,B型冰箱60台,该厂投入成本最少,此时,政府需补贴给农民(2800×40+3000×60)×13%=37960.(元)(2分)答:政府需补贴给农民37960元.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.11.(2015春•鄂托克旗校级期末)如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行驶8千米时,收费应为11 元;(2)从图象上你能获得哪些信息(请写出2条);①①行驶路程小于或等于3千米时,收费是5元;②②超过3千米后每千米收费1.2元;(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.【考点】一次函数的应用.【分析】(1)由图象即可确定行驶8千米时的收费;(2)此题答案不唯一,只要合理就行;(3)由于x≥3时,直线过点(3,5)、(8,11),设解析式为设y=kx+b,利用待定系数法即可确定解析式.【解答】解:(1)当行驶8千米时,收费应为11元;(2)①行驶路程小于或等于3千米时,收费是5元;②超过3千米后每千米收费1.2元;(3)由于x≥3时,直线过点(3,5)、(8,11),设解析式为设y=kx+b,则,解得k=1.2,b=1.4,则解析式为y=1.2x+1.4.【点评】本题主要考查从一次函数的图象上获取信息的能力,所以正确理解图象的性质是解题的关键.12.(2005•十堰)如图,l1表示神风摩托车厂一天的销售收入与摩托车销售量的关系;l2表示摩托车厂一天的销售成本与销售量的关系.(1)写出销售收入与销售量之间的函数关系式;(2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本;(4)当一天的销售超过多少辆时,工厂才能获利?(利润=收入﹣成本)【考点】一次函数的应用.【分析】(1)设y=kx,根据题意可知当x=4时,y=4,则k=1,即销售收入与销售量之间的函数关系式为y=x;(2)设y=kx+b,把已知坐标代入可得解析式y=x+2;(3)由图可知当x=4时,销售收入等于销售成本,故x=4;(4)由图象可知x>4时,工厂才能获利.【解答】解:(1)设y=kx,∵直线过(4,4)两点,∴4=4k,∴k=1,∴y=x;(2)设y=kx+b,∵直线过(0,2)、(4,4)两点,∴2=b,4=4k+2,∴k=,∴y=x+2;(3)由图象知,当x=4时,销售收入等于销售成本,∴x=x+2,∴x=4;(4)由图象知:当x>4时,工厂才能获利,或x﹣(x+2)>0时,即x>4时,才能获利.【点评】本题重点考查了一次函数的图象和性质,也考查了一次函数的应用.此外正确理解题意也是解题的关键.13.(2013•遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据总费用=男生的人数×男生每套的价格+女生的人数×女生每套的价格就可以分别表示出y1(元)和y2(元)与男生人数x之间的函数关系式;(2)根据条件可以知道购买服装的费用受x的变化而变化,分情况讨论,当y1>y2时,当y1=y2时,当y1<y2时,求出x的范围就可以求出结论.【解答】解:(1)总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式分别是:y1=0.7[120x+100(2x﹣100)]+2200=224x﹣4800,y2=0.8[100(3x﹣100)]=240x﹣8000;(2)由题意,得当y1>y2时,即224x﹣4800>240x﹣8000,解得:x<200当y1=y2时,即224x﹣4800=240x﹣8000,解得:x=200当y1<y2时,即224x﹣4800<240x﹣8000,解得:x>200答:当参演男生少于200人时,购买B公司的服装比较合算;当参演男生等于200人时,购买两家公司的服装总费用相同,可任一家公司购买;当参演男生多于200人时,购买A公司的服装比较合算.【点评】本题考查了根据条件求一次函数的解析式的运用,运用不等式求设计方案的运用,解答本题时根据数量关系求出解析式是关键,建立不等式计算优惠方案是难点.14.(2013•包头)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.【点评】此题主要考查了一次函数的应用以及一元一次不等式的应用等知识,根据已知得出y与x之间的函数关系是解题关键.15.(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【专题】销售问题.【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【解答】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【点评】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.16.(2013•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.【考点】一次函数的应用.【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【解答】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点评】本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.。
2018年八年级数学下册一次函数期末专题培优复习一、选择题:1、在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中( )A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量2、函数的自变量x的取值范围为()A.x≠1B.x>-1C.x≥-1D.x≥-1且 x≠13、直线y=-x-2不经过()A.第一象限B.第二象限C.第三象限D.第四象限4、将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2)B.y=﹣2(x﹣2)C.y=﹣2x﹣2D.y=﹣2x+25、已知某一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数为()A.y=﹣x﹣2B.y=﹣x+10C.y=﹣x﹣6D.y=﹣x﹣106、点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7、小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()8、下列图象中,以方程-2x+y-2=0的解为坐标的点组成的图象是()9、如图所示,函数y=mx+m的图象可能是下列图象中的()10、若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )A.ab>0B.a-b>0C.a2+b>0D.a+b>011、甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.112、如图,直线y=x+1与y轴交于点A1,依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n ,使得点A1、A2、…,A n在直线x+1上,点C1、C2、…,C n在x轴上,则点B n的坐标是()﹣1A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,n)二、填空题:13、函数y=中自变量x的取值范围是_____________.14、若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为 .15、若直线y=-2x+b经过点(3,5),则关于x的不等式-2x+b<5的解集是 .16、如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.17、若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当﹣1≤x1≤2时,﹣2≤y1≤1,则这条直线的函数解析式为.18、无论m取什么实数,点A(m+1,2m-2)都在直线l上,若点B(a,b)是直线l上的动点,则(2a-b-6)3的值等于三、解答题:19、已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.20、一个有进水管与出水管的容器,从某时刻开始的3分钟内只进水不出水,在随后的9分钟内既进水又出水,每分钟的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.21、某地自来水公司为限制单位用水,每月只给某单位计划内用水3 000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3 200吨,水费是______元;若用水2 800吨,水费是______元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1 540元,则该单位这个月的用水量为多少吨?22、如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.求:(1)点B'的坐标. (2)直线AM所对应的函数关系式.23、如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.24、如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=2时,则AP= ,此时点P的坐标是。
2017—2018学年度第二学期八年级(下)第十九章一次函数单元检测题班级____姓名_____得分_____一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
A.(0,2-)B.(32,0)C.(8,20)D.(12,12)2.变量x,y有如下关系:①x+y=10②y=x5-③y=|x-3④y2=8x.其中y是x的函数的是A. ①②②③④B. ①②③C. ①②D. ①3.下列各曲线中不能表示y是x的函数是().A.B.C.D.4.已知一次函数2y x a=+与y x b=-+的图象都经过A(2-,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3xy=得到53xy+=的图象,那么直线3xy=必须().A.向上平移5个单位B.向下平移5个单位C.向上平移53个单位D.向下平移53个单位8.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。
第19章《一次函数》检测题一、选择题1、函数y=-x 的图象与函数y=x +1的图象的交点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2、一次函数32y x =-+的图像一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限3、在直角坐标系中,点P 在直线04=-+y x 上,O 为原点,则|OP|的最小值为( )A. -2B. 22C. 6D. 104、对于正比例函数y mx =,当x 增大时,y 随x 增大而增大,则m 的取值范围是( )A. m<0B. m£0C. m>0D. m³0 5、已知一次函数1+=kx y ,若y 随x 的增大而减小,则该函数的图象经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限D.第一、三、四象限6、已知正比例函数y kx =(0k ≠)的函数值y 随x 的增大而增大,则一次函数y kx k =+的图象大致是( )7、函数,一次函数和正比例函数之间的包含关系是( )O xyO x y Ox y yxO(A)(B )(C ) (D)8、从2,3,4,5这四个数中,任取两个数p 和q (p ≠q ),构成函数12y px =-和2y x q =+,使两个函数图象的交点在直线x =2的左侧,则这样的有序数组(p ,q )共有( )A.4组B.5组C.6组D.不确定9、强强每天从家去学校上学行走的路程为900m ,某天他从家去上学时以每分30m 的速度行走了450m ,为了不迟到他加快了速度,以每分45m 的速度行走完剩下的路程,那么强强行走过的路程s(m)与他行走的时间t(min)之间的函数关系用图象表示正确的是( )10、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是( )A B C D11、在函数y=3x-2, y=12 -x, y =1+3x 2 , y=2x5中,y 随x 的增加而增加的有( )A.1个B.2个C.3个D.4个12、已知整数x 满足1205,2,25x y x y x ≤≤=+=-+,对任意一个12,,x y y 中的较大值用m 表示,则m 的最小值是( )A.3B.5C.7D.213、如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),则结论:①2AF =;②5BF =;③5OA =;④3OB =中,正确结论的序号是( )A.①③④B. ①③C.①②③D.①②③④14、如图,点A 的坐标为(-1,0),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为( )A.(0,0)B.(22,22-) C.(-21,-21) D.(-22,-22) 15、如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为SstO A..stO B .stO C .st O D .(阴影部分),则S 与t 的大致图象为( )二、填空题16、已知一次函数y=-2x+p (p 为常数)的图象一次平移后经过点A (-1,y 1)、B (-2,y 2),则y 1 y 2.(填“>”、“<”、“=”) 17、若一次函数2y x k =+-的图像在y 轴上的截距是5,则k = . 18、若一次函数(12)y k x k =-+的图像经过第一、二、三象限,则k 的取值范围是 .19、如图,直线y=2x +3与x 轴交于点A ,与y 轴交于点B 。
C2017-2018学年八年级第二学期质量检测一次函数八( )班 号 姓名 成绩 2015.5 一、精心选一选,它是你奠定成功的基石:选择题。
(每小题3分,共30分) 1.已知函数y=21-x ,则自变量x 的取值范围是( ) A.x >2 B.x <2 C.x ≠2 D.x ≠-2 2.已知正比例函数y=kx 有图像经过点(2, -1),则k 的取值为( ) A.2 B.-2 C.21 D. 21- 3.关于函数y=-2x+1,下列结论正确的是( )A.图像必经过点(-2,1)B.图像经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 4.如图,一次函数y=kx+b(k ≠0) 的图象经过A (2,0)、B (0,-2)两点,则关于x 的不等式kx+b <0的解集是( ) A.x >2 B.x <2 C.-2<x <2 D.-2≤x ≤25.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为5 ㎞/h,轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )6.直线y=-2x+m 与直线y=2x-1的交点在第四象限,则 m 的取值范围是( )A.m>-3B.m<3C.-1<m<1D.-1≤m≤17.一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是()A.-2<y<0B. -4<y<0C. y<-2D. y<-48.将直线y=-2x向右平移2个单位所得直线的解析式为()A. y=-2(x+2)B. y=-2x+2C.y=-2x-2D.y=-2(x-2)9.如图,OB,AB分别表示甲乙两名同学运动的一次函数图象,图中s与t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/ 秒;③甲比乙先跑12米;④8秒钟后,甲超过了乙,其中正确的有().A.1个B.2个C.3个D.4个10.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()二、专心填一填,它能为你通向成功铺路:填空题。
八年级下册 一次函数综合练习1.已知直线63-+=x y ,解下列各题:(1)若x>0,则y 的取值范围为 ;(2)若y>0,则x 的取值范围为 ;(3)若24≤<-x ,则y 的取值范围为 ;(4)若24≤<-y ,则x 的取值范围为 ;2.y=-2x+3先向右平移2个单位,再向下平移5个单位后的解析式为 ;(1)平移后的直线与x 轴、y 轴的交点A,B 坐标分别为 、 ;(2)平移后的直线与坐标轴围成的三角形的面积为 .(3)若点P 在直线AB 上为一动点,当△OBP 的面积是△OAB 面积的2倍,则此时点P 的坐标为 .3.已知y=2x+b 向左平移1个单位,再向上平移3个单位后经过点A(-2,4),则b= ;(1)原直线关于y 轴对称的直线解析式为 ;(2)原直线关于x 轴对称的直线解析式为 ;(3)若直线y=mx-1与y=2x+b 垂直,则m= .4.等腰三角形的周长是40cm,腰长y(cm),底边长x(cm),y 与x 的函数解析式wie ,底边长x 的取值范围为 .5.一次函数y=(m 2-4)x+(1-m )和y=(m-1)x+m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m= .6.函数y=-3x +2的图象上存在点P,使得点P•到x 轴的距离等于3,则点P•的坐标为 .7.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( ) A .4 B .-2 C . 12 D . - 128.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时9.在如图所示的平面直角坐标系中,点P 是直线y=x 上的动点,A (1,0),B (2,0)是x 轴上的两点,则PA+PB 的最小值为 .此时点P 的坐标为 .10.已知直线221+=x y ,点P 在直线上一点,且点P 到x 轴、y 轴的距离相等,则点P 作为 .11.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?12.某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.13.已知C坐标为(2,0),P坐标为(x,y),直线y=-x+4与x轴、y轴分别交于A、B两点.若点P(a,b)在直线y=-x+4上.(1)求出A、B坐标,并求出△AOB的面积;(2)若点P在第一象限内,连接PC,OP,△OPC的面积为S,请找出S与a之间的函数关系式,并求出a的取值范围;(3)当△OPC的面积等于6时,求P点坐标.(4)点P在移动的过程中,若△BCP为等腰三角形,求找出满足条件的点P坐标.(直接写出答案)14.已知矩形OABC,O 为坐标原点,A(8,0),C(0,4),D(1,0),点P 为一动点,从A-B-C-O 运动,点P 速度为2个单位/秒,时间为t.(1)若△PAD 的面积为S,请找出S 与t 的函数关系式,并写出对应的t 的取值范围;(2)当直线PD 平分矩形OABC 的周长时,求点P 的坐标;(3)当直线PD 平分矩形OABC 的面积时,求点P 的坐标.答案详解1解:(1)6,06,0,36<<-∴>--=y y x y x ;(2)y>0时,-3x+6>0,-3x>-6,x<2; (3)当x=-4时,y=12+6=18,当x=2时,y=0,所以0≤y<18; (4)当y=-4时,-4=-3x+6,310,103=-=-x x ,当y=2时,34,43,263=-=-=+-x x x ,所以31034<≤x . 2解:y=-2(x-2)+3-5=-2x+4+3-5=-2x+2(1)A(1,0),B(0,2);(2)三角形OAB 的面积为1;(3)P(-1,4)或(3,-4)3.解:y=2(x+1)+b+3,将(-2,4)代入,4=2(-2+1)+b+3,4=-2+b+3,b=3 (1)y=-2x+3;(2)y=-2x-3;(3)m=-21. 4.解:y=-2x+40,10<x<20.5.解:P(0,1-m),Q(0,m 2-3),因为P 与Q 关于x 轴对称,则m 2-3+1-m=0,m 2-m-2=0.(m-2)(m+1)=0,m=2或m=-1.因为m 2-4≠0,所以m ≠±2.所以m=-1.6.解:35,53,323,3;31,13,323,3=-=--=+--=-==-=+-=x x x y x x x y 时当时当,)335)(331(--,,P . 7.解:.2,24,2,02;4,04-==-==--==+ba b a b x bx a x ax 8.解:设AB 段的函数解析式是y=kx+b ,y=kx+b 的图象过A (1.5,90),B (2.5,170),⎩⎨⎧=+=+1705.2905.1b k b k ,解得⎩⎨⎧-==3080b k ∴AB 段函数的解析式是y=80x ﹣30, 离目的地还有20千米时,即y=170﹣20=150km ,当y=150时,80x ﹣30=150x=2.25h ,故选:C .9.解:如图所示:作A 点关于直线y=x 的对称点A ′,连接A ′B ,交直线y=x 于点P ,此时PA+PB 最小, 由题意可得出:OA ′=1,BO=2,PA ′=PA ,∴PA+PB=A ′B=52122=+.故答案为:5.10.解:)44(,4,221,221),,(,,所以设在第一象限时当P m m m m m m P P ==+= )34,34(,34,223,221),,(,---==-+-=-P m m m m m m P P 设在第二象限时当 11.解:(1)由函数图象,得当用电量为180千瓦时,电费为:108元.故答案为:108;(2)由函数图象,得设第二档的用电量为x°,则180<x≤450.故答案为:180<x≤450(3)基本电价是:108÷180=0.6;故答案为:0.6(4)设直线BC 的解析式为y=kx+b ,由图象,得,解得:, y=0.9x ﹣121.5.y=328.5时,x=500.答:这个月他家用电500千瓦时.12解:(1)y=700x+1200(50﹣x ),即y=﹣500x+60000;(2)由题意得,解得16≤x≤30y=﹣500x+60000,y 随x 的增大而减小, 当x=16时,y 最大=58000,生产B 种产品34件,A 种产品16件,总利润y 有最大值,y 最大=58000元.13.解:(1)A(4,0),B(0,4);S △OAB =8(2)将P(a,b)代入y=-x+4得,b=-a+4,S △OPC =)40(4)4(221<<+-=+-⨯⨯a a a (3)10,64;2,646)4(221=-=+--==+-=+-⨯⨯a a a a a ,,P(-2,6)或(10,6) (4)(2,2),(4-2,2),(24+,-2)14.解:(1))86(567)216(721,)62(144721,)20(72721,≤<+-=-⨯⨯=≤<=⨯⨯=≤≤=⨯⨯=t t t S OC P t S BC P t t t S AB P 上时在当上时在当上时在当 )4,5.3(,5.3,72,84714),4,()2(P x x x x x P ==-++=++设3232.32,32,23,0,24)0,1(),2,4(,)2,4(,)3(-=-====+=++=x y b k k b k b k b kx y PD AC 所以代入将直线解析式为设的中点坐标为由题意可知。
初二下学期期末复习-一次函数-答案一.选择题(共14小题)1.在一次函数y=kx+b中,已知k⋅b>0,那么在下面它的图像的示意图中,正确的是( )A.B.C.D.【解答】解:A、根据图象知,k<0,b<0,则k⋅b>0,故该选项符合题意;B、根据图象知,k>0,b<0,则k⋅b<0.与已知“k⋅b>0”相矛盾.故该选项不符合题意;C、根据图象知,k=0,b=0,则k⋅b=0.与已知“k⋅b>0”相矛盾.故该选项不符合题意;D、根据图象知,k<0,b>0,则k⋅b<0.与已知“k⋅b>0”相矛盾.故该选项不符合题意.故选:A.2.如图,若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),(1,1),则不等式kx+b>1的解集为( )A.x<0B.x>0C.x<1D.x>1【解答】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.3.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M 23,-2 ,则关于x ,y 的方程组y =k 1x +b 1y =k 2x +b 2 的解为( )A .x =23y =-2B .x =-2y =23C .x =23y =2D .x =-2y =-23【解答】解:根据题意,可得方程组y =k 1x +b 1y =k 2x +b 2 的解为x =23y =-2,故选:A .4.小明同学在一次学科综合实践活动中发现,某品牌鞋子的长度y cm 与鞋子的码数x 之间满足一次函数关系,下表给出y 与x 的一些对应值:码数x 26303442长度ycm 18202226根据小明的数据,可以得出该品牌38码鞋子的长度为( )A .24cmB .25cmC .26cmD .38cm【解答】解:设y 与x 的函数解析式为y =kx +b ,∵点(26,18),(30,20)在该函数图象上,∴26k +b =1830k +b =20 ,解得k =0.5b =5 ,即y 与x 的函数解析式为y =0.5x+5,当x =38时,y =0.5×38+5=24,故选:A .5.如图,用一根长40cm 的铁丝围成一个矩形,小石发现矩形的邻边a ,b 及面积S 是三个变量,下面有三个说法:①b 是a 的函数.②S 是a 的函数.③a 是S 的函数.其中所有正确的结论的序号是( )A .①②B .①③C .②③D .①②③【解答】解:由题意得:2(a +b )=40,∴b+a=20,∴b=20-a,∴b是a的函数,故①正确;∵S=ab,∴S=a(20-a)=-a2+20a,∴S是a的函数,故②正确;∵-a2+20a=S,∴a2-20a=-S,∴a2-20a+100=100-S,∴(a-10)2=100-S,∴a-10=±100-S,∴a=10±100-S,∴a不是S的函数,故③不正确;所以,所有正确的结论的序号是:①②,故选:A.6.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OA-AB-BC是一条折线).这个容器的形状可能是下面图中的( )A.B.C.D.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选:D.7.如图,匀速地向该容器内注水(单位时间内注水体积相同),在注满水的过程中,满足容器中水面的高度y与时间x之间函数关系的图象可能是( )A.B.C.D.【解答】解:因为根据图象可知,容器底部直径较大,上部直径较小,故注水过程的水面的高度增加的速度是先慢后快,故选项B符合题意,故选:B.8.如图,有一个装水的容器,容器内的水面高度是10cm,水面面积是100cm2.现向容器内注水,并同时开始计时.在注水过程中,水面高度以每秒0.2cm的速度匀速增加.容器注满水之前,容器内水面的高度h,注水量V随对应的注水时间t的变化而变化,则h与t,V与t满足的函数关系分别是( )A.正比例函数关系,正比例函数关系B.正比例函数关系,一次函数关系C.一次函数关系,一次函数关系D.一次函数关系,正比例函数关系【解答】解:设容器内的水面高度为h,注水时间为t,根据题意得:h=0.2t+10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.V=100×0.2t=20t,∴注水量V与对应的注水时间t满足的函数关系是正比例函数关系.故选:D.9.如图,菱形ABCD中,∠A=30°,AB=4,点E,F分别是边AB,CD的中点,动点P从点E出发,按逆时针方向,沿EB,BC,CF匀速运动到点F停止,设△PAD的面积为S,动点P运动的路径总长为x,能表示S与x函数关系的图象大致是( )A.B.C.D.【解答】解:根据题意当点P在点E时,过点E作EG⊥AD于G,如图:∵四边形ABCD是菱形,∠A=30°,AB=4,点E是边AB的中点,∴AE=2,∴S△PAD=S△EAD=12AD⋅EG=12AD⋅12AE=12×4×12×2=2,∴当x=0时,S=2,当点P由E向B运动时,△PAD的面积匀速增加,当点P与点B重合时面积达到最大,此时S=12AD⋅12AB=12×4×12×4=4,当P由B向C时,△PAD的面积保持不变,当P由C向F运动时,△PAD的面积匀速减小,当点P与点F重合时,此时S=2.故选:D.10.点P从某四边形的一个顶点A出发,沿着该四边形的边逆时针匀速运动一周.设点P运动的时间为x,点P与该四边形对角线交点的距离为y,表示y与x的函数关系的大致图象如图所示,则该四边形可能是( )A.B.C.D.【解答】解:记各个选项中四边形逆时针均记为ABCD,A选项中,从A→B,B→C,y先减小,再增大,不关于转折点对称;从C→D,从D→A,y先减小,再增大;且两部分走势相同,不符合题意;B选项中,从A→B,B→C,y先减小,再增大,关于转折点B对称,且每部分关于最低点对称;从C→D,从D→A,y先减小,再增大;且两部分走势相同,符合题意;C选项中,从A→B,B→C,y先减小,再增大,关于转折点B对称,但每部分不关于最低点对称;从C →D,从D→A,y先减小,再增大;且两部分走势相同,不符合题意;D选项中,每个转折点前后图象一致,不符合题意;故选:B.11.如图,动点P在边长为2的等边△ABC的边上.它从点A出发,沿A→C→B→A的方向以每秒1个单位长度的速度运动.如果点P的运动时间为t秒,点P与点C之间的距离记为y,那么y与t之间的函数关系用图象表示大致是( )A.B.C.D.【解答】解:(1)当点P在AC上运动时,y=2-t,(2)当点P在BC上运动时,y=t-2,(3)当点P在AB上运动时,过点C作CH⊥AB于点H,∵△ABC是等边三角形,∴AH=1,则CH=3AH=3,当点P在点H右侧时,y=PC=CH2+PH2=32+(5-t)2=t2-10t+28;该函数为一条曲线,当点P在CH左侧时,同理函数为一条曲线;故选:D.12.在物理实验课上,小鹏利用滑轮组及相关器材进行实验,他把得到的拉力F(N)和所悬挂物体的重力G(N)的几组数据用电脑绘制成如下图象(不计绳重和摩擦),请你根据图象判断以下结论正确的序号有( )①物体的拉力随着重力的增加而增大;②当物体的重力G=7N时,拉力F=2.2N;③拉力F与重力G成正比例函数关系;④当滑轮组不悬挂物体时,所用拉力为0.5N .A .①②B .②④C .①④D .③④【解答】解:由图象可知,拉力F 随着重力的增加而增大,故①正确;∵拉力F 是重力G 的一次函数,∴设拉力F 与重力G 的函数解析式为F =kG +b (k ≠0),则b =0.5k +b =0.7 ,解得:k =0.2b =0.5 ,∴拉力F 与重力G 的函数解析式为F =0.2G +0.5,当G =7时,F =0.2×7+0.5=1.9,故②错误;由图象知,拉力F 是重力G 的一次函数,故③错误;∵G =0时,F =0.5,故④正确.故选:C .13.如图1,甲、乙两个容器内都装有一定数量的水,现将甲容器中的水匀速注入乙容器中.图2中的线段l 1,l 2分别表示甲、乙容器中的水的深度h (厘米)与注入时间t (分钟)之间的函数图象.下列四个结论中错误的是( )A .甲容器内的水4分钟全部注入乙容器B .注水前,乙容器内水的深度是20厘米C .注水1分钟时,甲容器的水比乙容器的水深10厘米D .注水2分钟时,甲、乙两个容器中的水的深度相等【解答】解:由图可得,甲容器内的水4分钟全部注入乙容器,故选项A 正确,注水前乙容器内水的高度是20厘米,故选项B 正确,注水1分钟时,甲容器内水的深度是80-80×14=60厘米,乙容器内水的深度是:20+(60-20)×14=30厘米,此时甲容器的水比乙容器的水深60-30=30厘米,故选项C 错误,注水2分钟时,甲容器内水的深度是80×24=40厘米,乙容器内水的深度是:20+(60-20)×24=40厘米,故此时甲、乙两个容器中的水的深度相等,故选项D 正确,故选:C .14.如图,在平面直角坐标系xOy 中,点A 的坐标是(3,0),点B 是函数y =-12x +2(0<x <4)的图象上的一个动点,过点B 作BC ⊥y 轴交函数y =45x +4的图象于点C ,点D 在x 轴上(点D 在点A 的左侧),且AD =BC ,连接AB ,CD .有如下四个结论:①四边形ABCD 一定是平行四边形;②四边形ABCD 可能是菱形;③四边形ABCD 可能是矩形;④四边形ABCD 可能是正方形.所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④【解答】解:①如图1,∵BC ⊥y 轴,∴AD ⎳BC ,又∵AD =BC ,∴四边形ABCD 是平行四边形,故①正确;②设B m ,-12m +2 ,则C -5m +208,-12m +2 ,BC =m --5m +208 =13m +208,当BC =AB 时,四边形ABCD 是菱形,∴13m +2082=(m -3)2+-12m +2 2,89m2+1032m-432=0,(m+12)(89m-36)=0,解得:m1=-12(不符合题意),m2=3689,∴存在BC=AB的情况,即四边形ABCD可能是菱形,故②正确;③如图2,点B是函数y=-12x+2(0<x<4)的图象上的一个动点,∴存在点B的横坐标为3,此时四边形ABCD是矩形,故③正确;④当x=3时,y=-32+2=12,此时AD>AB,如图2所示,∴四边形ABCD不为正方形,故④错误,不符合题意;本题正确的结论有:①②③.故选:A.二.填空题(共11小题)15.在平面直角坐标系xOy中,若一次函数y=kx-3(k≠0)的图象不经过第二象限,则k的取值范围是 .【解答】解:∵一次函数y=kx-3(k≠0)的图象不经过第二象限,∴k>0.故答案是:k>0.16.在平面直角坐标系xOy中,将点B(-3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A重合,则点A的坐标是 .【解答】解:将点B(-3,2)向右平移5个单位长度,得到(2,2),再向下平移3个单位长度,得到A(2,-1).故答案为:(2,-1).17.如图,在平面直角坐标系xOy中,四边形OBCD是正方形,点B(1,0),请写出一个图象与该正方形有公共点的函数表达式: .【解答】解:∵点B(1,0),∴OB=1,∵四边形OBCD是正方形,∴OD =OB =1,∠ODC =∠OBC =90°,∴C (1,1),设经过点C 的正比例函数的解析式为y =kx ,∴1=k ,∴y =x ,故答案为:y =x .(答案不唯一)18.在平面直角坐标系xOy 中,一次函数y =(k -2)x +1的图象经过点A (1,y 1),B (2,y 2),如果y 1<y 2,那么k 的取值范围是 .【解答】解:∵一次函数y =(k -2)x +1的图象经过点A (1,y 1),B (2,y 2),且y 1<y 2,∴一次函数y =(k -2)x +1随x 的增大而增大,∴k -2>0,∴k >2,故答案为:k >2.19.已知,一次函数y =kx +b (k ≠0)的图象经过点(3,2),且y 随x 的增大而减小,则不等式kx +b >2的解集为 .【解答】解:∵y 随自变量x 的增大而减小,∴当x <3时,y >2,即关于x 的不等式kx +b >2的解集为x <3.故答案为:x <3.20.如图,平面直角坐标系xOy 中,直线y =kx +b 与y =mx +n 相交于点M (2,4),下列结论中正确的是 (填写序号).①关于x ,y 的方程组y =kx +b y =mx +n 的解是x =2y =4 ;②关于x 的不等式kx +b <mx +n 的解集是x >2;③k +b <0.【解答】解:∵直线y =kx +b 与y =mx +n 相交于点M (2,4),∴关于x ,y 的方程组y =kx +b y =mx +n 的解是x =2y =4 ,故①的结论正确;由图知:当x >2时,函数y =kx +b 对应的点都在函数y =mx +n 下方,因此关于x 的不等式kx +b <mx +n 的解集是x >2,故②的结论正确;由图知:当x =1时,函数y =kx +b 图象对应的点在x 轴的上方,因此k +b >0,故③的结论不正确;故答案为:①②.21.已知直线y 1=ax +b (a ≠0)与直线y 2=kx +5(k ≠0)关于y 轴对称.当x >-52时,y 1>0,当x >52时,y 2<0,则直线y 1= .【解答】解:∵直线y 1=ax +b (a ≠0)与直线y 2=kx +5(k ≠0)关于y 轴对称.当x >-52时,y 1>0,当x >52时,y 2<0,∵直线y 1=ax +b (a ≠0)与x 轴的交点为-52,0 ,直线y 2=kx +5(k ≠0)与x 轴的交点为52,0,b =5,∴0=-52a +5,∴a =2,∴直线y 1=2x +5,故答案为:2x +5.22.一次函数的图象经过点(2,-1),且与两坐标轴围成等腰三角形,则此函数的表达式为 .【解答】解:设一次函数的解析式为y =kx +b ,∵一次函数的图象经过点(2,-1),∴-1=2k +b ,∴b =-1-2k ,∴y =kx -1-2k ,令x =0,则y =-1-2k ;令y =0,则x =2k +1k,∵与两坐标轴围成等腰三角形,∴2k +1k=|-1-2k |,且-1-2k ≠0,解得k =1或k =-1,∴此函数的表达式为y =x -3或y =-x +1,故答案为:y =x -3或y =-x +1.23.已知:直线y =-x +1与x 轴、y 轴分别交于点A 、点B ,当点P 在直线AB 上运动时,平面内存在点Q ,使得以点O 、P 、B 、Q 为顶点的四边形是菱形,请你写出所有满足条件的点Q 的坐标 .【解答】解:∵直线y =-x +1与x 轴、y 轴分别交于点A 、点B ,∴A (1,0),B (0,1),∴OB =1,若使得以点O 、P 、B 、Q 为顶点的四边形是菱形,分三种情况:①当OB 为对角线,PB =PO 时,则PB 2=PO 2,设P (x ,-x +1),即x 2+(1+x -1)2=x 2+(-x +1)2,解得x =12,∴P 12,12,此时Q 点与P 点关于y 轴对称,Q -12,12 ;②当OB 为边,PB =BO 时,则PB 2=BO 2,即x 2+(-x +1-1)2=12,解得x 1=22或x 2=-22,∴P 22,1-22 或-22,1+22,此时PQ ⎳OB ,PQ =OB ,∴Q 22,-22 或-22,22;③当OB 为边,PO =BO 时,则PO 2=BO 2,即x 2+(-x +1)2=12,解得x 3=1,x 4=0(舍去),∴P (1,0),此时PQ ⎳OB ,PQ =OB ,∴Q (1,1),综上,符合条件的Q 点的坐标为-12,12 或22,-22 或-22,22或(1,1).故答案为:-12,12 或22,-22 或-22,22或(1,1).24.小明与小亮两人约定周六去博物馆参观学习,两人同时出发,小明乘车从甲地途径乙地到博物馆,小亮骑自行车从乙地到博物馆.已知甲地、乙地和博物馆在一条直线上,右图是两人分别与乙地的距离S (单位:km )与时间t (单位:min )的函数图象,在小明到达博物馆前,当两人相距1km 时,t 的值是 .【解答】解:由图象可知,甲地距乙地5km ,乙地距博物馆5km ,小明的速度为:510=12(km /min ),小亮的速度为:530=16(km /min ),①当小明和小亮相遇前两人相距1km 时,由题意得,12t +1=5+16t ,解得:t =12;②当小明和小亮相遇后两人相距1km 时,由题意得:12t =5+16t +1,解得:t =18,综上所述,当两人相距1km 时t 的值为12或18.故答案为:12或18.25.关于函数y 1=2x -1和函数y 2=-x +m (m >0),有以下结论:①当0<x <1时,y 1的取值范围是-1<y 1<1;②y 2随x 的增大而增大;③函数y 1的图象与函数y 2的图象的交点一定在第一象限;④若点(a ,-2)在函数y 1的图象上,点b ,12在函数y 2的图象上,则a <b .其中所有正确结论的序号是 .【解答】解:①当x =0时,y 1=-1,当x =1时,y 1=1,而一次函数y 1=2x -1,y 随x 的增大而增大,所以-1<y 1<1,所以①正确;②一次函数y 2=-x +m (m >0),y 随x 的增大而减小,因此②不正确;③函数y 1的图象与函数y 2的图象的交点为m +13,2m -13 ,当0<m <12时,m +13>0,2m -13<0,此时交点在第四象限,所以③不正确;④若点(a ,-2)在函数y 1的图象上,点b ,12 在函数y 2的图象上,则2a -1=-2,-b +m =12,即a =-12,b =m -12,而m >0,所以m -12>-12,即b >a ,因此④正确;综上所述,正确的结论有①④,故答案为:①④.三.解答题(共24小题)26.在平面直角坐标系xOy 中,一次函数y =-2x +4的图象与x 轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)画出函数y =-2x +4的图象;(3)若点C (-3,0),则△ABC 的面积为 .【解答】解:(1)令y =0,则-2x +4=0,解得x =2,令x =0,则y =4,所以,点A 的坐标为(2,0),点B 的坐标为(0,4);(2)如图:;(3)∵A(2,0),B(0,4),C(-3,0),∴AC=5,∴S△ABC=12AC⋅OB=12×5×4=10.故答案为:1027.如图,在平面直角坐标系xOy中,四边形OABC为正方形,点A的坐标为(3,0).若直线l1:y= -x+b1和直线l2:y=-x+b2(b1≠b2)被正方形OABC的边所截得的线段长度相等,写出一组满足条件的b1与b2的值 .【解答】解:设直线l1:y=-x+b1和直线l2:y=-x+b2(b1≠b2)被正方形OABC的边所截得的线段分别为EF、MN,根据题意,当OE=OF=BM=BN时,两直线被正方形OABC的边所截得的线段长度相等,∴当b1=1,b2=5时,OE=OF=BM=BN=1,故满足条件的b1与b2的值可以是b1=1,b2=5,故答案为:b1=1,b2=5(答案不唯一).28.在平面直角坐标系xOy 中,直线y =12x +2与x 轴相交于点A ,与y 轴相交于点B .(1)求点A 和点B 的坐标;(2)点P 为直线y =12x +2上一动点,若△OBP 的面积为3,则点P 的坐标为 .【解答】解:(1)当x =0时,y =12x +2=2,∴点B 的坐标为(0,2);当y =0时,12x +2=0,解得:x =-4,∴点A 的坐标为(-4,0).(2)∵OB =2,△OBP 的面积为3,∴12OB ⋅|x P |=3,即12×2⋅|x P |=3,∴x P =±3,∴点P 的坐标为3,72 或-3,12 ,故答案为:3,72 或-3,12 .29.在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象是由函数y =x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x >m 时,对于x 的每一个值,函数y =2x -3的值大于一次函数y =kx +b 的值,直接写出m 的取值范围.【解答】解:(1)∵一次函数y =kx +b (k ≠0)的图象是由函数y =x 的图象平移得到,∴k =1,即y =x +b ,∵一次函数y =x +b (k ≠0)的图象过点(1,2),∴2=1+b ,解得:b =1,∴此函数解析式为y =x +1;(2)由y =2x -3y =x +1 得x =4y =5 ,∴直线y =2x -3与y =x +1的交点为(4,5),如图:由图可知,当x >4时,y =2x -3的值总大于y =x +1的值,∴当x >m 时,对于x 的每一个值,函数y =2x -3的值大于一次函数y =x +1的值,m 的范围是:m ≥4.30.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由正比例函数y=x的图象向上平移2个单位长度得到.(1)求这个一次函数的解析式;(2)当x>-1时,对于x的每一个值,正比例函数y=ax(a≠0)的值小于一次函数y=kx+b(k≠0)的值,直接写出a的取值范围.【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象由函数y=x的图象向上平移2个单位长度得到.∴k=1,b=2,∴这个一次函数的解析式为y=x+2;(2)把x=-1代入y=x+2,得y=1,把点(-1,1)代入y=ax,得a=-1.∵当x>-1时,对于x的每一个值,正比例函数y=ax(a≠0)的值小于一次函数y=kx+b(k≠0)的值,∴a的取值范围是-1≤a<0或0<a≤1.31.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x-3.(1)当k=-2时,若y1>y2,求x的取值范围;(2)当x>-1时,对于x的每一个值,一次函数y1=kx+2(k为常数,k≠0)的值大于一次函数y2=x -3的值,结合图象,直接写出k的取值范围.【解答】解:(1)k=-2时,y1=-2x+2,根据题意得-2x+2>x-3,解得x<5 3;(2)当x=-1时,y=x-3=-4,把(-1,-4)代入y1=kx+2得-k+2=-4,解得k=6,由图象可知当1≤k≤6时,y1>y2;故k的范围为1≤k≤6.32.在平面直角坐标系xOy 中,直线y =2x +1与x 轴交于点A ,与y 轴交于点B .(1)求点A ,B 的坐标;(2)点A 关于y 轴的对称点为C ,将直线y =2x +1,直线BC 都沿y 轴向上平移t (t >0)个单位,点(-1,m )在直线y =2x +1平移后的图形上,点(2,n )在直线BC 平移后的图形上,试比较m ,n 的大小,并说明理由.【解答】解:(1)∵直线y =2x +1与x 轴交于点A ,与y 轴交于点B .将x =0代入y =2x +1,得到:y =1,∴B (0,1),将y =0代入y =2x +1,得到2x +1=0,解得:x =-12,∴A -12,0;(2)∵点A 关于y 轴的对称点为C ,∴C 12,0,∴直线BC 为y =-2x +1,将直线y =2x +1,直线BC 都沿y 轴向上平移t (t >0)个单位,得到y =2x +1+t 、y =-2x +1+t ,∵点(-1,m )在直线y =2x +1+t 上,∴m =-2+1+t =-1+t ,∵点(2,n )在直线y =-2x +1+t 上,∴n =-4+1+t =-3+t ,∵m -n =-1+t -(-3+t )=2>0,∴m >n .33.在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =2x 的图象平移得到,且经过点A (1,4).(1)求k ,b 的值;(2)点B (2,1),如果正比例函数y =mx (m ≠0)的图象与线段AB 有公共点,直接写出m 的取值范围.【解答】解:(1)∵一次函数y =kx +b (k ≠0)的图象由直线y =2x 平移得到,∴k =2,将点(1,4)代入y =2x +b ,得2+b =4,解得b =2;(2)当直线y =mx 经过点A (1,4)时,则m =4,当直线y =mx 经过点B (2,1)时,则2m =1,解得:m =12,∴当正比例函数y =mx (m ≠0)的图象与线段AB 有公共点时,12≤m ≤4.34.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与y =x 平行,且过点A (2,1),过点A 作y 轴的垂线,垂足为点B .(1)求k ,b 的值;(2)点C 在y 轴上,点D (2,m ),四边形ABCD 是矩形.①如果矩形ABCD 的面积小于6,求m 的取值范围;②直线y =kx +b (k ≠0)与直线CD 交于点E ,CE =2AD ,直接写出点E 的坐标.【解答】解:(1)∵直线y =kx +b (k ≠0)与直线y =x 平行,∴k =1,∵直线y =x +b 过点A (2,1),∴b =-1;(2)①∵AB ⊥y 轴,∴点B (0,1),∴AB =2,∵点D (2,m ),∴AD =|1-m |,∵矩形ABCD 的面积小于6,∴2×|1-m |<6,∴-2<m <4且m ≠1;②∵k =1,b =-1,∴解析式为y =x -1,∵直线y =x -1与直线CD 交于点E ,∴点E (m +1,m ),∴CE =m +1,∵CE =2AD ,∴m +1=2|1-m |,解得:m =13或m =3,∴点E 43,13或(4,3).35.在平面直角坐标系xOy 中,函数y =2x 的图象与函数y =-kx +3的图象交于点A (1,m ).(1)求k 的值;(2)过点A 作x 轴的平行线l ,直线y =2x +b 与直线l 交于点B ,与函数y =-kx +3的图象交于点C ,与x 轴交于点D .当点BD =2BC 时,求b 的值.【解答】解:(1)把A (1,m )代入y =2x ,得m =2×1=2,即点A 的坐标是(1,2),把A 点的坐标代入y =-kx +3,得2=-k +3,解得:k =1;(2)由(1)知A (1,2),∴直线l :y =2,∵直线y =2x +b 与直线l :y =2交于点B ,∴B 2-b 2,2 ,∵直线y =2x +b 与函数y =-x +3的图象交于点C ,∴C 3-b 3,b +63,∵直线y =2x +b 与x 轴交于点D ,∴D -b 2,0,过B 、C 分别作BE ⊥x 轴于E ,CF ⊥x 轴于F ,如图:∵BD =2BC ,∴DE =2EF ,∴-b 2-2-b 2 =2×2-b 2-3-b 3,解得b =3或b =-3,答:b 的值是3或-3.36.在平面直角坐标系xOy 中,直线y =x -b 与y =kx +4的交点为点A (3,1).(1)求k ,b 的值;(2)已知点P (n ,n ),经过P 作平行于x 轴的直线,交直线y =x -b 于点M ,过P 点作平行于y 轴的直线,交直线y =kx +4于点N .①当n =1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.【解答】解:(1)∵直线y =x -b 与y =kx +4的交点为点A (3,1),∴1=3-b ,1=3k +4,解得b =2,k =-1;(2)①n =1时,P (1,1),∵PM ⎳x 轴,PN ⎳y 轴,∴M (3,1),N (1,3),∴PM =3-1=2,PN =3-1=2,∴PM =PN .②由题意P (n ,n ),则N (n ,-n +4),M (n +2,n ),∴PN =|-2n +4|,PM =2,∵PN ≥PM ,∴|-2n +4|≥2,解得n ≤1或n ≥3,∴n 的取值范围为n ≤1或n ≥3.37.已知:在平面直角坐标系xOy中,直线l1:y=kx+3与直线l2:y=2x+1.(1)若直线l1与直线l2,交于点A(2,m),求k,m的值;(2)过点B(n,0)作垂直于x轴的直线分别交l1,l2于点C,D,结合函数图象回答下列问题:①当n=1时,若CD=1,求k的值;②当-1<n<k+2时,在点B运动的过程中,CD恒大于1.请写出两个符合条件的k的值 .【解答】解:(1)由题意得,令x=2,则y=m=5,∴A(2,5),代入y=kx+3,得:5=2k+3,∴k=1,∴k,m的值为:k=1,m=5;(2)①如图,∵过点B(n,0)作垂直于x轴的直线分别交l1,l2于点C,D,n=1,∴D(1,3),C(1,k+3),∵|CD|=1,即|k+3-3|=1,∴k=±1;②如图,把n=-1分别代入直线l1:y=kx+3与直线l2:y=2x+1,可得:D(-1,-1),C(-1,-k+3),∴|CD|=|-k+3+1|>1,∴k<3或k>5;把n=k+2分别代入直线l1:y=kx+3与直线l2:y=2x+1,可得:C(k+2,k2+2k+3),D(k+2,2k+5),∴|CD|=|k2+2k+3-2k-5|=|k2-2|>1,∴k2>3,或k2<1,∴k<-3或k>3;-1<k<1,∵-1<n<k+2,即-1<k+2,∴k>-3,综上,k的取值范围为:-3<k<-3或3<k<3或-1<k<1,∴符合条件的k的值为:-2,2,故答案为:-2,2.38.在平面直角坐标系xOy中,直线l:y=kx+4(k≠0)与y轴交于点A,点B和点C的坐标分别是(m,y1)和(m+2,y2).(1)当y1=y2=0时,△ABC的面积是 ;(2)若点B和点C都在直线l上,当BC≤5时,k的取值范围是 .【解答】解:(1)∵点B和点C的坐标分别是(m,y1)和(m+2,y2),y1=y2=0,∴B、C是x轴上的两点,则BC=2,∵直线l:y=kx+4(k≠0)与y轴交于点A,∴A(0,4),∴OA=4,∴S△ABC=12BC⋅OA=12×2×4=4,故答案为:4.(2)∵点B和点C都在直线l上,∴y1=km+4,y2=k(m+2)+4,∴y2-y1=2k,∵BC≤5,∴(m+2-m)2+(y2-y1)2≤5,即22+(2k)2≤5,∴4+4k2≤5,解得0<k≤12或-12≤k<0,故答案为:0<k≤12或-12≤k<0.39.在平面直角坐标系xOy中,一次函数y=-2x+2图象与x轴、y轴分别相交于点A和点B.(1)求A,B两点的坐标;(2)点C在x轴上,若ABC是以边AB为腰的等腰三角形,求点C的横坐标.【解答】解:(1)∵一次函数y=-2x+2图象与x轴、y轴分别相交于点A和点B,∴令y=0,则-2x+2=0,解得x=1,∴点A(1,0),令x=0,则y=2,∴点B(0,2).(2)∵AO=1,BO=2,∴AB=OA2+OB2=12+22=5,∵ABC是以边AB为腰的等腰三角形,∴AB=AC=5或AB=BC,∴点C的横坐标为1+5或1-5或-1.40.水龙头关闭不严会造成滴水.下表记录了30min 内7个时间点的漏水量,其中t 表示时间,y 表时间t /min 0510********漏水量y /mL153045607590示漏水量.解决下列问题:(1)在平面直角坐标系中,描出上表中以各对对应值为坐标的点,根据描出的点连线;(2)结合表中数据写出滴水量y 关于时间t 的函数解析式 (不要求写自变量的取值范围);(3)在这种漏水状态下,若不及时关闭水龙头,估算一天的漏水量约为 mL .【解答】解:(1)描点、连线如下:(2)滴水量y 关于时间t 的函数解析式为y =3t ;故答案为:y =3t ;(3)一天的漏水量约为y =3×(24×60)=4320(mL ),故答案为:4320.41.“莓好生活,幸福家园”,春节期间,小明一家要去采摘草莓,现有甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案:甲园:游客需购买门票,采摘的草莓六折优惠;乙园:游客进园不需购买门票,采摘的草莓超过一定数量后,超过的部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲,y乙与x之间的函数关系如图所示.(1)甲采摘园的门票是 元,两个采摘园优惠前的草莓单价是每千克 元.(2)求y甲与x的函数表达式;(3)当游客采摘18千克草莓时,选择哪一家采摘园更便宜?【解答】解:(1)由图象可知,甲采摘园的门票是60元,两个采摘园优惠前的草莓单价是300÷10=30(元/千克),故答案为:60,30;(2)当在甲采摘园采摘10千克时,费用为:60+30×0.6×10=240(元),设y甲与x的函数表达式是y甲=kx+b k≠0,根据题意得:10k+b=240 b=60,解得k=18 b=60 ,∴y甲与x的函数表达式是y甲=18x+60;(3)当游客采摘18千克草莓时,甲采摘园费用为60+30×0.6×18=384(元),当x>10时,设y乙与x的函数表达式是y乙=kx+b k≠0,根据题意得:300=10k+b480=25k+b,解得k=12b=180 ,即当x>10时,y乙与x的函数表达式是y乙=12x+180;乙采摘园费用为12×18+180=396(元),∵396>384,∴选择甲采摘园更便宜.42.某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线l1、射线l2分别表示该鲜花销售公司每月按方案一、方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)(x≥0)的函数关系.(1)直接写出方案二中的底薪是多少元;(2)求y2与x的函数解析式;(3)若该公司某销售人员今年3月份的鲜花销售量没有超过200千克,但其3月份的工资超过5000元.请你判断这个公司采用了哪种方案给这名销售人员付的3月份工资,并说明你的理由.【解答】解:(1)由图象可得,方案二中的底薪是800元;(2)设y2=k2x+b,根据题意,得b=80040k2+b=1200 ,解得k2=10b=800 ,∴y2与x的函数解析式为y2=10x+800(x≥0);(3)设y1=k1x,根据题意得40k1=1200,解得k1=30,∴y1=30x(x≥0);当x=200时,y1=30×200=6000>5000;y2=10×200+800=2800<5000;∴这个公司采用了方案一给这名销售人员付3月份的工资.43.某通信公司推出A ,B ,C 三种上网收费方式,每月收取的费用y A ,y B ,y C 与月上网时间x 的对应关系如图所示.(1)对于上网方式A ,若月上网时间在25小时以内,月收费为 元;(2)如果月上网时间超过35小时且不足55小时,选择 方式最省钱?(3)对于上网方式B ,若月上网时间超过60小时,超出的时间每小时收费 元;(4)根据图象,写出一个其他的推断.【解答】解:(1)对于上网方式A ,若月上网时间在25小时以内,月收费为30元,故答案为:30;(2)如果月上网时间超过35小时且不足55小时,选择B 方式最省钱,故答案为:B ;(3)对于上网方式B ,若月上网时间超过60小时,超出的时间每小时收费为:(120-60)÷(80-60)=3(元),故答案为:3;(4)当上网时间超过80分钟时,选择C 方式最省钱.(答案不唯一).44.在“一次函数”的课题学习中,某小组从购物节期间甲、乙两家商场的促销信息中发现并提出问甲商场:所有商品打8折;乙商场:一次性购物不超过300元不打折,超过300元时,超出的部分打6折.题,请将他们分析、解决问题的过程补充完整.问题:在购买原价相同的同种商品时,应该如何选择这两家商场购物更省钱?分析问题:(1)设原价为x 元,则甲、乙两家商场的购物金额分别y 甲元、y 乙元,得到相应的函数解析式:y 甲=0.8x x ≥0 ,y 乙=x ,0≤x ≤300,(x >300)(2)按照表中自变量x 的值代入解析式计算,分别得到了y 甲,y 乙的几组对应值;x /元0300600⋯y 甲/元0a480⋯y 乙/元300b⋯(3)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点,并画出函数y 甲,y 乙的图象;解决问题:根据以上分析,在购买原价相同的同种商品时,选择购物更省钱的方案是 .【解答】解:分析问题:(1)设原价为x 元,则甲、乙两家商场的购物金额分别y 甲元、y 乙元,得到相应的函数解析式:y 甲=0.8x x ≥0 ;当0≤x ≤300时,y =x ,当x >300时,y =300+0.6(x -300)=0.6x +120.∴y 乙=x 0≤x ≤3000.6x +120(x >300);(2)由(1)知,a =0.8×300=240;b =0.6×600+120=480;x /元0300600⋯y 甲/元0240480⋯y 乙/元300480⋯故答案为:240,480;(3)根据(2)表中数据和(1)解析式画图,如图:解决问题:从分析问题(3)可知,当购买原价小于600元商品时应选择甲商场购买;当购买原价等于600元商品时,甲、乙两家商场花费一样多;当购买原价大于600元商品时应选择乙商场购买.故答案为:x <600时,选择甲;当x =600时,甲、乙一样;当x >600时,选择乙.45.某班“数学兴趣小组”根据学习一次函数的经验,对函数y=|x-2|的图象和性质进行了研究.探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数.如表是y与x的几组对应值:x⋯-3-2-1012345⋯y⋯54m210123⋯其中,m= ;(2)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象发现,该函数图象的最低点坐标是 ;当x<2时,y随x的增大而减小;当x≥2时,y随x的增大而 ;(4)进一步探究,①不等式|x-2|≥1.5的解集是 ;②若关于x的方程|x-2|=kx(k≠0)只有一个解,则k的取值范围是 .【解答】解:(1)当x=-1时,y=|x-2|=3,∴m=3,故答案为:3;(2)画出该函数图象的另一部分如图;(3)观察函数图象发现,该函数图象的最低点坐标是(2,0);当x<2时,y随x的增大而减小;当x≥2时,y随x的增大而增大;故答案为:(2,0),增大;(4)观察图象,①不等式|x-2|≥1.5的解集是x≤0.5或x≥3.5;②若关于x的方程|x-2|=kx(k≠0)只有一个解,则k的取值范围是k<-1或k≥1;故答案为:x≤0.5或x≥3.5;k<-1或k≥1.。
人教版2017-2018学年八年级数学下册期末小专题练习四一次函数一、选择题:1. 下列函数表达式中,y是x的正比例函数的是()A. y=﹣2x2B. y=C. y=D. y=x﹣2【答案】B【解析】【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【详解】A. y=﹣2x2,自变量次数为2,不是正比例函数,故不符合题意;B. y=,符合正比例函数的定义,故符合题意;C、. y=,不是正比例函数,故不符合题意;D、y=x﹣2,是一次函数,故不符合题意,故选B.【点睛】本题主要考查了正比例函数的定义,难度不大,熟练掌握正比例函数的概念是解题的关键.2. 下列函数(1)y=πx (2)y=2x-1 (3)y=x-1 (4)y=2-3x (5)y=x2-1中,是一次函数的有()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】根据一次函数的定义逐一进行分析判断即可得解.【详解】(1)y=πx,是正比例函数也是一次函数;(2)y=2x-1,是一次函数;(3)y=x-1,自变量的次数不是1,不是一次函数;(4)y=2-3x ,是一次函数;(5)y=x2-1,自变量的次数是2,不是1,故不是一次函数,所以一次函数有3个,故选B.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3. 如图,直线l1和l2的交点坐标为()A. (4,﹣2)B. (2,﹣4)C. (﹣4,2)D. (3,﹣1)【答案】A【解析】【分析】在网格中,分别找出每条直线所经过的两个“格点”,利用待定系数法求函数关系式,联立两函数关系式解方程组求两直线的交点.【详解】设直线l1解析式为y=kx+b,由图可知,直线经过点(2,0),(0,2),则,解得:,∴直线l1解析式为y=-x+2;同理可得直线l2解析式为y=-x;联立,解得:,∴直线l1和l2的交点坐标为(4,-2),故选A.【点睛】本题考查了待定系数法,一次函数与二元一次方程(组)的关系,熟知求两直线的交点坐标就是求两解析式组成的方程组的解是解题的关键.4. 已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().A. 2B. 1.5C. 2.5D. -6【答案】B【解析】【分析】由于一次函数y=-0.5x+2中k=-0.5<0,由此可以确定y的值随x的增减性,然后利用解析式即可求出在1≤x≤4范围内的函数值最大值.【详解】∵一次函数y=-0.5x+2中k=-0.5<0,∴y的值随x的值增大而减小,∴在1≤x≤4范围内,x=1时,函数值最大为y=-0.5+2=1.5,故选B.【点睛】本题考查了一次函数的性质.一次函数y=kx+b的图象的性质:①当k>0,y的值随x的值增大而增大;②当k<0,y的值随x的值增大而减小.5. 在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()A. B. C. D.【答案】A【解析】【分析】根据x>0、x=0、x<0三种情况进行分析讨论即可得.【详解】当x>0时,y=x,当x=0时,y=0,当x<0时,y=-x,观察选项中有A选项符合,故选A.【点睛】本题考查了一次函数图象的应用,正确的分情况讨论是解题的关键.6. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.【答案】B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.7. 从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y1=px-2和y2=x+q,使两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p,q)共有().A. 4组B. 5组C. 6组D. 不确定【答案】B【解析】【分析】先让两个函数相等表示出x,再让x<2,找出p,q的关系,然后把p=2,3,4,5分别代入即可得.【详解】令px-2=x+q,解得x=,因为交点在直线x=2左侧,即<2,整理得q<2p-4,把p=2,3,4,5分别代入即可得相应的q的值,有序数组为(4,2),(4,3),(5,2),(5,3),(5,4),(5,5),又因为p≠q,故(5,5)舍去,满足条件的有5组,故选B.【点睛】本题考查了两条直线相交或平行问题,主要考查根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或是不等式进而解决问题.8. 如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是( )A. 10B. 16C. 18D. 20【答案】A【解析】试题分析:根据图示可得BC=4,DC=5,则S=4×5÷2=10.考点:函数的应用.9. 如图,直线y=﹣x+8与x轴、y轴分别交于A.B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则点M的坐标是()A. (0,4)B. (0,3)C. (﹣4,0)D. (0,﹣3)【答案】A【解析】∵直线y=−x+8与x轴、y轴分别交于点A和点B,∴y=0时,x=6,则A点坐标为:(6,0),x=0时,y=8,则B点坐标为:(0,8);∴BO=8,AO=6,∴AB==10,直线AB沿AM折叠,点B恰好落在x轴上的点C处,∴AB=AC=10,MB=MC,∴OC=AC−OA=10−6=4.设MO=x,则MB=MC=8−x,在Rt△OMC中,OM2+OC2=CM2,∴x2+42=(8−x)2,解得:x=3,故M点坐标为:(0,3).故选B.10. 如图,直线l:y =,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为( )A. (0,42015)B. (0,42014)C. (0,32015)D. (0,32014)【答案】A【解析】分析:本题需先求出OA1和OA2的长,再根据题意得出OA n=4n,求出OA2016的长等于42016,即可求出A2016的坐标.解析:点A的坐标是(0,1),∴OA=1,∵点B的直线y= x上,∴OB=2,∴O A1=4,∴O A2=16,∴,∴点A2015的坐标为(0,42015).故选A.点睛:本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.二、填空题:11. 一次函数y=﹣3x+6的图象不经过______象限.【答案】三【解析】【分析】根据一次函数的性质一次项系数小于0,则函数图象一定经过二,四象限,常数项6>0,则一定与y正半轴相交,据此即可判断.【详解】一次函数y=﹣3x+6中k=-3<0,则函数图象一定经过二,四象限,常数项为6>0,所以函数图象与y轴正半轴相交,所以函数图象经过二、一、四象限,不经过三象限,故答案为:三.【点睛】本题主要考查了一次函数的性质,通过判断一次函数k,b的符号,就可确定一次函数图象所在象限.对性质的理解一定要结合图象记忆.12. 已知y=(k﹣1)x+k2-1是正比例函数,则k=______【答案】-1【解析】【分析】根据正比例函数的定义可知k-1≠0,常数项k2-1=0,由此即可求得答案.【详解】∵y=(k-1)x+k2-1是正比例函数,∴k-1≠0,k2-1=0,解得k≠1,k=±1,∴k=-1,故答案为:-1......................13. 如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P的坐标为______.【答案】(,)【解析】如图,作出点A关于直线的对称点A1,连接A1B交直线于点P,连接AP、BP,此时PA+PB 的值最小.∵点A(2,0)与点A1关于直线对称,∴点A1的坐标为(0,2).设直线A1B的解析式为,则:,解得:,∴A1B的解析式为,由,解得:,∴点P的坐标为:.14. 在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(3.5,1.5),那么点A n的纵坐标是____________.【答案】【解析】【分析】先利用待定系数法确定一次函数解析式为y=,再作A1C⊥x轴于C,A2D⊥x轴于D,A3H⊥x轴于H,根据等腰直角三角形的性质得A1C=1,A2D=,设A3H=t,于是可表示出A3的坐标为(5+t,t),接着把A3(5+t,t)代入y=,可解得t=,所以点A3的纵坐标为,同理可得点A4的纵坐标为,按此规律可得点An的纵坐标为.【详解】把A1(1,1),A2(3.5,1.5)代入y=kx+b得,解得,所以一次函数解析式为y=,作A1C⊥x轴于C,A2D⊥x轴于D,A3H⊥x轴于H,如图,则A1C=1,A2D=,设A3H=t,∵△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,∴OB1=2,B1B2=3,B2H=t,∴A3的坐标为(5+t,t),把A3(5+t,t)代入y=得,解得t=,即点A3的纵坐标为,同理可得点A4的纵坐标为,所以点An的纵坐标为,故答案为:.【点睛】本题考查的是规律题,涉及一次函数图象上点的坐标特征以及等腰直角三角形的性质,熟知一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.三、解答题:15. 写出下列问题中的关系式,并指出其中的变量和常量.(1)直角三角形中一个锐角a与另一个锐角β之间的关系;(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨).【答案】(1)α=90°﹣β;常量是90,变量是α,β;(2)y=30﹣0.5t.常量是30,0.5,变量是y、t.试题解析:(1)由题意得:,即;常量是90,变量是.(2)依题意得:y=30﹣0.5t.常量是30,0.5,变量是y、t.16. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(0kW·h)与应付电费y(元)的关系如图所示.(1)根据图像,请求出当0≤x≤50时,y与x的函数关系式;(2)请回答:当每月用电量不超过50kW·h时,收费标准是多少?当每月用电量超过50kW·h时,收费标准是多少?【答案】(1);(2)见解析.【解析】【分析】(1)0≤x≤50时,函数为正比例函数,把(50,25)代入正比例函数解析式即可.x>50时,为一次函数解析式,把(50,25),(100,70)代入即可求得;(2)不超过50度时,让总价20÷数量50即可,超过50度时,超过部分的付费为(70-25)÷(100-50)=0.9.【详解】(1)①当月用电量0≤x≤50时,y是x的正比例函数,设y=k1x,∵当x=50时,y=25,∴25=50k1,∴k1=,∴;②当月用电量x>50时,y是x的一次函数,设y=k2x+b,∵当x=50时,y=25;当x=100时,y=70,∴,∴,∴y=0.9x-20;(2)当每月用电量不超过50度时,收费标准是:每度0.50元.当每月用电量超过50度时,收费标准是:其中的50度每度0.5元,超过部分每度0.9元.【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.17. 为鼓励居民用电,某市电力公司规定了如下电费计算方法:每月用电不超过100度,按每度电0.5元计费;每月用电超过100度,超出部分按每度电0.4元计费.(1)若某用电户2002年1月交电费68元,那么该用户1月份用电多少度?(2)某用电户2002年2月平均每度电费0.48元,那么该用户2月份用电多少度?应交电费多少元?【答案】(1)该用户1月份用电145度;(2)该用户2月份用电125度,应交电费60元.【解析】【分析】(1)因为100×0.50=50<68.00元,说明该用户1月份用电已经超过100度,所以他的电费分成两部分交,即100度的电费和超过100度的电费,可以设用电x度,然后根据已知条件即可列出方程解题;(2)由于均每度电费0.48元<0.50元,说明该用户2月份用电已经超过100度,可以设用户2月份用电y度,那么他的电费为0.48y,或者为100×0.5+(y-100)×0.40,由此可以列出方程解决问题.【详解】(1)设1月份用电x度,由题意得100×0.5+(x-100) ×0.4=68,50+0.4x-40=68,解得:x=145,答:该用户1月份用电145度;(2)设该用户2月份用电y度,应交电费0.48y,由题意得0.48y=100×0.5+0.4(y-100),解得:y=125,∴0.48y=0.48×125=60(元),答:该用户2月份用电125度,应交电费60元.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.18. 如图,直线y=-x+5分别与轴、轴交于A.B两点.(1)求A.B两点的坐标;(2)已知点C坐标为(4,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标;(3)请在直线AB和轴上分别找一点M、N使△CMN的周长最短,在平面直角坐标系中作出图形,并求出点N的坐标.【答案】(1) A(5,0)、B(0, 5);(2) D(5,1);(3) (0,).【解析】试题分析:(1)令x=0,则y=5;令y=0,则x=5,即可求得;(2)根据直线AB的解析式可知△OAB是等腰直角三角形,然后根据轴对称的性质即可求出点D的坐标;(3)作出点C关于直线y轴的对称点C′,连接DE交AB于点M,交y轴于点N,则此时△CMN的周长最短.由D、E两点的坐标利用待定系数法求出直线DC′的解析式,再根据y轴上点的坐标特征,即可求出点N的坐标.试题解析:(1)∵直线y=﹣x+5分别与x轴、y轴交于A、B两点令x=0,则y=5;令y=0,则x=5∴点A坐标为(5,0)、点B 坐标为(0,5);(2)点C 关于直线AB的对称点D的坐标为(5,1),(3)作点C关于y轴的对称点C′,则C′的坐标为(﹣4,0)联结C′D交AB于点M,交y轴于点N,∵点C、C′关于y轴对称∴NC=NC′,又∵点C、D关于直线AB对称,∴CM=DM,此时,△CMN的周长=CM+MN+NC=DM+MN+NC′=DC′周长最短;设直线C′D的解析式为y=kx+b∵点C′的坐标为(﹣4,0),点D的坐标为(5,1)∴,解得∴直线C′D的解析式为,与y轴的交点N的坐标为(0,).考点:1.待定系数法求一次函数解析式;2.轴对称。
2017-2018学年八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm3.(3分)图中,不是函数图象的是()A.B.C.D.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或47.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+18.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,309.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<510.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为米.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1中国国际航空根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC 的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是;(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=【解答】解:A、是二次函数,故此选项错误;B、是反比例函数,故此选项错误;C、是正比例函数,故此选项正确;D、是一次函数,故此选项错误;故选:C.2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.3.(3分)图中,不是函数图象的是()A.B.C.D.【解答】解:由函数的定义可知,对于每一个自变量的x的取值,都有唯一的y 值与其对应,选项A中当x=1时,有两个y值与其对应,故选项A中的图象不是函数图象,故选:A.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等.故选:D.5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.7.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+1【解答】解:将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是y=2x﹣2.故选:C.8.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,30【解答】解:由图可知,平均数是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元).捐款30元的有20人,人数最多,故众数是30元.故选:B.9.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0),∴S==2y=2(6﹣x)=﹣2x+12,x>0且x<6,∴0<S<12,故选:B.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式y=﹣x+1.【解答】解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为:y=﹣x+1.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为32米.【解答】解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且AB=2DE,∵DE=16米,∴AB=32米.故答案为:32.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是8.【解答】解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为x2=(x﹣4)2+(x ﹣2)2.【解答】解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:x2=(x﹣4)2+(x﹣2)2.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是或.【解答】解:解方程x2﹣8x+15=0得:x=3或5,即直角三角形的两边为3或5,当5为直角边时,第三边为:=;当5为斜边时,第三边为:=4;故答案为:4或.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.【解答】解:∵直线y=2x+2与x轴、y轴分别交于点A,B,∴A(﹣1,0),B(0,2),将直线y=x向上平移n个单位长度后得到:直线y=x+n,当直线y=x+n经过点A时,0=﹣+n,即n=,当直线y=x+n经过点B时,2=0+n,即n=2,又∵直线y=x+n与线段AB有公共点,∴n的取值范围是.故答案为:.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解答】解:作①的理由:到线段两端距离相等的点在线段的垂直平分线上,作②的理由:对角线互相平分的四边形是平行四边形,作③的理由:有一个角是直角的平行四边形是矩形.故答案为:到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.【解答】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x 1=3﹣,x2=3+.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.【解答】解:∵BC=9,BE:EC=2:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC2+CH2=EH2.即32+x2=(9﹣x)2,解得x=4,∴CH=4.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.【解答】(1)证明:在方程(m﹣1)x2﹣(m+1)x+2=0中,△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0恒成立,∴方程(m﹣1)x2﹣(m+1)x+2=0总有实根;…(2分)(2)解:(m﹣1)x2﹣(m+1)x+2=(x﹣1)[(m﹣1)x﹣2]=0,=1,x2=.解得:x∵方程(m﹣1)x2﹣(m+1)x+2=0的两根均为正整数,且m是整数,∴m﹣1=1或m﹣1=2,∴m=2或m=3.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表2【解答】解:表2补充如下:20个数据从小到大排列后,第10、11个数据都是20,所以中位数是(20+20)÷2=20,数据20出现了10次,次数最多,所以众数是20.23.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.【解答】(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质该函数没有最大值或该函数没有最小值.【解答】解:(1)x≠0;故答案是:x≠0.(2)令,∴;(3)如图;(4)答案不唯一,可参考以下的角度:①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.【解答】(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=5.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)【解答】解:(1)∵B(0,3),C(0,﹣1).∴BC=4;(2)∵DB=DC,∴点D在线段BC的垂直平分线上,∵B(0,3),C(0,﹣1),∴线段BC的中点为(0,1),∴D点纵坐标为1,∵点D在直线AC上,∴1=﹣x﹣1,解得x=﹣2,∴D点坐标为(﹣2,1);(3)∵B(0,3),D(﹣2,1),∴可设直线BD解析式为y=mx+3,∴1=﹣2m+3,解得m=,∴直线BD解析式为y=x+3,∴可设P点坐标为(t,t+3),∵A(﹣,0),B(0,3),∴BP==|t|,AP==2,AB=2,当以A、B、P三点为顶点的三角形是等腰三角形时,有BP=AP、BP=AB和AP=AB 三种情况,①当BP=AP时,则有|t|=2,解得t=﹣,此时P点坐标为(﹣,2);②当BP=AB时,则有|t|=2,解得t=3或t=﹣3,此时P点坐标为(3,+3)或(﹣3,3﹣);③当AP=AB时,则有2=2,解得t=0(此时与B点重合,舍去)或t=﹣3,此时P点坐标为(﹣3,0);综上可知存在满足条件的点P,其坐标为(﹣,2)或(3,+3)或(﹣3,3﹣)或(﹣3,0).27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.【解答】解:(1)如图所示:(2)判断:∠DFC=∠BAE.证明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四边形ABCD为菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.(3)如图,连接CG,AC.由轴对称的性质可知,EA=EC,∴EA+EG=EC+EG,根据EC+EG≥CG可知,CG长就是EA+EG的最小值.∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.又∵G为AD的中点,∴DG=1,∴Rt△CDG中,由勾股定理可得CG=,∴EA+EG的最小值为.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是(﹣4,4);(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.【解答】解:(1)∵点P'(﹣2,2)是点P关于原点O的关联点,∴点P'是线段PO的中点,∴点P的坐标是(﹣4,4);故答案为:(﹣4,4);(2)①如图1,连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.②如图2,设N(0,n).∵正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分,∴关联图形的中心Q落在直线y=﹣x上,∵正方形ABCD的中心为E(﹣3,0),∴Q(,),∴代入得:=﹣,解得:n=3.。
《一次函数测试题》一、填空题(共40分,每空2分)。
(1)点A 在y 轴右侧,距y 轴6个单位长度,距x 轴8个单位长度,则A 点的坐标是 ,A 点离开原点的距离是 。
(2)点(-3,2),(a ,1+a )在函数1-=kx y 的图像上,则______,==a k(3)正比例函数的图像经过点(-3,5),则函数的关系式是 。
(4)函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 。
( 5)已知y 与4x-1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。
(6)写出下列函数关系式①速度60千米的匀速运动中,路程S 与时间t 的关系②等腰三角形顶角y 与底角x 之间的关系③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y (升)与汽车行驶路程x (千米)之间的关系④矩形周长30,则面积y 与一条边长x 之间的关系在上述各式中, 是一次函数, 是正比例函数(只填序号)(7)正比例函数的图像一定经过点 。
(8)若点(3,a )在一次函数13+=x y 的图像上,则=a 。
(9)一次函数1-=kx y 的图像经过点(-3,0),则k= 。
(10)已知y 与2x+1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。
(11)函数2m x y +-=与14-=x y 的图像交于x 轴,则m= 。
二、选择:(每题3分,共9分)(1)下面哪个点不在函数32+-=x y 的图像上( )A.(-5,13)B.(0.5,2) C (3,0) D (1,1)(2)下列函数关系中表示一次函数的有( )①12+=x y ②x y 1=③x x y -+=21④t s 60=⑤x y 25100-= A.1个 B.2个 C.3个 D.4个(3)下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-= A.1个 B.2个 C.3个 D.4个三 、(12分) 在同一坐标系中作出y=2x+1,x y 3=,34-=x y 的图像;在上述三个函数的图像中,哪一个函数的值先达到30 ?四 、(13分)某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
1 八年级数学(下)《一次函数》测试题一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义.2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=m x m y 是正比例函数,则m .6.函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数. 11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________. 二、选择题:12.下列函数中自变量x 的取值范围是x≥5的函数是( )A.y =B.y =C.y =D.y =— 2 —13.下列函数中自变量取值范围选取错误..的是 ( )A .2y x x =中取全体实数 B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .11y x x =-中≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。
八年级下册一次函数测试题含答案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2017八年级下册一次函数测试题含答案一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3x C .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少(2)降价前他每千克土豆出售的价格是多少(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元) 与通话时间t (分钟)之间的函数关系的图象(1)写出y 与t•之间的函数关系式. (2)通话2分钟应付通话费多少元通话7分钟呢xy1234-2-1CA-14321O25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料米,可获利50元;做一套N型号的时装需用A种布料米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大最大利润是多答案3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②元;③45千克24.①当0<t≤3时,y=;当t>3时,y=.②元;元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[+0.•6(80-x)]米,共用B种布料[+(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
一次函数
一、填空题(每小题3分,共18分)
1.在平面直角坐标系中,已知一次函数y =2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1____________y 2.(填“>”“<”或“=”)
2.当x =____________时,函数y =2x -1与y =3x +2有相同的函数值.
3.如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是____________. 4.表格描述的是y 与x
则m 与n 的大小关系是5.如图,直线y =kx +b 经过A(-2,-1)和B(-3,0)两点,则不等式-3≤-2x -5<kx +b 的解集是____________.
6.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.汽车到达乙地时油箱中还余油____________升. 二、选择题(每小题3分,共30分) 7.下列函数是一次函数的是( )
A .-32x 2+y =0
B .y =4x 2-1
C .y =2
x D .y =3x
8.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y =1x -3 B .y =1
x -3
C .y =x -3
D .y =x -3
9.若正比例函数的图象经过点(-1,2),则这个图象必经过点( )
A .(1,2)
B .(-1,-2)
C .(2,-1)
D .(1,-2)
10.(阜新中考)对于一次函数y =kx +k -1(k ≠0),下列叙述正确的是( ) A .当0<k <1时,函数图象经过第一、二、三象限 B .当k >0时,y 随x 的增大而减小
C .当k <1时,函数图象一定交于y 轴的负半轴
D .函数图象一定经过点(-1,-2)
11.如图,直线y =ax +b 过点A(0,2)和点B(-3,0),则方程ax +b =0的解是( )
A .x =2
B .x =0
C .x =-1
D .x =-3
12.(雅安中考)若式子k -1+(k -1)0有意义,则一次函数y =(1-k)x +k -1的图象可能是( )
13.要使直线y =(2m -3)x +(3n +1)的图象经过第一、二、四象限,则m 与n 的取值范围分别为( ) A .m >32,n >-1
3 B .m >3,n >-3
C .m <32,n <-13
D .m <32,n >-1
3
14.(阜新中考)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15 cm ,9
只饭碗摞起来的高度为20 cm ,那么11只饭碗摞起来的高度更接近( ) A .21 cm B .22 cm C .23 cm D .24 cm 15.惠农种子公司以一定价格销售“丰收一号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间函数关系如图所示.下列四种说法:①一次购买30千克种子时,付款金额为1 000元;②一次购买种子数量不超过10千克时,销售价格为50元/千克;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折;④一次购买40千克种子比分两次购买且每次购买20千克种子少花200元钱,其中正确的个数是( )
A .1
B .2
C .3
D .4
16.如图,直线y =2
3x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P
为OA 上一动点,PC +PD 值最小时,点P 的坐标为( )
A .(-3,0)
B .(-6,0)
C .(-32,0)
D .(-5
2
,0)
三、解答题(共52分)
17.(8分)已知:y 与x +2成正比例,且当x =1时,y =-6. (1)求y 与x 之间的函数解析式;
(2)若点M(m,4)在这个函数的图象上,求m的值.
18.(10分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).
(1)求直线AB的解析式;
(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.
19.(10分)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.
(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.
①求点B的坐标及k的值;
②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;
(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.
20.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的
数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图1所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图2所示.
(1)直接写出y与x之间的函数解析式;
(2)分别求出第10天和第15天的销售金额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?
21.(12分)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.
(1)小芳骑车的速度为____________km/h,H点坐标为____________;
(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?
(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?
参考答案
1.<
2.-3
3.m ≤0
4.m >n
5.-2<x ≤-1
6.6 7.D 8.D 9.D 10.C 11.D 12.C 13.D 14.C 15.C 提示:①②③正确,④错误.16.C
17.(1)根据题意,设y =k(x +2).把x =1,y =-6代入,得-6=k(1+2).解得k =-2.∴y 与x 的函数解析式为y =-2(x +2),即y =-2x -4.
(2)把点M(m ,4)代入y =-2x -4,得4=-2m -4.解得m =-4.
18.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨
⎪⎧k =2,
b =-2.
∴直线AB 的解析式为y =2x -2. (2)S △BOC =1
2×2×2=2.
19.(1)3
2
当x =-1时,y =-2×(-1)+1=3, ∴B(-1,3).
将B(-1,3)代入y =kx +4,得k =1.
(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4
k
<-1,解得2<k <4.
20.(1)y =⎩
⎪⎨⎪⎧2x (0≤x ≤15),
-6x +120(15<x ≤20).
(2)设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p =kx +b(10≤x ≤20).把(10,10),(20,8)
代入,得⎩
⎪⎨⎪⎧10k +b =10,20k +b =8.解得⎩⎨⎧k =-15,b =12.∴p =-15x +12(10≤x ≤20).当x =15时,p =-1
5×15+12=
9.∴第10天的销售金额为2×10×10=200(元);第15天的销售金额为2×15×9=270(元).
(3)当y ≥24时,①24≤2x ≤30,解得12≤x ≤15;②24≤-6x +120<30,解得15<x ≤16.综上可知“最佳销售期”的范围是12≤x ≤16,共有5天.对于函数p =-1
5x +12(10≤x ≤20),y 随x 值的增大而减小,∴
当x =12时,y max =-1
5×12+12=9.6.即在此期间,销售单价最高为9.6元/千克.
21.(1)20 (3
2
,20)
(2)设直线AB 的解析式为y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得y 1=-20x +30.∵AB ∥CD ,∴设直线CD 的解析式为y 2=-20x +b 2.将点C(1,20)代入解析式,得b 2=40.∴y 2=-20x +40.设直线EF 的解析式为y 3=k 3x +b 3.将点E(43,30),H(3
2
,20)代入解析式,得k 3=-60,b 3=110.∴y 3=-60x +110.解
⎩⎨
⎧y =-60x +110,y =-20x +40,得⎩⎪⎨⎪⎧
x =1.75,y =5.
∴点D 坐标为(1.75,5).30-5=25(km).∴小芳出发1.75小时后被妈妈追上,此时距家25 km.
(3)将y =0代入直线CD 解析式,得-20x +40=0.解得x =2;将y =0代入直线EF 的解析式,得-60x +110=0.解得x =116.2-116=1
6(h)=10(分钟).答:小芳比预计时间早10分钟到达乙地.。