机械工程测试技术基础课程复习要点
- 格式:ppt
- 大小:3.39 MB
- 文档页数:16
Chapter 11、信号的三种分类方法及其定义(1)确定性信号与随机信号。
若信号可表示为一个确定的时间函数,因而可确定其任何时刻的量值,这种信号称为确定性信号(分为周期信号,非周期信号);随机信号是一种不能准确预测未来瞬时值,也无法用数学关系式来描述的信号。
(2)连续信号和离散信号。
若信号数学表示式中的独立变量取值是连续的,为连续信号;若独立变量取离散值,为离散信号。
(3)能量信号和功率信号。
电压信号x(t)加到电阻R上,其瞬时功率P(t)=x2(t)/R。
把信号x(t)的平方x2(t)及其对时间的积分分别称为信号的功率和能量。
2、周期信号频谱的三个特点(1)周期信号的频谱是离散的(2)每条谱线只出现在基波频率的整数倍上,基波频率是诸分量频率的公约数(3)各频率分量的谱线高度表示该谐波的幅值或相位角。
3、傅里叶变换的性质(P30 表1-3)时域频域δ(t)⇔1(单位瞬时脉冲)(均匀频谱密度函数)1 ⇔δ(f)(幅值为1的直流量)在(f=0处有脉冲谱线)δ(t-t0)⇔e-j2πftoδ函数时移t0 (各频率成分分别相移2πfto 角)ej2πfot ⇔δ(f-f0)(复指数函数)(将δ(f)频移到f0)正、余弦函数的频谱密度函数:由sin2πf0t=j(e-j2πfot-ej2πfot)/2,cos2πf0t=(e-j2πfot+ej2πfot)/2,变换为sin2πf0t⇔j[δ(f+f0)-δ(f-f0)]/2,cos2πf0t⇔ [δ(f+f0)+δ(f-f0)]/2第 2 页 共 7 页5、各态历经平稳随机过程定义及其性质定义:平稳随机过程是指其统计特征参数不随时间而变化的随机过程。
性质:当取样在时间轴上作任意平移时,随即过程的所有有限维分布函数是不变的。
6、随机信号的主要特征参数及其含义 参数:(1)均值、方差和均方值(2)概率密度函数(3)自相关函数(4)功率谱密度函数。
含义:均值μx 表示信号的常值分量,方差σx2描述随机信号的波动分量,均方值φ2描述随机信号的强度。
《机械工程测试技术基础》知识点总结1. 测试是测量与试验的概括,是人们借助于一定的装置,获取被测对象有相关信息的过程。
测试工作的目的是为了最大限度地不失真获取关于被测对象的有用信息。
分为:静态测试,被测量(参数)不随时间变化或随时间缓慢变化。
动态测试,被测量(参数)随时间(快速)变化。
2. 基本的测试系统由传感器、信号调理装置、显示记录装置三部分组成。
传感器:感受被测量的变化并将其转换成为某种易于处理的形式,通常为电量(电压、电流、电荷)或电参数(电阻、电感、电容)。
信号调理装置:对传感器的输出做进一步处理(转换、放大、调制与解调、滤波、非线性校正等),以便于显示、记录、分析与处理等。
显示记录装置对传感器获取并经过各种调理后的测试信号进行显示、记录、存储,某些显示记录装置还可对信号进行分析、处理、数据通讯等。
3. 测试技术的主要应用:1. 产品的质量检测2.作为闭环测控系统的核心3. 过程与设备的工况监测4. 工程实验分析。
4. 测试技术是信息技术的重要组成部分,它所研究的内容是信息的提取与处理的理论、方法和技术。
现代科学技术的三大支柱:能源技术材料技术信息技术。
信息技术的三个方面:计算机技术、传感技术、通信技术。
5. 测试技术的发展趋势:(1) 1. 传感技术的迅速发展智能化、可移动化、微型化、集成化、多样化。
(2)测试电路设计与制造技术的改进(3)计算机辅助测试技术应用的普及(4)极端条件下测试技术的研究。
6. 信息:既不是物质也不具有能量,存在于某种形式的载体上。
事物运动状态和运动方式的反映。
信号:通常是物理、可测的(如电信号、光信号等),通过对信号进行测试、分析,可从信号中提取出有用的信息。
信息的载体。
噪声:由测试装置本身内部产生的无用部分称为噪声,信号中除有用信息之外的部分。
(1)信息和干扰是相对的。
(2)同一信号可以反映不同的信息,同一信息可以通过不同的信号来承载。
7.测试工作的实质(目的任务):通过传感器获取与被测参量相对应的测试信号,利用信号调理装置以及计算机分析处理技术,最大限度地排除信号中的各种干扰、噪声,最终不失真地获得关于被测对象的有关信息。
《机械工程测试技术基础》知识点总结引言机械工程测试技术是机械工程领域内的一个重要分支,它涉及到对机械系统的性能、状态和行为进行测量、分析和评估。
本文档旨在总结《机械工程测试技术基础》课程的核心知识点,为学生和专业人士提供一个复习和参考的框架。
第一章:测试技术概述1.1 测试技术的定义和重要性测试技术在机械工程中的应用测试技术对于产品质量和性能的影响1.2 测试系统的组成传感器信号调理器数据采集系统分析和处理软件1.3 测试技术的发展趋势数字化和智能化无线传感网络云计算和大数据第二章:传感器原理与应用2.1 传感器的分类按测量参数分类(如力、温度、位移等)按工作原理分类(如电阻式、电容式、电感式等)2.2 传感器的基本特性灵敏度线性度稳定性响应时间2.3 常见传感器的原理与应用应变片热电偶光电传感器霍尔效应传感器第三章:信号调理与数据采集3.1 信号调理的概念放大滤波模数转换3.2 数据采集系统数据采集卡(DAQ)的功能和选择数据采集的软件实现3.3 信号的数字化处理数字信号处理(DSP)技术快速傅里叶变换(FFT)第四章:机械特性测试4.1 力和扭矩的测量力传感器的选择和校准扭矩传感器的应用4.2 位移和速度的测量位移传感器的类型和选择速度测量的方法4.3 振动测试振动的基本概念振动测试的仪器和方法第五章:温度和压力测试5.1 温度测量接触式和非接触式温度测量温度传感器的选择和校准5.2 压力测量压力传感器的类型压力测量系统的校准和维护第六章:测试数据分析与处理6.1 数据分析的基本概念时域分析频域分析6.2 信号的统计特性均值方差功率谱密度6.3 故障诊断与状态监测故障特征提取状态监测的方法和应用第七章:测试技术的实际应用7.1 机械系统的测试与评估性能测试耐久性测试7.2 测试技术在智能制造中的应用智能传感器预测性维护7.3 测试技术在质量控制中的作用过程控制质量保证结语机械工程测试技术是确保机械系统性能和可靠性的关键。
机械工程测试技术基础笔记1. 引言在机械工程领域,测试技术起着非常重要的作用。
测试技术可以帮助工程师评估和验证机械系统的性能和安全性,提供可靠的数据支持工程决策。
本文将介绍机械工程测试技术的基础知识和常用方法。
2. 测试目的和要求在进行机械工程测试之前,我们首先需要明确测试的目的和要求。
一般来说,机械工程测试的目的可以有以下几个方面:•验证设计:测试可以验证机械系统的设计是否满足要求,是否能够正常运行。
•评估性能:测试可以评估机械系统的性能指标,如速度、力量、精度等。
•检测缺陷:测试可以检测机械系统中的缺陷和问题,帮助工程师做出改进和修复。
•衡量可靠性:测试可以衡量机械系统的可靠性和寿命,为系统运行和维护提供参考。
在明确测试目的的基础上,我们还需要确定测试的具体要求,包括测试的时间、精度、条件等。
这些要求将直接影响测试方法和设备的选择。
3. 测试方法和设备根据测试的具体要求,我们可以选择不同的测试方法和设备。
常见的机械工程测试方法包括:•静态测试:通过施加恒定的载荷或力量,测量机械系统的变形和应变情况。
•动态测试:以特定的速度或频率施加载荷或力量,观察机械系统的响应和振动情况。
•破坏性测试:通过施加高强度的载荷或力量,测试机械系统的极限承载能力。
•环境测试:在特定的环境条件下,如温度、湿度等条件下测试机械系统的性能。
•噪声测试:测量机械系统在运行中产生的噪音水平。
为了进行这些测试,我们需要选择合适的测试设备。
根据测试方法和要求的不同,可以使用各种传感器、测量仪器和数据采集系统来进行测试。
例如,压力传感器、位移传感器、加速度计等可以用于测量不同物理量;示波器、频谱分析仪等可以用于分析信号和振动;数据采集卡、计算机软件等可以用于记录和分析实验数据。
4. 数据处理和分析在进行机械工程测试之后,我们还需要对测试数据进行处理和分析。
数据处理的目的是去除噪声、提取有用的信息,并转化为可视化的形式。
常见的数据处理方法包括:•滤波:使用数字滤波器去除测试数据中的高频噪声,提取出测试信号的主要成分。
机械工程测试技术基础知识点的整合第一章是引言1,测试的概念和目的:获取被测对象的有用信息。
测试是测量和测试的结合。
测试技术是测量和测试技术的统称。
2、静态测量和动态测量静态测量:它指的是不随时间变化的物理量的测量。
动态测量:它指的是随时间变化的物理量的测量。
3.本课程的主要研究对象是机械工程中动态参数的测量。
4.测试系统的组成5.尺寸和数量的转移6、测量误差系统误差、随机误差、粗差7.测量精度和不确定度8.测量结果的表达第二章信号分析与处理一、信号的分类和描述1.分类2.时域描述:振幅随时间变化的频域描述:频率成分、振幅和相位大小二、寻找信号频谱的方法及其特点1、周期信号数学工具:寻找信号的傅立叶级数系数的谱特征;离散谐波收敛(见表1-1,测试的概念目的:获取被测对象的有用信息。
测试是测量和测试的结合。
测试技术是测量和测试技术的统称。
2、静态测量和动态测量静态测量:它指的是不随时间变化的物理量的测量。
动态测量:它指的是随时间变化的物理量的测量。
3.本课程的主要研究对象是机械工程中动态参数的测量。
4.测试系统的组成5.尺寸和数量的转移6、测量误差系统误差、随机误差、粗差7.测量精度和不确定度8.测量结果的表达第二章信号分析与处理一、信号的分类和描述1.分类2.时域描述:振幅随时间变化的频域描述:频率成分、振幅和相位大小二、寻找信号频谱的方法及其特点1、周期信号数学工具:寻找信号的傅立叶级数系数的谱特征;离散谐波收敛(见表1:每个谐波周期的最小公倍数基频的确定:每个谐波频率的最大公约数2.瞬态信号的数学工具(不包括准周期信号):傅立叶变换法;寻找信号的傅里叶变换频谱特征;连续性和收敛性3、随机信号数学工具:傅立叶变换法;信号自相关函数的傅里叶变换谱特征;连续性三.典型信号的频谱1.δ(t)函数△(f)=1的频谱和性质在频率上是无限的,在强度上是相等的,这被称为“均匀频谱”采样性质:整体特征:卷积特性:2.正弦和余弦信号的频谱(双边频谱)欧拉公式将正弦和余弦的实变量转换成复指数形式,即一对反向旋转损耗的组合。
机械工程测试技术基础知识点第一章绪论1. 测试技术是测量和试验技术的统称。
2. 工程测量可分为静态测量和动态测量。
3. 测量过程的四要素分别是被测对象、计量单位、测量方法和测量误差。
4. 基准是用来保存、复现计量单位的计量器具5. 基准通常分为国家基准、副基准和工作基准三种等级。
6. 测量方法包括直接测量、间接测量、组合测量。
7. 测量结果与被测量真值之差称为测量误差。
8. 误差的分类:系统误差、随机误差、粗大误差。
第二章信号及其描述1. 由多个乃至无穷多个不同频率的简单周期信号叠加而成,叠加后存在公共周期的信号称为一般周期信号。
2. 周期信号的频谱是离散的,而非周期信号的频谱是连续的。
1.信号的时域描述,以时间为独立变量。
4.两个信号在时域中的卷积对应于频域中这两个信号的傅里叶变换的乘积。
5信息传输的载体是信号。
6一个信息,有多个与其对应的信号;一个信号,包含许多信息。
7从信号描述上:确定性信号与非确定性信号。
8从信号幅值和能量:能量信号与功率信号。
9从分析域:时域信号与频域信号。
10从连续性:连续时间信号与离散时间信号。
11从可实现性:物理可实现信号与物理不可实现信号。
12可以用明确数学关系式描述的信号称为确定性信号。
13不能用数学关系式描述的信号称为随机信号。
14周期信号。
按一定时间间隔周而复始出现的信号15一般周期信号:由多个乃至无穷多个不同频率的简单周期信号叠加而成,叠加后存在公共周期的信号。
16准周期信号:由多个简单周期信号合成,但其组成分量间无法找到公共周期。
或多个周期信号中至少有一对频率比不是有理数。
17瞬态信号(瞬变非周期信号):在一定时间区间内存在,或随着时间的增加而幅值衰减至零的信号。
18非确定性信号:不能用数学式描述,其幅值、相位变化不可预知,所描述物理现象是一种随机过程。
19一般持续时间无限的信号都属于功率信号。
20一般持续时间有限的瞬态信号是能量信号(可以理解成能量衰减的过程)。
机械工程测试技术基础总结机械工程测试技术基础总结篇一:机械工程测试技术基础知识点整合第一章绪论1、测试的概念目的:获取被测对象的有用信息。
测试是测量和试验的综合。
测试技术是测量和试验技术的统称。
2、静态测量与动态测量静态测量:是指不随时间变化的物理量的测量。
动态测量:是指随时间变化的物理量的测量。
3、课程的主要研究对象研究机械工程中动态参数的测量4、测试系统的组成5、量纲及量值的传递6、测量误差系统误差、随机误差、粗大误差7、测量精度和不确定度8、测量结果的表达第二章信号分析与处理一、信号的分类及其描述1、分类2、描述时域描述:幅值随时间的变化频域描述:频率组成及幅值、相位大小二、求信号频谱的方法及频谱的特点1、周期信号数学工具:傅里叶级数方法:求信号傅里叶级数的系数频谱特点:离散性谐波性收敛性(见表1-2)周期的确定:各谐波周期的最小公倍数基频的确定:各谐波频率的最大公约数2、瞬变信号(不含准周期信号)数学工具:傅里叶变换方法:求信号傅里叶变换频谱特点:连续性、收敛性3、随机信号数学工具:傅里叶变换方法:求信号自相关函数的傅里叶变换频谱特点:连续性三、典型信号的频谱1、δ(t)函数的频谱及性质△(f)=1频率无限,强度相等,称为“均匀谱”采样性质:积分特性:卷积特性:2、正、余弦信号的频谱(双边谱)欧拉公式把正、余弦实变量转变成复指数形式,即一对反向旋转失量的合成。
解决了周期信号的傅里叶变换问题,得到了周期信号的双边谱,使信号的频谱分析得到了统一。
3、截断后信号的频谱频谱连续、频带变宽(无限)四、信号的特征参数:静态分量(常值分量)正弦、余弦信号的均值?2、均方值均方根值:强度(平均功率):有效值3、方差:波动分量4、概率密度函数:在幅值域描述信号幅值分布规律五、自相关函数的定义及其特点1、定义:2、特点3、自相关图六、互相关函数的定义及其特点1、定义2、特点3、互相关图七、相关分析的应用八、相关系数与相干函数相关系数、相关函数在时域描述两变量之间的相关关系;相干函数在频域描述两变量之间的相关关系。
第一章绪论1、测试的概念目的:获取被测对象的有用信息。
测试是测量和试验的综合。
测试技术是测量和试验技术的统称。
2、静态测量与动态测量静态测量:是指不随时间变化的物理量的测量。
动态测量:是指随时间变化的物理量的测量。
3、课程的主要研究对象研究机械工程中动态参数的测量4、测试系统的组成5、量纲及量值的传递6、测量误差系统误差、随机误差、粗大误差7、测量精度和不确定度8、测量结果的表达第二章信号分析与处理一、信号的分类及其描述1、分类2、描述时域描述:幅值随时间的变化频域描述:频率组成及幅值、相位大小二、求信号频谱的方法及频谱的特点1、周期信号数学工具:傅里叶级数方法:求信号傅里叶级数的系数频谱特点:离散性谐波性收敛性(见表1-2)周期的确定:各谐波周期的最小公倍数基频的确定:各谐波频率的最大公约数2、瞬变信号(不含准周期信号)数学工具:傅里叶变换方法:求信号傅里叶变换频谱特点:连续性、收敛性3、随机信号数学工具:傅里叶变换方法:求信号自相关函数的傅里叶变换频谱特点:连续性三、典型信号的频谱1、δ(t)函数的频谱及性质△(f)=1 频率无限,强度相等,称为“均匀谱”采样性质:积分特性:卷积特性:2、正、余弦信号的频谱(双边谱)欧拉公式把正、余弦实变量转变成复指数形式,即一对反向旋转失量的合成。
解决了周期信号的傅里叶变换问题,得到了周期信号的双边谱,使信号的频谱分析得到了统一。
3、截断后信号的频谱频谱连续、频带变宽(无限)四、信号的特征参数1、均值:静态分量(常值分量)正弦、余弦信号的均值?2、均方值:强度(平均功率)均方根值:有效值3、方差:波动分量4、概率密度函数:在幅值域描述信号幅值分布规律五、自相关函数的定义及其特点1、定义:2、特点3、自相关图六、互相关函数的定义及其特点1、定义2、特点3、互相关图七、相关分析的应用八、相关系数与相干函数相关系数、相关函数在时域描述两变量之间的相关关系;相干函数在频域描述两变量之间的相关关系。
机械工程测试技术基础重难点1.测试系统的组成:被测对象,传感器,信号调理,信号处理,数据显示与记录。
2.测量四要素:被测对象,计量单位,测量方法,测量误差。
3.绝对误差:直接用“测量误差=测量结果-真值”来表示。
它是一个量纲,单位和被测量一样的量。
相对误差:相对误差=误差/真值误差分类(按特性规律):系统误差(),随机误差(),粗大误差()3.工程测量可分为静态测量和动态测量。
静态测量:不随时间变化的物理量的测量。
动态测量:随时间变化的物理量的测量。
4.信号分类(按信号描述):确定性信号(周期信号和非周期信号)和随机信号;连续信号和离散信号;能量信号和功率信号。
5.电容传感器按参数:极距变化型,面积变化型,介质变化型。
5.霍尔效应:是一种半导体磁电转换元件。
将霍尔元件置于磁场B中,如果在a,b端通以电流i,在c,d端就会出现电位差,称为霍尔电势Vh,这种现象称为霍尔效应。
霍尔效应的产生是由于运动电荷受到磁场中洛伦兹力的作用结果。
金属电阻丝和半导体应变片的区别:前者利用导体变形引起电阻变化:后者利用半导体电阻率引起电阻的变化。
6.调制解调的目的:调制是指利用某种低频信号来控制或改变一高频振荡信号的某个参数(幅值,频率,相位)的过程;解调是指从已调制信号中恢复出原低频调制信号的过程。
调制解调是一对相反的信号变换过程,在工程上经常结合在一起使用。
(将低频信号通过调制手段变为高频信号再采用交流放大器进行放大,最终采用解调手段获取放大后的被测信号)7.何谓同步解调:它的基本功能就是完成频谱的线性搬移,但为了防止失真,同步检波电路中都必需输入与载波同调制步的解调载波。
(若把调幅波再次与原载波信号相乘,则频域的频谱图形将再一次进行“搬移”,其结果是使原信号的频谱图形平移到0和+-2f0的频率处,若用一个低通滤波器滤去中心频率为2f0的高频成分,便可以复现原信号的频谱,这一过程称为同步解调。
)8.滤波器的作用:允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路(让被测信号中的有效成分通过,而将不需要的成分抑制或衰减掉)。