电池及锂电池基础知识培训
- 格式:ppt
- 大小:1.61 MB
- 文档页数:43
锂电池培训资料一、电池基础二、锂离子电池基础三、锂电池的安全四、保护板BMS具体功能介绍五、锂离子电池的储藏和运输一、电池基础1、电池的发展简史:公元前100~公元100年电池原形1780~1791发明伽尼尔电池1800年伏特发明电池1833年发现法拉第法则1836年发明丹尼尔电池1859年发明铅酸电池1868年发明干电池1899年发明Ni—Cd蓄电池1901年发明Ni/Fe电池1951年发明密封Ni—Cd电池1990年发明锂离子电池1995年发明聚合物电解质锂离子电池2、电池的要素和组成:◆电极负极:通常将电池电极中电压较低的一极称为负极正极:通常将电池电极中电压较高的一极称为正极◆隔膜:在电池中,防止正负极间电子导通,而又能让离子通过(离子传导)的隔离材料,一般为多孔薄膜材料◆电解质溶液(电液):在电池内正负极间提供离子传输作用◆其他构件:如外壳,极柱,密封件等3、电池的分类一次电池(干电池)二次电池(充电电池或蓄电池)·铅酸电池·镍-镉电池·镍-氢电池·锂离子电池·液态锂离子电池·聚合物态锂离子电池另外还有燃料电池、太阳能电池等等4、常见可充电电池性能比较:组成电池能量密度电池体系负极电解液正极环保性能电压(V) Wh/kg Wh/L 充电循环自放电率锂离子电池碳LiPF6 LiMn2O4或绿色环保 3。
6 130—150 350-400 ≥10008%LiCoO2铅酸电池 Pb H2SO4 PbO2 铅污染严重2。
0 30—50 50—80 300—500 20%镍镉电池 Cd KOH NiOOH 镉污染严重 1.2 50—60 130-150 400—600 25%镍氢电池储氢 KOH NiOOH 环保 1.2 60—70 190-200 ≥500 10%材料二、锂离子电池基础1、锂离子电池的“前世今生" :锂离子电池是20世纪90年代开发成功的新型高能电池.锂离子电池的“前世”:早期负极为金属锂的“锂电池”,但金属锂的化学活性太大,充电时产生的枝晶会使电池短路,目前尚未真正解决其安全问题.锂离子电池的“今生”:锂离子电池名称开始于日本企业,针对含金属锂负极的锂二次电池而言,1991年由索尼公司率先实现商业化。
锂电池安全应用培训教程1. 引言锂电池是一种常用的高能量密度电池,广泛应用于移动设备、电动车辆和能源存储系统等领域。
然而,由于其特殊的化学性质,不正确的使用和处理可能会导致安全问题。
本培训教程旨在向员工提供锂电池安全应用的基本知识和操作指导,以确保他们能够正确使用锂电池并避免潜在的风险。
2. 锂电池基础知识2.1 锂电池的构成锂电池由正极、负极、电解质和隔膜四个主要部分组成。
正极通常由氧化物材料制成,负极通常由碳材料制成,电解质则起到离子传导的作用,隔膜用于隔离正负极。
2.2 锂电池的工作原理锂电池通过正负极之间的离子传输来实现电能的存储和释放。
在充电过程中,锂离子从正极脱嵌并通过电解质移动到负极,而在放电过程中,锂离子从负极嵌入正极。
3. 锂电池安全使用指南3.1 选购合格的锂电池产品购买锂电池时,应选择符合相关标准和认证的产品,避免购买低质量或假冒伪劣产品。
3.2 正确的充电和放电操作- 使用原厂提供的充电器和适配器进行充电,避免使用不合适或劣质的充电设备。
- 不要超过锂电池的额定电压范围进行充电和放电,以免引发过热或爆炸等安全问题。
- 避免长时间放电或过度放电,以保护锂电池的寿命和电能储存能力。
3.3 储存和运输锂电池的注意事项- 避免将锂电池暴露在高温或低温环境中,以免影响其性能和安全性。
- 在储存和运输过程中,应将锂电池放置在防火容器或防火袋中,以防止短路和火灾事故。
3.4 废弃或损坏锂电池的处理废弃或损坏的锂电池应按照相关法规进行正确处理,不得随意丢弃或进行不当处理,以免对环境和人员造成危害。
4. 锂电池安全事故应急处理4.1 火灾事故- 在锂电池发生火灾时,应立即采取措施将其隔离,并使用灭火器、灭火器材等进行灭火。
- 如果火势无法控制,应及时报警并疏散人员,确保人员安全。
4.2 泄漏事故- 当锂电池发生泄漏时,应戴上适当的个人防护装备,如护目镜和手套。
- 使用稀释剂或吸收剂进行泄漏物的清理,避免直接接触泄漏物。
锂电池基础知识培训锂电池是一种常见的电池类型,广泛应用于移动设备、电动车辆和可再生能源存储等领域。
本文将为大家介绍锂电池的基础知识,包括锂电池的结构、工作原理、充放电特性、安全性等方面。
一、锂电池结构锂电池通常由正极、负极、电解质和隔膜组成。
正极材料一般使用氧化物,如钴酸锂(LiCoO2)、磷酸铁锂(LiFePO4)等。
这些正极材料能够释放或吸收锂离子,实现电池的充放电过程。
负极材料通常采用石墨,能够嵌著锂离子形成锂插层化合物。
电解质是锂离子的传导介质,一般采用液态或聚合物电解质。
液态电解质具有高离子传导性和低内阻,而聚合物电解质则具有良好的安全性能。
隔膜用于隔离正负极,防止短路。
二、锂电池工作原理锂电池的工作原理是基于锂离子在正负极材料之间的嵌脱插过程。
充电时,外部电源提供电流,使得正极材料氧化,负极材料脱锂。
锂离子在电解液中移动,通过隔膜到达负极,嵌入到负极材料中。
放电时,锂离子从负极材料脱出,通过隔膜到达正极,嵌入到正极材料中。
同时,电子通过外部电路流动,产生电流,为外部设备供电。
锂电池的充放电过程是可逆的,可以循环多次使用。
三、锂电池充放电特性锂电池的充放电特性与其正负极材料有关。
充电时,锂电池通常采取恒流充电和恒压充电两个阶段。
恒流充电阶段中,电流保持不变,直到电池电压达到设定的峰值电压;恒压充电阶段中,电流逐渐减小,直到电池容量充满,电压保持恒定。
放电时,锂电池的电压会随着放电过程逐渐下降,当电压达到一定程度时需要停止放电,以避免过放。
锂电池的容量可以通过充放电循环实验来测试,常用的容量单位是安时(Ah)。
四、锂电池的安全性锂电池具有较高的能量密度,因此在不正确使用或存储时存在一定的安全风险。
首先,要注意避免过充和过放。
过充会造成电池内部压力过高,甚至发生爆炸;而过放会导致电池无法再次充电,损坏电池。
其次,在存储和携带锂电池时,应注意避免与金属物品短路,避免受到外力撞击。
此外,锂电池在高温环境下的使用会降低其寿命和安全性能,因此要避免长时间暴露在高温环境中。