八年级数学上册 第十一章 三角形 11.2 与三角形有关的角 11.2.2 三角形的外角性质习题 (新版)新人教版
- 格式:doc
- 大小:180.50 KB
- 文档页数:8
11.2.1 三角形内角和定理学校:___________姓名:___________班级:___________一.选择题(共10小题)1.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90° B.95° C.100°D.120°2.(2018•长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°3.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°4.(2018•河北二模)如图,将直角三角形ABC折叠,使点A与点B重合,折痕为DE,若∠C=90°,∠A=35°,则∠DBC的度数为()A.40° B.30° C.20° D.10°5.(2018•河北模拟)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°6.(2018•大庆模拟)如图,△ABC 中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40° B.20° C.25° D.30°7.(2018•绿园区一模)如图,在△ABC中,点D在AB边上,点E在AC 边上DE∥BC,点B、C、F在一条直线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.75° B.50° C.35° D.30°8.(2018•长春模拟)如图,在△ABC 中,点D在边BA的延长线上,∠ABC 的平分线和∠DAC的平分线相交于点M,若∠BAC=80°,∠C=60°,则∠M 的大小为()A.20° B.25° C.30° D.35°9.(2018•裕华区一模)如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38° B.39° C.42° D.48°10.(2018•津南区二模)如图,△ABC 纸片中,∠A=56°,∠C=88°.沿过点B的直线折叠这个三角形,使点C 落在AB边上的点E处,折痕为BD、则∠EDB的度数为()A.76° B.74° C.72° D.70°二.填空题(共8小题)11.(2018•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE 相交于点D,则∠BDC= .12.(2018•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C= .13.(2018•微山县一模)如图,点E 在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.14.(2018•兴化市一模)如果将一副三角板按如图方式叠放,那么∠1= .15.(2018•南开区模拟)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1= .∠A1BC的平分线与∠A1CD 的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010= .16.(2018•岐山县三模)如图,AE 是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.(2018•下城区二模)在△ABC中,∠ABC,∠ACB的角平分线交于点P,若∠BPC=110°,则∠A= °.18.(2018•安阳县一模)如图,△ABC 中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α= °三.解答题(共3小题)19.(2018•南岸区模拟)如图,BG ∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.20.(2018•门头沟区一模)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.(2018•淄博)已知:如图,△ABC 是任意一个三角形,求证:∠A+∠B+∠C=180°.参考答案与试题解析一.选择题(共10小题)1.解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.2.解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.3.解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.4.解:∵∠C=90°,∠A=35°,∴∠ABC=55°,由折叠可得,∠A=∠ABD=35°,∴∠DBC=∠ABC﹣∠ABD=55°﹣35°=20°.故选:C.5.解:给图中标上∠1、∠2,如图所示.∵∠1+45°+90°=180°,∴∠1=45°,∵∠1=∠2+30°,∴∠2=15°.又∵∠2+∠α=180°,∴∠α=165°.故选:A.6.解:∵由三角形的外角的性质可知,∠E=∠ECD﹣∠EBD,∵∠ABC的平分线与∠ACD的平分线交于点E,∴∠EBC=∠ABC,∠ECD=∠ACD,∵∠ACD﹣∠ABC=∠A=50°,∴(∠ACD﹣∠ABC)=25°,∴∠E=∠ECD﹣∠EBD=25°,故选:C.7.解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:C.8.解:∵∠BAC=80°,∠C=60°,∴∠ABC=40°,∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=,∴∠M=180°﹣20°﹣50°﹣80°=30°,故选:C.9.解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°,故选:A.10.解:∵∠A=56°,∠C=88°,∴∠ABC=180°﹣56°﹣88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=84°,∴∠EDB=180°﹣18°﹣88°=74°.故选:B.二.填空题(共8小题)11.解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.12.解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°13.解:∵CD平分∠ACE,∠DCA=65°,∴∠ACE=2∠DCA=130°,又∵∠A=70°,∴∠B=130°﹣70°=60°,故答案为:60°.14.解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.15.解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.16.解:∵AE是△ABC的角平分线,∴∠CAE=∠BAC=×128°=64°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣36°=54°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故答案为:10.17.解:如图所示:∵∠ABC,∠ACB的角平分线交于点P,∴∠ABP=∠PBC,∠ACP=∠PCB,∵∠BPC=110°,∴∠PBC+∠PCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°﹣140°=40°.故答案为:40.18.解:∵∠B=35°,∠BCA=75°,∴∠BAC=70°,∵由作法可知,AD是∠BAC的平分线,∴∠CAD=∠BAC=35°,∵由作法可知,EF是线段BC的垂直平分线,∴∠BCF=∠B=35°,∵∠ACF=∠ACB﹣∠BCF=40°,∴∠α=∠CAD+∠ACF=75°,故答案为:75.三.解答题(共3小题)19.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BCE=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.。
描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.2 与三角形有关的角一、学习任务1. 掌握三角形的内角和和外角和定理,并会熟练运用内外角和定理解决相关的角的问题.2. 会证明三角形内角和和外角和定理.3. 掌握直角三角形中角的性质和判定.二、知识清单三角形的内外角和三、知识讲解1.三角形的内外角和三角形内角与外角在三角形中,相邻两边组成的角,叫做三角形的内角,简称三角形的角.三角形的一边与其邻边的延长线组成的角,叫做三角形的外角.三角形内角和定理三角形三个内角的和等于 .三角形外角和定理三角形的外角等于与它不相邻的两个内角的和.三角形内角和定理的推论直角三角形两个锐角互余.两锐角互余的三角形是直角三角形.飞镖模型及“8”字模型三角形角平分线与内角和180∘例题:在 ,,则 ______.解:.△ABC ∠A :∠B :∠C =2:1:3∠A =60∘一个三角形三个外角之比为 ,三个内角的度数分别是______.解:,,.三角形外角和是,再根据比例分别求出三个外角,即可求出对应的内角.2:3:4100∘60∘20∘360∘如图,三角板的直角顶点在直线 上,若 ,则 的度数是______.解:.l ∠1=40∘∠250∘如图所示,已知 ,,,求 的度数.解:方法一:延长 交 于 ,所以 .∠A =70∘∠B =40∘∠C =20∘∠BOC BO AC D ∠BOC =∠1+∠C =∠A +∠B +∠C=130∘方法二:连接 ,因为 ,所以 .因为 ,所以 .方法三:连接 并延长到点 ,因为 ,,所以.BC ∠1+∠2+∠A +∠B +∠C =180∘∠1+∠2=50∘∠1+∠2+∠BOC =180∘∠BOC =130∘AO D ∠3+∠B =∠1∠4+∠C =∠2∠3+∠B +∠4+∠C =∠1+∠2=130∘已知如图1,线段 、 相交于点 ,连接 、,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下, 和 的平分线 和 相交于点 ,并且与 、 分别相交于 、.试解答下列问题:(1)在图1中,请直接写出 ,,, 之间的数量关系:__________________;(2)仔细观察,在图2中“8字形”的个数:_____个;(3)在图2中,若 ,,试求 的度数.分析:(1)根据三角形内角和定理即可得出 ;(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有 个;(3)现根据“8字形”中的角的规律,可得 ,,再根据角平分线的定义,得出 ,,可得 ,进而求出 的度数.解:(1);(2)① 线段 , 相交于点 ,形成“8字形”;② 线段 , 相交于点 ,形成“8字形”;③ 线段 , 相交于点 ,形成“8字形”;④ 线段 , 相交于点 ,形成“8字形”;⑤ 线段 , 相交于点 ,形成“8字形”;AB CD O AD CB ∠DAB ∠BCD AP CP P CD AB M N ∠A ∠B ∠C ∠D ∠D =40∘∠B =36∘∠P ∠A +∠D =∠C +∠B 6∠DAP +∠D =∠P +∠DCP ∠P CB +∠B =∠P AB +∠P ∠DAP =∠P AB ∠DCP =∠P CB 2∠P =∠D +∠B ∠P ∠A +∠D =∠C +∠B AB CD O AN CM O AB CP N AB CM O APCD M AN∠E=30高考不提分,赔付1万元,关注快乐学了解详情。
《三角形的外角》教学设计课题:三角形的外角课型:新授课课时:第一课时【教学目标】(1)了解三角形的外角;(2)探索并理解三角形外角定理及其推论的推导。
(3)会用三角形外角定理及其推论解决一些实际问题。
【教学重点】掌握三角形的一个外角等于与它不相邻的两个内角的和.【教学难点】运用三角形外角性质进行有关计算时能准确地推理.【教学过程】一、新课导入在绿茵场上,梅西在E处受到阻挡需要传球,他要准确的做出选择应传球给球员B还是球员C射门的可能性更大(射门张角越大,射门可能性越大)二、新课探究探究一三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
你能画出ABC的所有外角吗?这些外角与相邻内角又有什么样的关系呢?每个顶点处都有2个外角;每个三角形都有6个外角.位置关系:互为邻补角数量关系:互补探究二在△ABC 中,∠A =70°,∠B =60°,你能求出∠ACD的度数吗?∠ACD 与∠A,∠B 的大小有什么关系?∠ACD =∠A +∠B证明:∵∠ACD +∠ACB =180°∠A +∠B +∠ACB =180°∴∠ACD =∠A +∠B.结论:三角形的一个外角等于与它不相邻的两个内角的和.在△ABC 中,∠A =70°,∠B =60°,你能求出∠ACD的度数吗?∠ACD 与∠A,∠B 的大小有什么关系?符号语言:∵∠ACD 的△ABC 外角∴∠ACD =∠A +∠B结论:三角形的一个外角等于与它不相邻的两个内角的和.三、巩固提升1.下列语句中,正确的是()A.三角形的外角大于任何一个内角B.三角形的外角等于这个三角形的两个内角之和C.三角形的外角中,至少有两个钝角D.三角形的外角中,至少有一个钝角解析:A中,三角形的一个外角大于任何一个和它不相邻的内角,故错误;B中,三角形的一个外角等于和它不相邻的两个外角的和,故错误;C中,因为三角形的内角和是180°,故三角形的内角中,最多有一个钝角,则至少要有两个锐角,那么和它相邻的外角即为钝角.故C正确,D错误.故选C.2.如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是__ __度.解析:三角形的三角的和是180度则外角是:225°-180°=45°.则与这个外角相邻的内角是180-45=135°.3.三角形的三个外角中,最多有_______个锐角.解析:∵三角形的内角最多有1个钝角,∴三角形的三个外角中,锐角最多有1个.故答案为:14.已知:∠ACD 是△ABC的外角。
【知识与技能】1.掌握三角形的外角的定义.2.掌握三角形的外角的三个重要定理.【过程与方法】先通过画图学习三角形外角的定义,再用上一节学过的证明技术证明“三角形的一个外角等于与它不相邻的两个内角的和”,再由上面的结论直接推出:三角形的一个外角大于与它不相邻的任何一个内角.通过对教材例2的学习,引导学生得出一个重要定理:三角形外角的和等于360°.【情感态度】经历由已知定理推出新定理的过程使学生了解“推陈出新”的辩证唯物主义世界观.【教学重点】三角形的外角定义及性质.【教学难点】利用三角形的外角性质解决有关问题.一、情境导入,初步认识问题 1 画一个三角形,延长三角形的一边,就得到三角形的一个外角,请根据图形探究三角形的外角的定义.问题 2 任意一个三角形的一个外角与它不相邻的两个内角有怎样的关系?你能发现并证明吗?问题3 如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,它们的和是多少?【教学说明】学生分组讨论,然后交流成果,对问题2要求学生写出已知、求证,再写出证明过程.这里要重点指导,必要时板书示范.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考 1.一个三角形有几个外角?2.三角形的外角有哪些性质.【归纳结论】1.定义:三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角.2.一个三角形的每一个顶点处有两个外角,它们是对顶角.为了方便,在每一个顶点处只取一个外角,所以一个三角形共有三个外角.3.三个重要定理(1)三角形的一个外角等于与它不相邻的两个内角的和;(2)三角形的一个外角大于与它不相邻的任何一个内角;(注意:这里的不相邻三个字特别重要,不可缺少).(3)三角形的外角和等于360°.三、运用新知,深化理解1.下列四个图形中,能判断∠1>∠2的是()2.如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E 点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°3.如图,∠1,∠2,∠3是△ABC的三个外角,∠1∶∠2∶∠3=2∶3∶4,求∠1,∠2,∠3的度数.4.五角星ABCDE中,∠A+∠B+∠C+∠D+∠E等于多少度.5.如图,证明∠1>∠A.6.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分,当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.(2)当动点P落在第②部分时,∠APB=∠PAC+PBD是否成立?(直接回答成立或不成立)(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.【教学说明】教师根据实际情况选取讲解.【答案】1~5略.6.解:(1)解法一:如图(甲),延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD,∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD.解法二:如图(乙),过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD.解法三:如图(丙),∵AC∥BD,∴∠CAB+∠ABD=180°.即∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上时,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图(丁),连接PA,连接PB交于AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM,∴∠PBD=∠PAC+∠APB.选择(b)证明:如图(戊),∵点P在射线BA上,∴∠APB=0°.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图(巳),连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.四、师生互动,课堂小结1.三角形的外角等于和它不相邻两内角的和.2.三角形的外角大于任何一个和它不相邻的内角.1.布置作业:从教材“习题11.2”中选取.2.完成练习册中本课时的练习.本课时教学应突出学生主体性原则,即通过探究学习,指引学生独立思考,自主得到结果,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.17.5 第1课时一次函数与二元一次方程(组)知识点 1一次函数与二元一次方程(组)的关系1.如图,其中直线上每个点的坐标都是二元一次方程2x-y=2的解的是()2.已知二元一次方程组的解为则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-x-1的交点坐标为.3.如果直线y=3x-3与直线y=-x+3的交点坐标是,那么a=,方程组的解是.知识点 2利用图象解方程组4.[2019·贵阳]在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是.5.利用图象解方程组:6.若以二元一次方程x+2y-b=0的解为坐标的点(x,y)都在直线y=-x+b-1上,则常数b的值为()A.B.2 C.-1 D.17.已知经过点(-2,-2)的直线l1:y1=mx+n与直线l2:y2=-2x+6相交于点M(1,p).(1)关于x,y的二元一次方程组的解为;(2)求直线l1的函数表达式.8.已知直线y=2x+1与y=3x+b的交点在第二象限,求b的取值范围.17.5第2课时一次函数与一元一次方程、一元一次不等式知识点 1一次函数与一元一次方程的关系1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=-1D.y=-12.如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是()A.x=-3B.x=4C.x=-D.x=-知识点 2一次函数与一元一次不等式的关系3.[2020·广州模拟]如图,正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,其中点A的横坐标为2,则不等式ax<的解集为()A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<-2D.-2<x<0或x>24.如图,直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,则不等式k1x+b>k2x+b的解集为.5.函数y=-x+3的图象如图所示,利用图象解答下列问题:(1)求不等式-x+3<0的解集;(2)对于函数y=-x+3,当x取何值时,函数值y不小于0?6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为,m,则不等式组mx-2<kx+1<mx的解集为()A.x>B.<x<C.x<D.0<x<7.[教材练习第1题变式]已知函数y1=-x+2,y2=3x-4.(1)当x分别取何值时,y1=y2,y1<y2,y1>y2?(2)在同一平面直角坐标系中,分别作出这两个函数的图象,请你说说(1)中的解集与函数图象之间的关系.8.如图,直线y=kx+b与x轴、y轴分别交于点A(-2,0),B(0,3),直线y=1-mx与x轴交于点C,与直线AB交于点D.已知关于x的不等式kx+b>1-mx的解集是x>-.(1)分别求出k,b,m的值;(2)求S△ACD.详解1.C[解析] ∵2x-y=2,∴y=2x-2.当x=0时,y=-2;当y=0时,x=1,∴直线y=2x-2与y轴交于点(0,-2),与x轴交于点(1,0).故选C.2.(-4,1)3.14.[解析] ∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组,的解是5.解:图象略,方程组的解为6.B[解析] 因为以二元一次方程x+2y-b=0的解为坐标的点(x,y)都在直线y=-x+b-1上,直线的表达式两边乘以2,得2y=-x+2b-2,变形为x+2y-2b+2=0,所以-b=-2b+2,解得b=2.故选B.7.解:(1)把点M(1,p)代入y2=-2x+6,得p=4,∴关于x,y的二元一次方程组的解即为直线l1:y1=mx+n与直线l2:y2=-2x+6相交的交点M(1,4)的坐标.故答案为(2)把点M(1,4)和点(-2,-2)代入直线l1:y1=mx+n,可得解得所以直线l1的函数表达式为y1=2x+2.8.解:两直线的交点坐标为方程组的解,即根据第二象限内点的坐标特征知解得1<b<.详解1.C2.A[解析] 方程ax+b=0的解,即为函数y=ax+b的图象与x轴交点的横坐标.∵直线y=ax+b过点B(-3,0),∴方程ax+b=0的解是x=-3.故选A.3.B[解析] ∵正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,∴A,B两点的坐标关于原点对称.∵点A的横坐标为2,∴点B的横坐标为-2.由图象可知,当ax<时,x<-2或0<x<2.故选B.4.x>0[解析] ∵直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,∴交点的横坐标为0.∵从图象看,当x>0时,直线y1=k1x+b位于直线y2=k2x+b的上方;当x<0时,直线y1=k1x+b位于直线y2=k2x+b的下方,∴当x>0时,k1x+b>k2x+b.故答案为x>0.5.解:(1)由图象可知,不等式-x+3<0的解集为x>2.(2)当x≤2时,函数值y不小于0.6.B[解析] 把,m代入y1=kx+1,可得m=k+1,解得k=m-2,∴y1=(m-2)x+1.令y3=mx-2,则当y3<y1时,mx-2<(m-2)x+1,解得x<.当kx+1<mx时,(m-2)x+1<mx,解得x>,∴不等式组mx-2<kx+1<mx的解集为<x<.故选B.7.解:(1)当y1=y2时,-x+2=3x-4,解得x=;当y1<y2时,-x+2<3x-4,解得x>;当y1>y2时,-x+2>3x-4,解得x<.(2)∵y1=-x+2,∴当x=0时,y1=2;当y1=0时,x=2,∴该函数图象经过点(0,2),(2,0).同理,函数y2=3x-4的图象经过点(0,-4),,0.由(1)知,函数y1=-x+2与y2=3x-4的图象的交点的横坐标是,则交点的纵坐标是y=-+2=,即交点坐标是,.其图象如图所示.由图象可知:从函数的角度看,求(1)中的解集就是分别求使一次函数y1=-x+2的值等于、小于、大于一次函数y2=3x-4的值时,自变量x的取值范围.8.解:(1)∵直线y=kx+b与x轴、y轴分别交于点A(-2,0),B(0,3),∴解得∴y=x+3.∵关于x的不等式kx+b>1-mx的解集是x>-,∴点D的横坐标为-.将x=-代入y=x+3,得y=.将x=-,y=代入y=1-mx,解得m=1.(2)对于y=1-x,令y=0,得x=1,∴点C的坐标为(1,0),∴S△ACD=×[1-(-2)]×=.第1课时运用平方差公式因式分解教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x -y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本习题.。
11.2.2 三角形的外角性质学校:___________姓名:___________班级:___________一.选择题(共15小题)1.(2018•聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+β D.γ=180°﹣α﹣β2.(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40° B.45° C.50° D.55°3.(2018•眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45° B.60° C.75° D.85°4.(2018•安次区一模)下列图形中,能确定∠1>∠2的是()A.B.C.D.5.(2018•宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是()A.24° B.59° C.60° D.69°6.(2018•平顶山三模)一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°7.(2018•柳江区二模)一副三角板如图放置,若∠1=90°,则∠2的度数为()A.45° B.60° C.75° D.90°8.(2018•大祥区模拟)下列说法正确的是()A.按角分类,三角形可以分为钝角三角形、锐角三角形和等腰直角三角形B.按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C.三角形的外角大于任何一个内角D.一个三角形中至少有一个内角不大于60°9.(2018•河南模拟)如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A.80° B.100°C.120°D.140°10.(2018•保定一模)下列图形中,能肯定∠2<∠1的是()A.B.C. D.11.(2018春•槐荫区期末)如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60° D.45°12.(2017秋•太原期末)如图,在Rt△ABC中,∠ACB=90°,∠A=55°,点D是AB延长线上的一点.∠CBD的度数是()A.125°B.135°C.145°D.155°13.(2017秋•滁州期末)把一副三角板按如图叠放在一起,则∠α的度数是()A.165°B.160°C.155°D.150°14.(2017秋•宁城县期末)将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°15.(2017秋•惠山区期末)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤2∠BDC=∠BAC.其中正确的结论有()A.①②④B.①③④⑤ C.①②③⑤ D.①②③④⑤二.填空题(共5小题)16.(2018•雁江区模拟)在三角形的三个外角中,锐角最多有个.17.(2018•瓯海区一模)如图,∠ACD是△ABC的外角,若∠B=50°,∠ACD=120°,∠A= .18.(2018•肥城市三模)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于.19.(2018•武汉模拟)一副三角板如图所示摆放,含45°的三角板的斜边与含30°的三角板的较长直角边重合,AE⊥CD于点E,则∠ABE的度数是°.20.(2017秋•宜城市期末)在△ABC中,∠A=35°,∠B=72°,则与∠C相邻的外角为.三.解答题(共3小题)21.(2018•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.22.(2017秋•埇桥区期末)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD ∥BC.23.(2017秋•建平县期末)已知:如图,点D、E分别在AB、AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.参考答案与试题解析一.选择题(共15小题)1.解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.2.解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.3.解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.4.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项错误;B、若两条直线平行,则∠1=∠2,若所截两条直线不平行,则∠1与∠2无法进行判断,故本选项正确;C、∵∠1是∠2所在三角形的一个外角,∴∠1>∠2,故本选项正确;D、∵已知三角形是直角三角形,∴由直角三角形两锐角互余可判断出∠1=∠2.故选:C.5.解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选:B.6.解:如图,由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选:D.7.解:如图,∵∠1=90°,∴∠3=90°﹣45°=45°,∴∠2=45°+30°=75°.故选:C.8.解:A、按角分类,三角形可以分为钝角三角形、锐角三角形和直角三角形,所以A错误;B、按边分类,三角形可分为等腰三角形、不等边三角形,所以B错误;C、三角形的外角大于任何一个与它不相邻内角,所以C错误;D、因为三角形的内角和等于180°,所以一个三角形中至少有一个内角不大于60°,所以D正确.故选:D.9.解:如图所示,延长BC交AD于点E,∵∠A=50°,∠B=20°,∴∠CED=∠A+∠B=50°+20°=70°,∴∠BCD=∠CED+∠D=70°+30°=100°.故选:B.10.解:A、由圆周角定理得,∠2=∠1;B、由三角形的外角的性质可知,∠2<∠1;C、根据对顶角的性质可知,∠2=∠1;D、∠2与∠1的关系不确定,故选:B.11.解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选:B.12.解:∵∠CBD是△ABC的外角,∴∠CBD=∠A+∠ACB,∵∠A=55°,∠ACB=90°,∴∠CBD=55°+90°=145°,故选:C.13.解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选:A.14.解:由题意可得:∠2=60°,∠5=45°,∵∠2=60°,∴∠3=180°﹣90°﹣60°=30°,∴∠4=30°,∴∠1=∠4+∠5=30°+45°=75°,故选:C.15.解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°﹣∠ABD,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴⑤正确;即正确的有4个,故选:C.二.填空题(共5小题)16.解:∵三角形的内角最多有1个钝角,∴三角形的三个外角中,锐角最多有1个.故答案为:1.17.解:由三角形的外角的性质可知,∠A=∠ACD﹣∠B=70°,故答案为:70°.18.解:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.19.解:由题意知,∠ABD=90°,∵AE⊥CD,∴∠ABD=∠AED=90°,∴点A,B,E,D是以AD为直径的圆上,∴∠DBE=∠DAE,在Rt△ADE中,∠ADE=∠ADB+∠BDC=30°+45°=75°,∴∠DAE=90°﹣75°=15°,∴∠DBE=15°,∴∠ABE=∠ABD+∠DBE=105°,故答案为105.20.解:如图:∵∠1=∠A+∠B,∠A=35°,∠B=72°,∴∠1=35°+72°=107°,故答案为:107°.三.解答题(共3小题)21.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.22.证明:由三角形的外角性质得,∠EAC=∠B+∠C,∵∠B=∠C,∴∠EAC=2∠B,∵AD平分外角∠EAC,∴∠EAC=2∠EAD,∴∠B=∠EAD,∴AD∥BC.23.证明:(1)∵∠EGH是△FBG的外角,∴∠EGH>∠B,又∵DE∥BC,∴∠B=∠ADE.(两直线平行,同位角相等),∴∠EGH>∠ADE;(2)∵∠BFE是△AFE的外角,∴∠BFE=∠A+∠AEF,∵∠EGH是△BFG的外角,∴∠EGH=∠B+∠BFE.∴∠EGH=∠B+∠A+∠AEF,又∵DE∥BC,∴∠B=∠ADE(两直线平行,同位角相等),∴∠EGH=∠ADE+∠A+∠AEF.。