高一上第三次月考数学试题
- 格式:doc
- 大小:443.50 KB
- 文档页数:8
卜人入州八九几市潮王学校宁县第二二零二零—二零二壹高一数学上学期第三次月考试题〔含解析〕一、选择题〔每一小题5分,一共60分〕 1.集合{}0,1,2A =,{}1,2B =-,那么=AB 〔〕A.∅B.{}2 C.{}1,2-D.1,0,1,2【答案】B 【解析】 【分析】利用集合交集的运算规律可得出A B .【详解】{}0,1,2A =,{}1,2B =-,{}2A B ∴=,应选B .【点睛】此题考察集合交集的运算,正确利用集合的运算律是解题的关键,考察计算才能,属于根底题. 2.{}{}10,2,1,0,1A x x B =+=--,那么()R C A B ⋂=〔〕A.{}2,1--B.{}2-C.{}1,0,1-D.{}0,1【答案】A 【解析】 A :,,,所以答案选A【考点定位】考察集合的交集和补集,属于简单题.【此处有视频,请去附件查看】3.集合{}{}12,23A x x x B x x x =->=+>,那么AB 等于〔〕A.{}31x x -<<-B.{}10x x -<< C.{}1x x <-D.{}3x x >-【答案】A 【解析】 因为集合{}12A x x x =->{}|1x x =<-,集合{}23B x x x =+>{}{}3,|31x x A B x x =-∴⋂=-<<-,应选A.4.设集合{}{}1,3,5,7,9,11,5,9==A B ,那么AB =〔〕A.{}5,9B.{}1,3,7,11C.{}1,3,7,9,11D.{}1,3,5,7,9,11【答案】B 【解析】 【分析】直接利用补集的定义求AB .【详解】由补集的定义得AB ={}1,3,7,11.应选B【点睛】此题主要考察补集的求法,意在考察学生对该知识的理解掌握程度和分析推理才能. 5.设I 是全集,集合,,M N P 都是其子集,那么以下列图中的阴影局部表示的集合为〔〕 A.()I M P C N ⋂⋂B.()I MN C P ⋂⋂ C.()I I MC N C M ⋂⋂D.()()MN M P ⋂⋃⋂【答案】B 【解析】观察图形得:图中的阴影局部表示的集合为()I M N C P ⋂⋂,应选B.6.设M={菱形},N={平行四边形},P={四边形},Q={正方形},那么这些集合之间的关系为 A.P N M Q ⊆⊆⊆ B.Q M N P ⊆⊆⊆ C.P M N Q ⊆⊆⊆D.Q N M P ⊆⊆⊆【答案】B 【解析】∵四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形, ∴正方形应是M 的一局部,M 是N 的一局部, ∵矩形形、正方形、菱形都属于平行四边形, ∴它们之间的关系是:Q M N P ⊆⊆⊆.应选B .7.以下各图形中,是函数的图象的是()A. B. C.D.【答案】D 【解析】 函数()y f x =中,对每一个x 值,只能有唯一的y 与之对应∴函数()y f x =的图象与平行于y 轴的直线最多只能有一个交点故,,A B C 均不正确故答案选D 8.假设()1f x x =+(3)f =〔〕A.2B.4C.±2D.2【答案】A 【解析】由题()32f ==选A9.以下函数中,既是偶函数又在区间(0,+∞)上单调递减的是() A.y =1xB.y =3x +1C.y =-x 2+1D.y =|x |【答案】C 【解析】 【详解】对于A ,函数y =1x为奇函数且在区间()0+∞,上单调递减,故A 不正确; 对于B ,函数31?y x +=既不是奇函数也不是偶函数,不满足条件,故B 不正确;对于C ,函数21y x =-+是偶函数且在区间()0+∞,上单调递减,故C 正确; 对于D ,函数y x=在区间()0+∞,上单调递增,不满足条件,故D 不正确; 故答案选C10.以下函数中,图像关于y 轴对称的是()A.y =1xB.y =C.y =x |x |D.43y x =-【答案】D 【解析】 【分析】 假设函数图象关于y 轴对称,那么函数为偶函数,那么判断选项是否为偶函数即可【详解】对于选项A,1y x=是奇函数;对于选项B,定义域为[)0,+∞,故y =对于选项C,()()f x x x x x f x -=--=-=-,是奇函数;对于选项D,43y x =-是偶函数,故图象关于y 轴对称, 应选:D【点睛】此题考察函数奇偶性的判断,考察偶函数的图象性质 11.函数()y f x =在R 上为增函数,且(2)(9)f m f m >-+,那么实数m 的取值范围是A (,3)-∞- B.(0,)+∞C.(3,)+∞D.(,3)(3,)-∞-⋃+∞【答案】C 【解析】因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3. 应选C.12.集合{A x y ==,{}Bx x a =≥,假设A B A =,那么实数a 的取值范围是()A.(],3-∞-B.(),3-∞- C.(],0-∞D.[)3,+∞【答案】A 【解析】 由得[]3,3A =-,由A B A =,那么A B ⊆,又[),B a =+∞,所以3a ≤-.应选A.第II 卷〔非选择题)二、填空题〔每一小题5分,一共20分〕 13.假设f (x )为R 上的奇函数,且满足(2)2f =-,那么f (0)+f (-2)=________.【答案】2 【解析】 【分析】根据奇函数的性质,当奇函数在0x=处有意义时,()00f =,又有()()22f f -=-,即可求解【详解】因为f (x )为R 上的奇函数,那么()00f =,()()222f f -=-=,所以()()022f f +-=故答案为:2【点睛】此题考察利用奇偶性求值,属于根底题 14.()f x 为奇函数且0x>时,()21f x x =+,当0x ≤时,解析式为___.【答案】()21,00,0x x f x x -<⎧=⎨=⎩【解析】 【分析】 令0x <,那么0x ->,代入()21f x x =+中,再根据奇函数()()f x f x -=-,求得解析式,同时,因为奇函数()f x 在0x =处有意义,那么()00f =【详解】当0x <时,0x ->,那么()21f x x -=-+,因为()f x 是奇函数,所以()()f x f x -=-,所以()()()2121f x f x x x =--=--+=-,且()00f =,那么当0x ≤时,()21,00,0x x f x x -<⎧=⎨=⎩故答案为:()21,00,0x x f x x -<⎧=⎨=⎩【点睛】此题考察利用奇偶性求函数解析式,注意:奇函数在0x =处有意义时,()00f =15.函数.【答案】[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1-考点:函数定义域【此处有视频,请去附件查看】16.函数21,02,0x x y x x ⎧+≤=⎨->⎩,假设()10f x =,那么x=___________【答案】3- 【解析】 【分析】 当0x>时,()2010f x x =-<≠,当0x ≤时,由()2110f x x =+=可得结果.【详解】因为函数()21,02,0x x f x x x ⎧+≤=⎨->⎩,当0x>时,()2010f x x =-<≠,当0x ≤时,()2110f x x =+=,可得3x =〔舍去〕,或者3x =-,故答案为3-.【点睛】此题主要考察分段函数的解析式,意在考察对根底知识掌握的纯熟程度,以及分类讨论思想的应用,属于简单题. 三、解答题 17.22{1,251,1}A a a a a =-+++,2A -∈,务实数a 的值.【答案】32- 【解析】 【分析】由2A -∈,有12,a -=-或者22512a a ++=-,显然212a +≠-,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为2A -∈,所以有12,a -=-或者22512a a ++=-,显然212a +≠-,当12a -=-时,1a =-,此时212512a a a -=++=-不符合集合元素的互异性,故舍去;当22512a a ++=-时,解得32a =-,1a =-由上可知不符合集合元素的互异性,舍去,故32a =-. 【点睛】此题考察了元素与集合之间的关系,考察了集合元素的互异性,考察理解方程、分类讨论思想. 18.集合,{|25},{|46}U R A x x B x x ==-≤≤=≤≤.求:〔1〕A B ;〔2〕()U C A B ⋂; 〔3〕()U C AB .【答案】〔1〕{}|45A B x x ⋂=≤≤〔2〕(){}U|56A B x x ⋂=<≤〔3〕(){U|2A B x x ⋃=<-或者}6x >【解析】 【分析】根据集合交集、并集、补集的定义求解即可 【详解】〔1〕由题,{}|45A B x x ⋂=≤≤〔2〕{U |2A x x =<-或者}5x >,那么(){}U |56A B x x ⋂=<≤〔3〕{}|26A B x x ⋃=-≤≤,那么(){U|2A B x x ⋃=<-或者}6x >【点睛】此题考察集合的交集、并集、补集的运算,属于根底题 19.假设函数()y f x =是定义在〔1,4〕上单调递减函数,且2()()0f t f t -<,求t 的取值范围.【答案】12t <<【解析】 【分析】整理不等式为()()2f t f t <,根据函数的单调性,即可得到221414t t t t ⎧<<⎪<<⎨⎪>⎩,求解即可【详解】由题,2()()0f t f t -<,∴()()2f t f t <,()f x 在()1,4上单调递减,221414t t t t ⎧<<⎪∴<<⎨⎪>⎩,解得12t << 【点睛】此题考察利用单调性解不等式,注意:对定义域的要求 20.函数1()32f x x =+-,[3,6]x ∈. 〔1〕试判断函数()f x 的单调性,并用定义加以证明; 〔2〕求函数()f x 的最大值和最小值. 【答案】〔1〕()f x 在[3,6]上单调递减,证明见解析〔2〕()max 4f x =,()min 134f x =【解析】 【分析】 〔1〕当[]12,3,6x x ∈,210x x x ∆=->,判断y ∆的符号即可;〔2〕由〔1〕可得()f x 在[3,6]上单调递减,那么()()max 3f x f =,()()min 6f x f =【详解】〔1〕()f x 在[3,6]上单调递减,证明:当[]12,3,6x x ∈,210x x x ∆=->,那么211220,20,0x x x x ->->-<,0y ∴∆<,()f x ∴在[3,6]上单调递减〔2〕由〔1〕,()f x 在[3,6]上单调递减,∴当3x =时,()()max 133432f x f ==+=-; 当6x=时,()()min11363624f x f ==+=-【点睛】此题考察定义法证明函数单调性,考察利用单调性求最值问题21.全集U =R ,集合A ={x |a -1<x <2a +1},B ={x |0<x <1}. (1)假设a =12,求A ∩B ; (2)假设A ∩B =A ,务实数a 的取值范围. 【答案】〔1〕{}01A B x ⋂=<<〔2〕2a ≤-【解析】 【分析】〔1〕当12a =时,122A x ⎧⎫=-<<⎨⎬⎩⎭,根据集合交集定义求解即可; 〔2〕由A B A =,可得A B ⊆,分别讨论A =∅和A ≠∅的情况,求解即可【详解】〔1〕当12a=时,集合122A x ⎧⎫=-<<⎨⎬⎩⎭,{}01A B x ∴⋂=<<〔2〕A B A =,A B ∴⊆,当A =∅时,121a a -≥+,2∴≤-a ;当A ≠∅时,12101211a a a a -<+⎧⎪≤-⎨⎪+≤⎩,无解;综上,2a ≤-【点睛】此题考察交集的运算,考察包含关系求参数,考察分类讨论思想 22.定义在非零实数集上的函数()f x 满足()()()f xy f x f y =+,且()f x 是区间()0+∞,上的递增函数. 〔1〕求()1f ,()1f -的值;〔2〕证明:函数()f x 是偶函数;〔3〕解不等式()1202f f x ⎛⎫+-≤ ⎪⎝⎭【答案】解:(1)f(1)=0,f(-1)=0(2)见解析(3)1{|02x x ≤<或者11}2x <≤ 【解析】【详解】试题解析:解:〔1〕令1xy ==,那么()()()111f f f =+()10f ∴= 令1x y ==-,那么()()()111f f f =-+-〔2〕令1y =-,那么()()()()1f x f x f f x -=+-= ()()f x f x ∴-=,()f x ∴∴()f x 为定义域上的偶函数. 〔3〕据题意可知,函数图象大致如下:()()122102f f x f x ⎛⎫+-=-≤ ⎪⎝⎭, 1210x ∴-≤-<或者0211x <-≤, 102x ∴≤<或者112x <≤ 考点:1函数的奇偶性;2函数的单调性.。
高一数学上学期第三次月考试题(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:必修第一册第一章~第四章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}(){}1,2,3,,,,A B x y x A y A x yA ==∈∈-∈∣中所含元素的个数为( ) A .2B .4C .6D .82.已知命题2:,+2+3>0p x ax x ∀∈R .若命题p 为假命题,则实数a 的取值范围是( )A .13a a ⎧⎫<⎨⎬⎩⎭∣B .103a a ⎧⎫<≤⎨⎬⎩⎭∣C .13a a ⎧⎫≤⎨⎬⎩⎭∣D .13a a ⎧⎫≥⎨⎬⎩⎭∣ 3.已知函数()22132f x x +=+,则()3f 的值等于( )A .11B .2C .5D .1- 4.函数122x y ⎛⎫=- ⎪⎝⎭的定义域为( ) A .(],1-∞- B .[)1,-+∞ C .[]1,0- D .[]0,15.设3log 2a =,5log 3b =,23c =,则( ) A .a c b << B .a b c <<C .b<c<aD .c<a<b 6.函数22()log f x x x m =++在区间()2,4上存在零点,则实数m 的取值范围是( )A .(),18-∞-B .(5,)+∞C .(5,18)D .()18,5--7.美国生物学家和人口统计学家雷蒙德·皮尔提出一种能较好地描述生物生长规律的生长曲线,称为“皮尔曲线”,常用的“皮尔曲线”的函数解析式可以简化为()()0,1,01kx b P f x P a k a +=>><+的形式.已知()()613kx bf x x +=∈+N 描述的是一种果树的高度随着栽种时间x (单位:年)变化的规律,若刚栽种(x =0)时该果树的高为1.5m ,经过2年,该果树的高为4.5m ,则该果树的高度不低于5.4m ,至少需要( )A .3年B .4年C .5年D .6年 8.已知两个正实数x ,y 满足1x y +=,则4xy x y +的最大值是( ) A .16 B .19 C .6 D .9二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.若0a b >>,则下列不等式中一定不成立的是( )A .11b b a a +>+ B .11a b a b +>+ C .11a b b a +>+ D .22a b a a b b+>+ 10.在同一直角坐标系中,函数23y x ax a =++-与x y a =的图象可能是( )A .B .C .D .11.已知函数3()1f x x x =++,则( )A .()f x 在R 上单调递增B .()f x 是奇函数C .点(0,1)是曲线()y f x =的对称中心D .()f x 的值域为R12.已知函数()21,25,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,则下列说法正确的是( ) A .函数()y f x =在3,32⎡⎤-⎢⎥⎣⎦的值域为[]0,3 B .若实数,,a b c 满足a b c <<且()()()f a f b f c ==,则22a c b c +++的取值范围是()32,64C .∃实数()0,3m ∈,关于x 的方程()()()210f x m f x m +--=恰有五个不同实数根D .∀实数()2,3t ∈,关于x 的方程()()f f x t =有四个不同实数根第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分. 13.已知幂函数()y f x =的图象过点116,64⎛⎫ ⎪⎝⎭,则14f ⎛⎫= ⎪⎝⎭. 14.关于x 的不等式20ax bx c ++>的解集为()1,3,则二次函数()2f x cx bx a =++的单调增区间为 .15.已知函数3222022236()3x x x f x x +++=+,且()14f a =,则()f a -的值为 . 16.设函数()1,01,0x x x f x x x x ⎧+>⎪⎪=⎨⎪-<⎪⎩,则满足条件“方程()f x a =有三个实数解”的实数a 的一个值为 .程或演算步骤.17.计算下列各式.(1)212343270.000127()8--+ (2)74log 232327log lg 25lg 47log 3log 43++++⨯. 18.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数;(2)若B =∅,求m 的取值范围;(3)若A B ⊇,求m 的取值范围.19.已知21()f x ax x =+,其中a 为实数.(1)当2a =时,证明函数()y f x =在[]1,2上是严格增函数;(2)根据a 的不同取值,判断函数()y f x =的奇偶性,并说明理由.20.某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:()()212kt x b p --=,其中,k b 均为常数.当关税税率75%t =时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定,k b 的值.(2)市场需求量q (单位:万件)与市场价格x (单位:千元)近似满足关系式:2x q -=,当p q =时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.21.给出下面两个条件:①函数()f x 的图象与直线1y =-只有一个交点;②函数()f x 的两个零点的差的绝对值为2. 在这两个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定.已知二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,且______. (1)求()f x 的解析式;(2)若函数()()()213232x x g x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.22.已知函数44()log (1)log (3)f x x x =++-.(1)求f (x )的定义域及单调区间.(2)求f (x )的最大值,并求出取得最大值时x 的值.(3)设函数4()log [(2)4]g x a x =++,若不等式f (x )≤g (x )在(0,3)x ∈上恒成立,求实数a 的取值范围.。
卜人入州八九几市潮王学校二零二零—二零二壹高一数学上学期第三次月考试题一、选择题〔每一小题5分,一共60分〕1、集合{}2,1=A ,{}4,3,2=B ,那么B A ⋃=() A 、{}6,5,2,1B 、{}1C 、{}2D 、{}4,3,2,12、以下变量之间的关系是函数关系的是〔〕A 、水稻的产量与用肥量B 、小明的身高与饮食C 、球的半径与体积D 、家庭收入与支出3、假设集合{}|21A x x =-<<,{}|02B x x =<<,那么集合=⋂B A () A 、{}|11x x -<<B 、{}|21x x -<<C 、{}|22x x -<<D 、{}|01x x <<4、假设()f x =(3)f =〔〕A 、2B 、4C 、、10 5、假设{}1->=x x A ,那么〔〕 A 、A ⊆0B 、{}A ∈0C 、A ∈∅D 、{}A ⊆06、集合{}3,2,1=M ,{}4,3,2=N ,那么()A 、N M ⊆B 、M N ⊆C 、{}3,2=⋂N MD 、{}4,1=⋃N M 7、函数x x y 4312-++=的定义域为()A 、⎪⎭⎫ ⎝⎛-43,21B 、⎥⎦⎤⎢⎣⎡-43,21C 、⎥⎦⎤ ⎝⎛∞-21,D 、()+∞⋃⎪⎭⎫ ⎝⎛-,00,21 8、假设:f A B →能构成映射,以下说法正确的有〔〕〔1〕A 中的任一元素在B 中必须有像且唯一;〔2〕B 中的多个元素可以在A 中有一样的原像; 〔3〕B 中的元素可以在A 中无原像;〔4〕像的集合就是集合B.A 、4个B 、3个C 、2个D 、1个9、二次函数245y x mx =-+的对称轴为2x =-,那么当1x =时,y 的值是〔〕A 、7-B 、1C 、17D 、2510、定义集合运算:{}B y A x xy z z B A ∈∈==,,*.设{}{}2,0,2,1==B A ,那么集合B A *的所有元素之和为〔〕A 、0B 、2C 、3D 、611、把函数1)2x (y2+-=的图象向左平移1个单位,再向上平移1个单位后,所得图象对应的函数解析式是〔〕A 、2)3x (y 2+-=B 、2)3x (y -=C 、2)1x (y 2+-=D 、2)1x (y -=12、集合{}R a a x ax x A ∈=++=,022,假设集合A 有且仅有2个子集,那么实数a 的取值组成的集合为()A 、{}0,1-B 、{}1,0C 、{}1,1-D 、{}1,0,1-二、填空题〔每一小题5分,一共20分〕13、集合{}3,2,1的子集个数为. 14、()y x ,在映射f 下的像是()y x y x -+,,那么像()3,2在f 下的原像为.15、⎪⎩⎪⎨⎧≥-<=1,11,1)(2x x x xx f ,那么=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛31f f . 16、某年级先后举办了数学、音乐讲座,其中听数学讲座43人,听音乐讲座34人,还有15人同时听了数学和音乐,那么听讲座的人数为人.三、解答题〔一共6大题,一共70分〕17、〔6分〕设R U=,集合{}53≤≤-=x x A ,{}62>-<=x x x B 或,求: 〔1〕B A ⋂;〔2〕()()B C A C U U ⋃.18、〔12分〕求以下函数的定义域:〔1〕37+-=x x y ;〔2〕12+=x y ;〔3〕61352--+-=x x x y . 19、〔10分〕求以下函数的解析式:〔1〕()x x x f 32+=,求()12+x f ; 〔2〕()x f 是一次函数,且()[]89+=x x f f ,求()x f .20、〔12分〕函数()[]5,0,13∈+=x x x f ,求函数的最大值和最小值. 21、〔15分〕二次函数b ax x x f ++=2)(的图像关于1=x 对称,且其图像经过原点. 〔1〕求这个函数的解析式;〔2〕求函数在(]3,0∈x 上的值域.22、〔15分〕集合{}35≤≤-=x x A ,{}321+<<+=m x m x B 且A B ⊆,务实数m 的取值范围.。
2015-2016学年某某省某某市航天高中高一(上)第三次月考数学试卷一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.设集合A={x|x﹣1>0},B={x|2x>0},则A∩B=()A.{x|x>1} B.{x|x>0} C.{x|x<﹣1} D.{x|x<﹣1或x>1}2.若,且α是第二象限角,则cosα的值等于()A. B. C.D.3.为了得到函数的图象,只需把函数y=sinx的图象上所有的点()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|5.幂函数y=x m(m∈Z)的图象如图所示,则m的值可以为()A.1 B.﹣1 C.﹣2 D.26.函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则()A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不确定7.根据表格内的数据,可以断定方程e x﹣x﹣2=0的一个根所在的区间是()x ﹣1 0 1 2 3e x0.37 1 2.72 7.39 20.08x+2 1 2 3 4 5A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)8.将下列各式按大小顺序排列,其中正确的是()A.cos0<cos<cos1<cos30°B.cos0<cos<cos30°<cos1C.cos0>cos>cos1>cos30°D.cos0>cos>cos30°>cos19.若lgx﹣lgy=a,则=()A.3a B.C.a D.10.若sinα,cosα是关于x的方程4x2+2x+3m=0的两根,则m的值为()A.B. C.D.11.设函数f(x)=,若方程f(x)=m有三个不同的实数解,则m的取值X围是()A.m>0或m<﹣1 B.m>﹣1 C.﹣1<m<0 D.m<012.已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知角α的终边经过点P(﹣4,3),则cosα=.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是.15.函数,则=.16.当x>0时,不等式(a2﹣3)x>(2a)x恒成立,则实数a的取值X围是.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.)17.已知(1)求tanα的值;(2)求的值.18.设,(1)在下列直角坐标系中画出f(x)的图象;(2)若f(t)=3,求t值.19.已知x∈[﹣,],(1)求函数y=cosx的值域;(2)求函数y=﹣3(1﹣cos2x)﹣4cosx+4的值域.20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3;当x=6π时,y有最小值﹣3.(1)求此函数的解析式;(2)求此函数的单调区间.21.已知二次函数f(x)=x2﹣16x+q+3(1)若函数在区间[﹣1,1]上存在零点,某某数q的取值X围;(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51?若存在,求出q的值,若不存在,说明理由.22.已知函数.(1)当a=1时,求函数f(x)在(﹣∞,0)上的值域;(2)若对任意x∈[0,+∞),总有f(x)<3成立,某某数a的取值X围.2015-2016学年某某省某某市航天高中高一(上)第三次月考数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.设集合A={x|x﹣1>0},B={x|2x>0},则A∩B=()A.{x|x>1} B.{x|x>0} C.{x|x<﹣1} D.{x|x<﹣1或x>1}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式解得:x>1,即A={x|x>1},由B中不等式变形得:2x>0,得到B=R,∴A∩B={x|x>1},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若,且α是第二象限角,则cosα的值等于()A. B. C.D.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】由sinα的值,以及α的X围,利用同角三角函数间的基本关系求出cosα的值即可.【解答】解:∵sinα=,α是第二象限角,∴cosα=﹣=﹣.故选C【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.为了得到函数的图象,只需把函数y=sinx的图象上所有的点()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.【解答】解:∵由y=sinx到y=sin(x﹣),只是横坐标由x变为x﹣,∴要得到函数y=sin(x﹣)的图象,只需把函数y=sinx的图象上所有的点向右平行移动个单位长度.故选:A.【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|【考点】正弦函数的图象;余弦函数的图象.【专题】三角函数的图像与性质.【分析】根据函数单调性,周期性和奇偶性分别进行判断即可得到结论.【解答】解:A.函数y=tanx为奇函数,不满足条件.B.函数y=|sinx|满足既是(0,)上的增函数,又是以π为周期的偶函数.C.y=cosx的周期为2π,不满足条件.D.y=|cosx|在(0,)上是减函数,不满足条件.故选:B.【点评】本题主要考查三角函数的图象和性质,要求熟练掌握三角函数的周期性,奇偶性和单调性.5.幂函数y=x m(m∈Z)的图象如图所示,则m的值可以为()A.1 B.﹣1 C.﹣2 D.2【考点】幂函数的性质.【专题】应用题;函数思想;定义法;函数的性质及应用.【分析】由给出的幂函数的图象,得到幂指数小于0,且幂函数为偶函数,即可判断答案.【解答】解:根据幂函数的图象可知函数在第一象限内单调递减,且为偶函数.则m<0且为偶数,故选:C.【点评】本题主要考查幂函数的图象和性质,要求熟练掌握幂函数的性质的应用.6.函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则()A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不确定【考点】二次函数的性质.【专题】计算题.【分析】利用对称轴的公式求出对称轴,根据二次函数的单调区间得到,得到选项.【解答】解:∵函数y=ax2+bx+3的对称轴为∵函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数∴∴b=2a<0故选B【点评】解决与二次函数有关的单调性问题,一般要考虑二次函数的开口方向、对称轴.7.根据表格内的数据,可以断定方程e x﹣x﹣2=0的一个根所在的区间是()x ﹣1 0 1 2 3e x0.37 1 2.72 7.39 20.08x+2 1 2 3 4 5A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)【考点】二分法求方程的近似解.【专题】计算题;函数的性质及应用.【分析】令f(x)=e x﹣x﹣2,求出选项中的端点函数值,从而由根的存在性定理判断根的位置.【解答】解:由上表可知,令f(x)=e x﹣x﹣2,则f(﹣1)≈0.37+1﹣2<0,f(0)=1﹣0﹣2=﹣1<0,f(1)≈2.72﹣1﹣2<0,f(2)≈7.39﹣2﹣2>0,f(3)≈20.09﹣3﹣2>0.故f(1)f(2)<0,故选:C.【点评】考查了二分法求方程近似解的步骤,属于基础题.8.将下列各式按大小顺序排列,其中正确的是()A.cos0<cos<cos1<cos30°B.cos0<cos<cos30°<cos1C.cos0>cos>cos1>cos30°D.cos0>cos>cos30°>cos1【考点】余弦函数的单调性.【专题】三角函数的图像与性质.【分析】先将1和化为角度,再根据余弦函数的单调性,判断出四个余弦值的大小关系.【解答】解:∵1≈57.30°,∴≈28.56°,则0<<30°<1,∵y=cosx在(0°,180°)上是减函数,∴cos0>cos>cos30°>cos1,故选D.【点评】本题主要考查余弦函数的单调性,以及弧度与角度之间的转化,属于基础题.9.若lgx﹣lgy=a,则=()A.3a B.C.a D.【考点】对数的运算性质.【专题】计算题.【分析】直接利用对数的性质化简表达式,然后把lgx﹣lgy2a代入即可.【解答】解: =3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.【点评】本题考查对数的运算性质,考查计算能力,是基础题.10.若sinα,cosα是关于x的方程4x2+2x+3m=0的两根,则m的值为()A.B. C.D.【考点】同角三角函数基本关系的运用.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用韦达定理求得sinα+cosα=﹣,sinα•cosα=,再利用同角三角函数的基本关系求得sinα•cosα=﹣,从而求得 m的值.【解答】解:∵sinα,cosα是关于x的方程4x2+2x+3m=0的两根,∴sinα+cosα=﹣,sinα•cosα=,再根据1+2sinαcosα=,∴sinα•cosα=﹣,∴m=﹣,故选:D.【点评】本题主要考查韦达定理、同角三角函数的基本关系,属于基础题.11.设函数f(x)=,若方程f(x)=m有三个不同的实数解,则m的取值X围是()A.m>0或m<﹣1 B.m>﹣1 C.﹣1<m<0 D.m<0【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】由题意可得函数y=f(x)和直线y=m有3个不同的交点,数形结合可得m的取值X 围.【解答】解:由题意可得函数y=f(x)和直线y=m有3个不同的交点,如图所示:当﹣1<m<0时,函数y=f(x)和直线y=m有3个不同的交点,故选C.【点评】本题主要考查方程的根的存在性及个数判断,体现了数形结合的数学思想,属于中档题.12.已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】函数f(x)=1+asinax的图象是一个正弦曲线型的图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数的周期为:,∵|a|>1,∴T<2π,而D不符合要求,它的振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象的对应关系,故选D.【点评】由于函数的解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知角α的终边经过点P(﹣4,3),则cosα=.【考点】任意角的三角函数的定义.【专题】计算题.【分析】先求出角α的终边上的点P(﹣4,3)到原点的距离为 r,再利用任意角的三角函数的定义cosα=求出结果.【解答】解:角α的终边上的点P(﹣4,3)到原点的距离为 r=5,由任意角的三角函数的定义得cosα==.故答案为:.【点评】本题考查任意角的三角函数的定义,两点间的距离公式的应用,考查计算能力.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是(π﹣2)rad .【考点】弧长公式.【专题】计算题.【分析】由题意,本题中的等量关系是扇形的周长等于弧所在的圆的半周长,可令圆心角为θ,半径为r,弧长为l,建立方程,求得弧长与半径的关系,再求扇形的圆心角.【解答】解:令圆心角为θ,半径为r,弧长为l由题意得2r+l=πr∴l=(π﹣2)r∴θ==π﹣2故答案为:(π﹣2)rad.【点评】本题考查弧长公式,解题的关键是熟练掌握弧长公式,且能利用公式建立方程进行运算,本题考查对公式的准确记忆能力15.函数,则= ﹣.【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】利用诱导公式先求出f(x)=,再把cos=代入,能求出结果.【解答】解:∵===,∵cos=,∴==.故答案为:﹣.【点评】本题考查三角函数值的求法,是基础题,解题时要认真审题,注意诱导公式的合理运用.16.当x>0时,不等式(a2﹣3)x>(2a)x恒成立,则实数a的取值X围是a>3 .【考点】函数恒成立问题.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由题意结合幂函数的单调性列关于a的不等式组得答案.【解答】解:∵x>0时,不等式(a2﹣3)x>(2a)x恒成立,∴,解得:a>3.故答案为:a>3.【点评】本题考查函数恒成立问题,应用了幂函数的单调性,同时注意指数式的底数大于0且不等于1,是中档题.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.)17.已知(1)求tanα的值;(2)求的值.【考点】同角三角函数基本关系的运用.【专题】综合题;方程思想;综合法;三角函数的求值.【分析】(1)直接弦化切,即可求tanα的值;(2)法一:求出sinα,cosα,分类讨论求的值.法二:原式分子分母同除以cos2α,弦化切,即可求的值.【解答】解:(1)∵,∴tanα=﹣tanα+1(2)法一:由(1)知:,∴或当,时,原式=当,时,原式=综上:原式=法二:原式分子分母同除以cos2α得:原式==【点评】本题考查同角三角函数关系,考查学生的转化能力,属于中档题.18.设,(1)在下列直角坐标系中画出f(x)的图象;(2)若f(t)=3,求t值.【考点】分段函数的解析式求法及其图象的作法.【专题】计算题;作图题.【分析】由分段函数,按照基本函数作图,第一段一次函数,第二次二次函数,第三次为一次函数,要注意每段的定义域.【解答】解:(1)如图(2)由函数的图象可得:f(t)=3即t2=3且﹣1<t<2.∴t=【点评】本题主要考查分段函数的作图和用数形结合解决问题的能力,分段函数知识点容量大且灵活,是高考的热点,在解决中要注意部分与整体的关系.19.已知x∈[﹣,],(1)求函数y=cosx的值域;(2)求函数y=﹣3(1﹣cos2x)﹣4cosx+4的值域.【考点】余弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】(1)由条件利用余弦函数的定义域和值域,求得函数y=cosx的值域.(2)把函数y的解析式化为y=3(cosx﹣)2﹣,结合cosx∈[﹣,1],利用二次函数的性质求得y的值域.【解答】解:(1)∵y=cosx在[﹣,0]上为增函数,在[0,]上为减函数,∴当x=0时,y取最大值1;x=时,y取最小值﹣,∴y=cosx的值域为[﹣,1].(2)原函数化为:y=3cos2x﹣4cosx+1,即y=3(cosx﹣)2﹣,由(1)知,cosx∈[﹣,1],故y的值域为[﹣,].【点评】本题主要考查余弦函数的值域,二次函数的性质,属于基础题.20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3;当x=6π时,y有最小值﹣3.(1)求此函数的解析式;(2)求此函数的单调区间.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】(1)由题意得到A和周期,代入周期公式求ω,在由点(π,3)在此函数图象上结合φ的X围求得φ,则函数解析式可求;(2)直接由复合函数的单调性求函数的单调区间.【解答】解:(1)由题意可知:A=3,,∴T=10π,则,∴y=3sin(φ),∵点(π,3)在此函数图象上,∴,.φ=.∵|φ|<,∴φ=.∴y=3sin();(2)当,即﹣4π+10kπ≤x≤π+10kπ,k∈Z时,函数y=3sin()单调递增,∴函数的单调增区间为[﹣4π+10kπ,π+10kπ](k∈Z);当,即π+10kπ≤x≤6π+10kπ,k∈Z时,函数单调递减,∴函数的单调减区间为[π+10kπ,6π+10kπ](k∈Z).【点评】本题考查y=Asin(ωx+φ)型函数图象的求法,考查了复合函数的单调性的求法,复合函数的单调性满足“同增异减”的原则,是中档题.21.已知二次函数f(x)=x2﹣16x+q+3(1)若函数在区间[﹣1,1]上存在零点,某某数q的取值X围;(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51?若存在,求出q的值,若不存在,说明理由.【考点】二次函数的性质.【专题】存在型;分类讨论;转化思想;分类法;函数的性质及应用.【分析】(1)若函数在区间[﹣1,1]上存在零点,则,即,解得实数q的取值X围;(2)假定存在满足条件的q值,结合二次函数的图象和性质,对q进行分类讨论,最后综合讨论结果,可得答案.【解答】解:(1)若二次函数f(x)=x2﹣16x+q+3的图象是开口朝上,且以直线x=8为对称轴的抛物线,故函数在区间[﹣1,1]上为减函数,若函数在区间[﹣1,1]上存在零点,则,即,解得:q∈[﹣20,12];(2)若存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51,当0<q≤8时,f(8)=q﹣61=﹣51,解得:q=10(舍去),当8<q<10时,f(q)=q2﹣15q+3=﹣51,解得:q=9,或q=6(舍去),综上所述,存在q=9,使得当x∈[q,10]时,f(x)的最小值为﹣51.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.22.已知函数.(1)当a=1时,求函数f(x)在(﹣∞,0)上的值域;(2)若对任意x∈[0,+∞),总有f(x)<3成立,某某数a的取值X围.【考点】函数恒成立问题.【专题】综合题;函数思想;综合法;函数的性质及应用.【分析】(1)法一、把a=1代入函数解析式,由指数函数的单调性求得f(x)在(﹣∞,0)上的值域;法二、令换元,由x的X围求出t的X围,转化为二次函数求值域;(2)由f(x)<3,即,分离参数a,然后利用换元法求函数的最小值得答案.【解答】解:(1)法一、当a=1时,,由指数函数单调性知f(x)在(﹣∞,0)上为减函数,∴f(x)>f(0)=3,即f(x)在(﹣∞,1)的值域为(3,+∞);法二、令,由x∈(﹣∞,0)知:t∈(1,+∞),∴y=g(t)=t2+t+1(t>1),其对称轴为直线,∴函数g(t)在区间(1,+∞)上为增函数,∴g(t)>g(1)=3,∴函数f(x)在(﹣∞,1)的值域为(3,+∞);(2)由题意知,f(x)<3,即,由于,在[0,+∞)上恒成立.若令2x=t,,则:t≥1且a≤h min(t).由函数h(t)在[1,+∞)上为增函数,故φmin(t)=φ(1)=1.∴实数a的取值X围是(﹣∞,1].【点评】本题考查函数恒成立问题,考查了指数函数的单调性,训练了分离变量法,是中档题.。
一中2021-2021学年度高一年级第一学期第三次考试本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
数学试题第一卷〔一共60分〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 集合,,那么〔〕A. B. C. D.【答案】B【解析】选B.2. 以下结论正确的选项是〔〕A. 空间中不同三点确定一个平面B. 空间中两两相交的三条直线确定一个平面C. 一条直线和一个点能确定一个平面D. 梯形一定是平面图形【答案】D..................3. 函数的零点所在的区间是〔〕A. B. C. D.【答案】B【解析】为单调递增函数,且,所以零点所在的区间是,选B.4. 设,是两条不同的直线,,是两个不同的平面,以下说法正确的选项是〔〕A. 假设,,那么B. 假设,,那么C. 假设,,那么D. 假设,,,那么【答案】C【解析】假设,,当过时;假设,,那么可以与平行、相交或者在面内;假设,,那么;假设,,,那么可以平行、相交或者异面,所以选C.5. 〔〕是偶函数,且不恒等于零,那么〔〕A. 是奇函数B. 可能是奇函数,也可能是奇函数C. 是偶函数D. 不是奇函数,也不是偶函数【答案】A【解析】因为为偶函数,所以,即〔所以因为,所以即又不恒等于零,所以为奇函数,应选A.【点评】此题考察抽象函数奇偶性的判断,解题时利用定义是解决有关问题的强有力工具,必须纯熟准确掌握.6. 圆柱被一个平面截去一局部与一个四棱锥组成的几何体的三视图如下图,那么该几何体的体积为〔〕A. B. C. D.【答案】B【解析】几何体如图,那么体积为,选B.7. 奇函数在为减函数,且,那么不等式的解集为〔〕A. B.C. D.【答案】D【解析】选D.8. 如下图,正方体中,,分别是正方形和的中心,是的中点,那么异面直线,所成的余弦值为〔〕A. B. C. D.【答案】A【解析】因为 ,所以异面直线,所成的角为所以,选A.9. 函数,,假设在上为减函数,那么实数的取值范围为〔〕A. B. C. D.【答案】D【解析】由题意得,选D.点睛:函数的单调性确定参数的值或者范围要注意以下两点:(1)假设函数在区间上单调,那么该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;〔3〕复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.10. ,是半径为的球面上的两点,过作互相垂直的两个平面、,假设,截该球所得的两个截面的面积之和为,那么线段的长度是〔〕A. B. C. D.【答案】D【解析】设球心为,两个截面圆的圆心分别为,线段的中点为,那么四边形为矩形.设圆的半径分别为,,那么.由可得,,那么.选D.11. 函数,假设关于的方程有个不同根,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】作函数图知,时有四个不同的根,因此方程在有两个不同的根,即,选A.点睛:对于方程解的个数(或者函数零点个数)问题,可利用函数的值域或者最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 函数满足:,且,分别是上的偶函数和奇函数,假设使得不等式恒成立,那么实数的取值范围是〔〕A. B. C. D.【答案】B【解析】令,那么〔当且仅当时取等号〕,所以选B.点睛:研究不等式恒成立或者存在型问题,首先要构造函数,通过研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可别离变量,构造函数,直接把问题转化为函数的最值问题.第二卷非选择题二、填空题:〔本大题一一共4小题,每一小题5分,一共20分,将答案填在答题纸上〕13. 幂函数〔〕的图象与轴、轴无交点且关于原点对称,那么__________.【答案】【解析】由题意得当时不关于原点对称,所以14. 一个程度放置的平面图形的斜二直观图是一个底为,腰和上底均为的等腰梯形,那么面图形的面积为__________.【答案】【解析】试题分析:原图形是上底为,下底为,高为的直角梯形.∴.考点:斜二测法.15. 函数是定义在上的奇函数,当时,,假设,,那么实数的取值范围为__________.【答案】【解析】当时,所以根据奇函数作函数图,由图得16. 函数,函数有四个不同的零点,,,且满足,那么的取值范围为__________.【答案】【解析】作函数图,由图得,所以点睛:函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)别离参数法:先将参数别离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.〕17. 设集合为函数的定义域,集合为函数的值域.求:〔1〕与;〔2〕【答案】〔1〕,.(2)【解析】试题分析:〔1〕根据真数大于零得函数定义域,求得A;再根据根本不等式求函数值域得B,最后根据数轴求集合交与并〔2〕先求B的补集,再利用数轴求交集试题解析:解:〔1〕由解得:,,那么,.〔2〕18. 如图,四棱锥的底面是矩形,平面,,分别是,的中点,且.〔Ⅰ〕求证:平面;〔Ⅱ〕求证:平面平面.【答案】〔1〕见解析 (2) 见解析【解析】试题分析:〔1〕取的中点,利用平几知识得是平行四边形,再根据,利用线面平行断定定理证明结论〔2〕先根据等腰三角形性质得,再根据线面垂直得,由线面垂直断定定理得面,最后根据线线平行得面,由面面垂直断定定理得结论试题解析:证明:〔Ⅰ〕取的中点,连结、∴为的中位线,,.∵四边形为矩形,为的中点,∴,.∴,,∴四边形是平行四边形,∴又平面,平面,∴平面;〔Ⅱ〕∵,∴平面,∴,又因为,,∴面由〔Ⅰ〕得,∴面又平面,∴平面平面.19. 信息科技的进步和互联网商业形式的兴起,全方位地改变了大家金融消费的习惯和金融交易形式,如今银行的大局部业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员人,平均每人每年可创利万元.据评估,在经营条件不变的前提下,每裁员人,那么留岗职员每人每年多创利万元,但银行需付下岗职员每人每年万元的生活费,并且该银行正常运转所需人数不得少于现有职员的,为使裁员后获得的经济效益最大,该银行裁员多少人?此时银行所获得的最大经济效益是多少万元?【答案】银行应裁员人时,所获经济效益最大为万元.试题解析:设银行裁员人,所获得的经济效益为万元,那么,由题意:,又且,因为对称轴:,所以函数在[0,80]单调递增,所以时,即银行裁员人,所获得经济效益最大为8160万元,答:银行应裁员80人时,所获经济效益最大为8160万元.20. ?九章算术?中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑〔biē nào〕.在如下图的阳马中,侧棱底面,且,点是的中点,连接,,.〔1〕证明:平面.〔2〕试判断四面体是否为鳖臑,假设是,写出其每个面的直角〔只需写出结论〕;假设不是,请说明理由;〔3〕记阳马的体积为,四面体的体积为,求的值.【答案】〔1〕见解析 (2) 四面体是一个鳖臑,其四个面的直角分别是,,,.〔3〕4【解析】试题分析:〔1〕欲证平面,需在平面内找到两条相交的直线都与垂直,即证,即可;〔2〕根据锥体的体积公式表示出,,再利用之间的长度关系即可求得.试题解析:〔1〕因为底面,所以,由底面为长方形,有,而,所以平面平面,所以,又因为,点是的中点,所以,而,所以平面.由平面,平面可知四面体的四个面都是直角三角形,即四面体是一个鳖臑,其四个面的直角分别是.〔2〕由,是阳马的高,所以;由〔1〕知:是鳖臑的高,,所以在中,因为,点是的中点,所以,于是考点:1、线面垂直的断定;2、柱锥台体的体积公式.【方法点睛】要判断一条直线与一个平面是否垂直,取决于在这个平面内能否找到两条相交直线和直线垂直;因此证明线面垂直的问题,应转化为先证明线线垂直,证明线线垂直的常用方法有:①勾股定理的逆定理〔长度〕,②等腰三角形的三线合一,③利用线面垂直的性质,④正方体〔长方体〕中的线线垂直、线面垂直.此题主要考察的是线面垂直的断定和性质,考察锥体体积的计算,考察学生分析解决问题的才能,属于中档题.21. 函数,函数〔1〕假设的定义域为,务实数的取值范围;〔2〕当时,求函数的最小值;〔3〕是否存在非负实数、,使得函数的定义域为,值域为,假设存在,求出、的值;假设不存在,那么说明理由.【答案】〔1〕 (2) 〔3〕存在,满足题意【解析】试题分析:对问题⑴,根据题目条件首先要对实数的取值进展分类讨论,再结合极端不等式恒成立即可求出函数的定义域为时实数的取值范围;对于问题⑵,根据二次函数的单调性并结合对参数的分类讨论,即可求得函数的最小值;对问题⑶,根据二次函数的单调性以及函数与方程的思想即可知道存在符合题意的实数、的值.试题解析:⑴定义域为.所以对一切成立.……………………1分当时,不可能对一切成立.……………………2分所以,即解得.综上.……………………4分⑵,令,所以……………………5分当时,.……………………6分当时,.……………………7分当时,.……………………8分所以……………………9分⑶在上是增函数,假设存在非负实数、满足题意,那么,………………………………10分即、是方程的两非负实根,且,所以.即存在满足题意………………………………12分.考点:1、函数的定义域、值域;2、函数的单调性;3分段函数;4、函数与方程及分类讨论的思想.【方法点晴】此题是一个关于函数的定义域、值域、函数的单调性、分段函数、函数与方程及分类讨论的思想方法方面的综合性问题,属于难题.解决此题的根本思路及切入点是,对问题⑴,根据题目条件首先要对实数的取值进展分类讨论,再结合极端不等式恒成立即可求出函数的定义域为时实数的取值范围;对于问题⑵,根据二次函数的单调性并结合对参数的分类讨论,即可求得函数的最小值;对问题⑶,根据二次函数的单调性以及函数与方程的思想即可知道存在符合题意的实数、的值.22. 函数,〔〕是偶函数.〔1〕求的值;〔2〕设函数,其中.假设函数与的图象有且只有一个交点,求的取值范围.【答案】〔1〕 (2)【解析】试题分析:〔1〕由偶函数得,根据对数运算法那么化简得的值;〔2〕化简方程得关于一元二次方程,先讨论时,是否满足条件,再根据实根分布讨论的取值范围.此题也可利用参变别离法,转化为讨论函数交点个数.试题解析:解:〔1〕∵〔〕是偶函数,∴对任意,恒成立即:恒成立,∴〔2〕由于,所以定义域为,也就是满足∵函数与的图象有且只有一个交点,∴方程在上只有一解即:方程在上只有一解令,那么,因此等价于关于的方程〔*〕在上只有一解当时,解得,不合题意;当时,记,其图象的对称轴∴函数在上递减,而∴方程〔*〕在无解当时,记,其图象的对称轴所以,只需,即,此恒成立∴此时的范围为综上所述,所求的取值范围为点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数别离出来,使不等式一端是含有参数的不等式,另一端是一个区间上详细的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意别离参数法不是万能的,假如别离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用别离参数法.本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
2020-2021学年高一(上)第三次月考数学试卷一、选择题1. 已知集合M ={x|−4<x <2},N ={x|x 2−x −6<0},则M ∩N =( ) A.{x|−4<x <3} B.{x|−4<x <−2} C.{x|−2<x <2}D.{x|2<x <3}2. 函数f (x )=√1−x −lg (3x −1)的定义域为( ) A.(13,1] B.(0,1]C.(−∞,13)D.(0,13)3. 已知二次不等式−2x 2+bx +c <0的解集为{x|x <13或x >12},则关于x 的不等式cx 2−bx −2>0的解集为( ) A.{x|2<x <3} B.{x|−2<x <3} C.{x|−3<x <2} D.{x|−3<x <−2}4. 函数f (x )=ax 2+bx +3a +b 为偶函数,且定义域为[a −1,2a ],则a ,b 分别为( ) A.13,0B.13,1C.1,1D.1,05. “x >y ”是“x 2>y 2”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6. 若a ,b ∈R ,则下列说法正确的是( ) A.若a <b ,则|a|<|b| B.若|a|>b ,则a >b C.若a >b ,则a 2>b 2 D.若a >|b|,则a >b7. 函数f (x )=x2+ln |x|x的图象大致为( )A. B.C. D.8. 已知函数f (x )是定义在R 上的偶函数,且在(−∞,0]上是单调递增的.设a =f(log 45),b =f (log 213), c =f (0.20.5),则a ,b ,c 的大小关系为( )A.c <b <aB.b <a <cC.b <c <aD.a <b <c9. 已知m >0,xy >0,当x +y =2时,不等式4x +m y≥92恒成立,则m 的取值范围是( ) A.[12,+∞)B.[1,+∞)C.(0,1]D.(0,12]10. 函数f(x)={log 2(x +1),x ∈(−1,1],ax −3,x ∈(1+∞),若f (x )的值域为R ,则实数a 的取值范围是( )A.a >0B.a >3C.0<a ≤4D.0<a ≤311. 若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称点对[P,Q ]是函数y =f (x )的一对“友好点对”(点对[P,Q ]与[Q,P ]看作同一对“友好点对”).已知函数f(x)={log a x, x >0,|x +4|,−5≤x <0(a >0且a ≠1),若此函数的“友好点对”有且只有一对,则a 的取值范围是( ) A.(0,1)∪(1,+∞) B.(15,1) C.(15,1)∪(1,+∞) D.(0,1)12. 一水池有两个进水口,一个出水口,一个进水口进出水速度分别如图甲、乙所示.已知某天0点到6点,该水池的蓄水量如图丙所示(至少打开一个水口),现给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.正确论断的个数是( )A.0B.1C.2D.3二、填空题命题“∃x∈R,e x<x”的否定是________.如图所示,角α的终边与单位圆交于第二象限的点A(−45,35),则2cosα−sinα=________.已知函数f(2x−1)=x2−2x,则f(x)=________.设函数f(x)={|ln x|,0<x≤2,f(4−x),2<x<4,方程f(x)=m有四个不相等的实根x i(i=1,2,3,4),则x12+x22+x32+x42的取值范围为________.三、解答题设集合A={x|x2−7x−8<0},B={x|1−m≤x<m+10},R为实数集.(1)当m=−1时,求(∁R A)∩B,A∪B;(2)记p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数m的取值范围.关于x的不等式:ax2+(3−a)x−2a−6>0.(1)当a=1时,解关于x的不等式;(2)当a∈R时,解关于x的不等式.某企业用180万元购买一套设备,该设备预计平均每年能给企业带来100万元的收入,为了设备的正常运行,企业需要对设备进行维护.已知x年的总维护费用y与使用年数x满足函数关系式y=kx(x+1),且第二年需要维护费用20万元.(1)求该设备给企业带来的总利润f(x)(万元)与使用年数x(x∈N∗)的函数关系;(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?设函数f(x)=log a(3+x)+log a(3−x),(a>0,且a≠1).(1)若f(1)=3,求a的值及f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)求f(x)在[1, 2]上的值域.已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R(x)万美元,且R(x)={400−6x,0<x≤40,7400x−40000x2,x>40,(1)写出年利润W(万美元)关于年产量x(万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.经过函数性质的学习,我们知道:“函数y=f(x)的图象关于y轴成轴对称图形”的充要条件是“y=f(x)为偶函数”.(1)若f(x)为偶函数,且当x≤0时,f(x)=2x−1,求f(x)的解析式,并求不等式f(x)>f(2x−1)的解集;(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数y=f(x)的图象关于直线x=a成轴对称图形”的充要条件是“y=f(x+a)为偶函数”.若函数g(x)的图象关于直线x=1对称,且当x≥1时,g(x)=x2−1x.①求g(x)的解析式;②求不等式g(x)>g(3x−1)的解集.参考答案与试题解析2020-2021学年山西省大同市某校高一(上)第三次月考数学试卷一、选择题 1.【答案】 C【解析】 此题暂无解析 2. 【答案】 A【解析】由题意得{1−x ≥03x −1>0,求解即可.3. 【答案】 D【解析】首先利用条件,求得b ,c ,再解一元二次不等式即可. 4. 【答案】 A【解析】根据奇偶函数的定义域的特点求得a ,根据函数的奇偶性求得b . 5. 【答案】 D【解析】利用不等式的性质,结合充分条件和必要条件的定义进行判断. 6.【答案】 D【解析】直接利用特殊值排除ABC ,再利用不等式的性质,确定正确选项. 7. 【答案】 C【解析】判断函数的奇偶性和对称性,利用排除法进行求解判断即可. 8. 【答案】B【解析】首先判断log45,log213,0.20.5的大小关系,再结合奇偶性及单调性,确定大小关系.9.【答案】B【解析】根据“乘1法”,可得4x +my=12(4x+my)(x+y),展开后,结合基本不等式可推出4x+my≥1 2(4+m+2√4m)≥92,解此不等式即可.10.【答案】C【解析】先求函数在x∈(−1,1]的值域,当x∈(1,+∞)时,函数f(x)的值域是[1,+∞)的子集,即可求解.11.【答案】C【解析】根据原点对称的性质,求出当−5≤x<0时函数关于原点对称的函数,条件转化函数f(x)=logax(x>0)与y=−|x−4|(0<x≤5)只有一个交点,作出两个函数的图象,利用数形结合结合对数函数的性质进行求解即可.12.【答案】B【解析】此题暂无解析二、填空题【答案】∀x∈R,e x≥x【解析】根据命题否定的定义,进行求解,注意:命题的结论和已知条件都要否定;【答案】−11 5【解析】利用三角函数定义即可求得. 【答案】1 4x2−12x−34【解析】本题主要通过换元进行函数解析式的求解【答案】(20,412) 【解析】 此题暂无解析 三、解答题 【答案】解:(1)由题意得A =(−1,8),B =[2,9), 则∁R A =(−∞,−1]∪[8,+∞),故(∁R A )∩B =[8,9),A ∪B =(−1,9). (2)由题意,得B ⊆A .①当B =⌀时,则1−m ≥m +10,得m ≤−92; ②当B ≠⌀时,则{m >−92,m +10≤8,1−m >−1,得−92<m ≤−2.综上所述,m ∈(−∞,−2]. 【解析】 无 无【答案】解:(1)当a =1时,原不等式化为x 2+2x −8>0, 方程x 2+2x −8=0的实数根为x 1=−4 ,x 2=2, 则原不等式的解集为{x|x <−4或x >2}. (2)ax 2+(3−a )x −2a −6>0 .当a =0时,原不等式化为3x −6>0,则原不等式的解集为{x|x >2};当a ≠0时,原不等式所对应方程ax 2+(3−a )x −2a −6=0的根为x 1=−1−3a ,x 2=2;当a >0时,x 1<x 2,原不等式的解集为{x|x <−1−3a 或x >2}; 当a <−1时,原不等式的解集为{x|−1−3a <x <2};当a =−1时,原不等式的解集为⌀;当−1<a <0时,原不等式的解集为{x|2<x <−1−3a }. 综上所述,当a =0时,原不等式的解集为 {x|x >2}; 当a >0时,原不等式的解集为{x|x <−1−3a 或x >2};当a <−1时,原不等式的解集为{x|−1−3a<x <2};当−1<a <0时,原不等式的解集为{x|2<x <−1−3a }; 当a =−1时,原不等式的解集为⌀. 【解析】 此题暂无解析 【答案】解:(1)由题意知,2k (2+1)−k (1+1)=4k =20, 解得k =5,则x 年总收入为100x 万元,即f (x )=100x −5x (x +1)−180=−5(x 2−19x +36) ,x ∈N ∗. (2)年平均利润为f(x)x =−5(x +36x)+95.由x >0,可得x +36x≥2√36=12,当且仅当x =36x,则得x =6时取等号,即f (x )x≤−5×12+95=35 .综上可得当这套设备使用6年时,可使年平均利润最大,且年平均利润最大为35万元. 【解析】 此题暂无解析 【答案】解:(1)因为f(x)=log a (3+x)+log a (3−x)=log a (9−x 2), 由题意得f(1)=log a 8=3, 所以a =2. 因为{3+x >0,3−x >0,所以−3<x <3,所以函数的定义域为(−3, 3). (2)f(x)为偶函数. 证明如下:因为f(−x)=log a (9−x 2)=f(x), 所以函数f(x)为偶函数.(3)因为1≤x ≤2, 所以5≤9−x 2≤8.当a >1时,函数的值域为[log a 5, log a 8]; 当0<a <1时,函数的值域为[log a 8, log a 5].【解析】(1)把x =1代入函数解析式可求;(2)结合奇偶性的定义,只要检验f(−x)与f(x)的关系即可判断;(3)结合对数函数的单调性对a 进行分类讨论,然后结合真数的范围可求. 【答案】解:(1)由利润等于收入减去成本,可得当0<x ≤40时,W =xR(x)−(16x +40)=−6x 2+384x −40; 当x >40时,W =xR(x)−(16x +40)=−40000x−16x +7360,∴ W ={−6x 2+384x −40,0<x ≤40,−40000x−16x +7360,x >40.(2)当0<x ≤40时,W =−6x 2+384x −40=−6(x −32)2+6104, ∴ x =32时,W max =6104; 当x >40时,W =−40000x−16x +7360≤−2√40000x⋅16x +7360,当且仅当40000x=16x ,即x =50时,W max =5760.∵ 6104>5760,∴ x =32时,W 的最大值为6104万美元.【解析】(1)利用利润等于收入减去成本,可得分段函数解析式; (2)分段求出函数的最大值,比较可得结论. 【答案】解:(1)设 x >0 ,则 −x <0,则 f(−x)=2⋅(−x)−1=−2x −1, 又f(x)为偶函数,所以 f(x)=f(−x)=−2x −1, 所以 f(x)={2x −1,x ≤0,−2x −1,x >0,因为 f(x) 为偶函数,且 f(x) 在 [0,+∞) 上是减函数, 所以 f(x)>f(2x −1) 等价于 |x|<|2x −1| 即x 2<(2x −1)2 , 解得 x <13 或x >1.所以不等式的解集是 {x|x <13 或x >1}. (2)①因为 g(x) 的图象关于直线 x =1 对称, 所以 y =g(x +1) 为偶函数, 所以 g(1+x)=g(1−x),即g(x)=g(2−x)对任意x ∈R 恒成立, 又当x <1时,2−x >1,所以g(x)=g(2−x)=(2−x)2−12−x =x 2−4x +4+1x−2 .所以g(x)={x 2−1x ,x ≥1,x 2−4x +4+1x−2,x <1.②任取 x 1,x 2∈[1,+∞),且 x 1<x 2 ,则g(x 1)−g(x 2)=x 12−1x 1−(x 22−1x 2)=(x 1−x 2)(x 1+x 2+1x 1x 2),因为 x 1<x 2 ,所以 x 1−x 2<0 , 又x 1+x 2>0, 1x1x 2>0,所以 (x 1−x 2)(x 1+x 2+1x1x 2)<0 ,即g(x 1)<g(x 2).所以函数 y =g(x)在 [1,+∞) 上是增函数,又因为函数g(x)的图象关于直线x=1对称,所以g(x)>g(3x−1)等价于|x−1|>|3x−2|,即(x−1)2>(3x−2)2,解得12<x<34.所以不等式的解集为{x|12<x<34}.【解析】此题暂无解析试卷第11页,总11页。
卜人入州八九几市潮王学校二零二零—二零二壹高一数学上学期第三次月考试题 一. 选择题〔每一小题5分,一共60分〕1.设角θ的终边经过点(3,4)P -,那么sin 2cos θθ+=〔〕 A .15B .15-C .25-D .25U R =,集合{|}A x y x ==-,2{|1}B y y x ==-,那么集合()U C A B =〔〕A .(,0]-∞B .(0,1)C.(0,1]D .[0,1)3.5,7()(3),7x x f x f x x -≥⎧=⎨+<⎩〔x N ∈〕,那么(3)f 等于〔〕 A .2B .3C.-2D .44..函数是〔〕 A .周期为π的奇函数B . 周期为π的偶函数C .周期为2π的奇函数D . 周期为2π的偶函数 5.函数()sin tan 4cos 3f x a x b x π=-+,且()11f -=,那么()1f =〔〕A .3B .-3C .0D .431-6.cos(75°+α)=,那么sin(α-15°)+cos(105°-α)的值是().A.B .C .-D .-7、设0.2611log 7,,24a b c ⎛⎫=== ⎪⎝⎭,那么,,a b c 的大小关系是〔〕 A.a b c >> B.b c a << C.b c a >> D.a b c << 8.函数y =-x sin x 的局部图象是().9.以下各点中,能作为函数y =tan 的一个对称中心的点是()A .(0,0)B .C .(π,0)D .10.函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间[0,]2π上的最小值是()A .-lB .22C .22-D .011、函数62ln )(-+=x x x f 的零点所在的区间为〔〕A.)1,0(B.)2,1(C.)3,2(D.)4,3(12.设0a>且1a ≠.假设log sin 2a x x >对(0,)4x π∈恒成立,那么a 的取值范围是〔〕 A.(0,)4π B.(0,]4π C.(,1)(1,)42ππ⋃ D.[,1)4π 二.填空题〔每一小题5分,一共20分〕13.幂函数()y f x =的图象过点(2,2),(9)f =则______14.扇形的圆心角为,弧长为,那么该扇形的面积为_________. 15.是定义在上的偶函数,并且,当时,,那么的值是______.16.1sin sin 3x y +=,求2sin cos x y μ=-的取值范围_________.三.解答题〔一共70分〕17.函数f 〔α〕=.〔1〕化简f 〔α〕;〔2〕假设α是第三象限角,且cos 〔α﹣π〕=,求f 〔α〕.18扇形的周长为8cm,求这个扇形的面积获得最大值时圆心角的大小和弦长AB .19、关于x 的方程0)13(22=++-m x x 的两根为αsin 和αcos 且,)2,0(πα∈.(1)求ααααtan 1cos tan 11sin -+-的值; 〔2〕求m 的值;〔3〕求方程的两根及此时的α的值。
2023-2024学年高一数学第三次月考考试试题1.已知数据的平均数为10,方差为10,则的平均数和方差分别为()A.30,91B.31,91C.30,90D.31,902.已知复数为纯虚数,则实数()A.1B.2C.3D.43.如图所示,是的中线.是上的一点,且,若,其中,则的值为()A.B.C.D.4.已知,则()A.B.C.D.5.已知向量,在方向上的投影向量为,则()A.1B.2C.3D.46.已知是不同的直线,是不同的平面,则()A.若,则B.若,则C.若,则D.若,则7.已知圆台存在内切球(与圆台的上、下底面及侧面都相切的球),若圆台的上、下底面面积之和与它的侧面积之比为,设球的体积与圆台分别为,则()A.B.C.D.8.在锐角中,角的对边分别为,若,则()A.B.C.D.9.在中,角所对的边分别为,下列说法中正确的是()A.若,则B.若,则为等腰直角三角形C.,则此三角形有一解D.若,则为钝角三角形10.有6个相同的球,分别标有数字1,2,3,4,5,6,从中不放回地随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是奇数”,乙表示事件“第二次取出的球的数字是偶数”,丙表示事件“两次取出的球的数字之和是奇数”,丁表示事件“两次取出的球的数字之和是偶数”,则()A.乙发生的概率为B.丙发生的概率为C.甲与丁相互独立D.丙与丁互为对立事件11.如图,在棱长为2的正方体中,在线段上运动(包括端点),下列选项正确的有()A.B.C.直线与平面所成角的最大值是D.的最小值为12.已知i为虚数单位,复数z满足,则z的模为__________.13.已知向量满足,则与的夹角为______.14.已知过球面上三点的截面和球心的距离为球半径的一半,且,则球的表面积是______.15.如图,已知四棱锥中,底面是平行四边形,(1)若为侧棱的中点.求证:平面;(2)若过的平面与交于点,求证:;16.某场知识竞赛比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是,甲、丙两个家庭都回答错误的概率是,乙、丙两个家庭都回答正确的概率是,若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.17.2023年10月22日,汉江生态城2023襄阳马拉松在湖北省襄阳市成功举行,志愿者的服务工作是马拉松成功举办的重要保障,襄阳市新时代文明实践中心承办了志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.已知第一、二组的频率之和为0.3,第一组和第五组的频率相同.(1)估计这100名候选者面试成绩的平均数和第25百分位数;(2)现从以上各组中用分层随机抽样的方法选取20人,担任本市的宣传者.若本市宣传者中第二组面试者的面试成绩的平均数和方差分别为72和30,第四组面试者的面试成绩的平均数和方差分别为90和60,据此估计这次第二组和第四组所有面试者的面试成绩的方差.18.如图,在四棱锥中,平面平面,底面是直角梯形,,且为的中点.(1)求证:;(2)求二面角的余弦值;(3)在线段上是否存在点使得平面平面?若存在,请指明点的位置;若不存在,请说明理由.19.已知的内角的对边为,且.(1)求;(2)若的面积为;①已知为的中点,求边上中线长的最小值;②求内角的角平分线长的最大值.。
高一上学期数学第三次月考试卷一、单选题1. 已知集合,,,则()A .B .C .D .2. 函数在上单调递增,且为奇函数,若,则满足的的取值范围是()A .B .C .D .3. 已知α是第四象限角tanα=- ,则cosα=()A .B . -C .D . -4. 设奇函数在上为增函数,且,则不等式的解集为()A .B .C .D .5. 方程的一根在区间内,另一根在区间内,则的取值范围是()A .B .C .D .6. 设与是定义在同一区间上的两个函数,若对任意的都有则称和在上是“和谐函数”,区间为“和谐区间”,设在区间上是“和谐函数”,则它的“和谐区间”可以是()A .B .C .D .7. ,,则()A .B .C .D .8. 函数的图像可能是().A .B .C .D .9. 若,则tanα=()A .B .C .D .10. 已知是第二象限角,为其终边上一点,且,则()A .B .C .D .11. 已知函数是定义在上偶函数,且在内是减函数,若,则满足的实数的取值范围为()A .B .C .D .12. 设偶函数的定义域为,且,当时,的图象如图所示,则不等式的解集是()A .B .C .D .二、填空题13. 已知α是第二象限的角,tanα=- ,则cosα=________14. 函数,若有,则的范围是________.15. 若,则________.16. 若函数与函数的图象有且只有一个公共点,则的取值范围是________.三、解答题17. 已知角的终边上一点,且(1)求的值;(2)求出和 .18. 已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立.(1)函数是否属于集合?说明理由;(2)设函数属于集合,求实数的取值范围.19. 已知(1)化简;(2)若为第四象限角,且求的值.20. 已知函数.(1)若,求的单调区间;(2)若在区间上是增函数,求实数的取值范围.21. 若函数是定义在上的奇函数,是定义在上恒不为0的偶函数.记 .(1)判断函数的奇偶性;(2)若,试求函数的值域.22. 已知函数,且,的定义域为[-1,1].(1)求的值及函数的解析式;(2)试判断函数的单调性;(3)若方程=有解,求实数的取值范围.。
高一上学期第三次月考数学试题
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.下列命题正确的是( ).
A.终边相同的角都相等
B.钝角比第三象限角小
C.第一象限角都是锐角
D.锐角都是第一象限角 2.若角︒600的终边上有一点()a ,4-,则a 的值是( ).
A.34-
B.34±
C.3
D.34
3. ). A.3cos
5
π B.3cos
5
π- C.3cos
5
π± D.2cos
5
π
4.下列函数中,最小正周期为π,且图象关于直线3
x π=对称的是( ).
A.)62sin(+=x y
B.sin(
)26x y π
=+ C.sin(2)6y x π
=-
D.sin(2)y x π=-
5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕA.,24ωϕππ=
=
B.,36ωϕππ
== C.5,44ωϕππ== D.,44
ωϕππ
==
6.要得到3sin(2)4
y x π
=+的图象,只需将x y 2sin 3=A.向左平移4π个单位 B.向右平移4π
个单位
C.向左平移8π个单位
D.向右平移8
π
个单位
7.设tan()2απ+=,则
sin()cos()sin()cos()
αααα-π+π-=π+-π+( ).
A.3
B.13
C.1
D.1-
8.A 为三角形ABC 的一个内角,若12
sin cos 25
A A +=
,则这个三角形的形状为( ).
A. 锐角三角形
B. 钝角三角形
C. 等腰直角三角形
D. 等腰三角形
9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当
[0,
]2
x π∈时,x x f sin )(=,则5(
)3
f π的值为( ).
A.2
1- B.2
3 C.2
3- D.
2
1
10.函数y =
( ).
A.2,2()3
3k k k Z π
πππ-
+
∈⎡⎤⎢⎥⎣
⎦ B.2,2()66k k k Z ππππ-+∈⎡
⎤⎢⎥⎣
⎦ C.22,2()3
3k k k Z π
πππ+
+
∈⎡
⎤⎢⎥⎣
⎦
D.222,2()
3
3k k k Z ππππ-
+
∈⎡
⎤⎢⎥⎣
⎦
11.函数2sin(
2)6
y x π=-([0,]x ∈π)的单调递增区间是( ).
A.[0,]3π
B.7[,]1212ππ
C.5[,]36
ππ
D.5[
,]6ππ 12.设a 为常数,且1>a ,02x ≤≤π,则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).
A.12+a
B.12-a
C.12--a
D.2a
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共4小题,每小题5分,共20分. 把答案填在题中的横线上.) 13. 0cos 300=________
14.在扇形中,已知半径为8,弧长为12,则圆心角是 弧度,扇形面积是 .
15.函数x x
y cos 2cos 2-+=的最大值为________.
16.设()sin()cos()f x a x b x αβ=π++π+,其中βα,,,b a 为非零常数. 若(2011)1f =-,则(2012)f = .
高一上学期第三次月考数学试题
答题卡
二、填空题
13___________ 14______, _______ 15________ 16_________
三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.)
17.(本小题满分10分)
已知α是第三角限角,化简α
αα
αsin 1sin 1sin 1sin 1+--
-+.
18.(本小题满分12分)
(1)已知
sin cos 2sin cos αα
αα
+=-,求tan α的值。
(2)当3tan =α,求αααcos sin 3cos 2
-的值;
19.(本小题满分12分)
已知函数())4
f x x π=
-
,x ∈R .
(1)求函数()f x 的最小正周期和单调递增区间; (2)求函数()f x 在区间[]82
ππ
-,上的最小值和最大值,并求出取得最值时x 的值.
20. (本小题满分12分)
已知tan ,co t αα是关于x 的方程22
30x kx k -+-=的两实根,且732
ππα<<。
求
c o s (3)s in ()παπα+++的值
21.(本小题满分12分)
已知()2sin(2)26
f x a x a b π=-+
++,3[
,]44
x ππ∈,是否存在常数Q b a ∈,,使得)(x f 的值域为}133|{-≤
≤-y y ?若存在,求出b a ,的值;若不存在,说明理由.
22.(本小题满分12分)
已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:
(1)根据表格提供的数据写出函数()f x 的一个解析式(不必写出求解过程); (2)根据(1)的结果,若函数()()0y f kx k =>周期为23
π,当[0,
]3
x π∈时,方程
()f kx m =
恰有两个不同的解,求实数m 的取值范围.
第一章《三角函数》测试题参考答案
一、选择题
DABCD CABBD CB .
二、填空题 13.
12
14.
32
,48 15. 1
(,3)3
16.1
三、
17.解:∵α是第三角限角, ∴0sin 1>+α,0sin 1>-α,0cos <α,
∴
)
sin 1)(sin 1()
sin 1()
sin 1)(sin 1()
sin 1(sin 1sin 1sin 1sin 12
2
ααααααα
αα
α-+-+
+-+=
+--
-+
ααααα
αα
α2
2
2
2
2
2
2
2
cos )sin 1(cos )sin 1(sin 1)sin 1(sin 1)sin 1(--
+=
---
-+=
α
αα
αα
αααcos sin 1cos sin 1|cos sin 1|
|cos sin 1|-++-
=--+=
αα
αtan 2cos sin 2-=-=
.
18.解:(1)3(2) 5
4-
.
19.解:(1)因为())4f x x π=-
,所以函数()f x 的最小正周期为22T π==π,
由2224
k x k π-π+π≤-≤π,得38
8
k x k π
π-
+π≤≤
+π,故函数)(x f 的递调递增区
间为3[,
]88
k k ππ-
+π+π(Z k ∈);
(2)因为())4f x x π
=
-
在区间[]88ππ-
,上为增函数,在区间[]82
ππ
,上为减函
数,又()08f π-=,()8f π=,π())1244
f ππ
=π-==-,
故函数()f x 在区间[]82ππ-,,此时8x π=;最小值为1-,此时2
x π
=.
20. 21.解:存在1-=a ,1=b 满足要求.
∵
344
x ππ≤≤
, ∴
2523
6
3
x πππ≤+
≤
, ∴1sin(2)6
2
x π-≤+
≤
,
若存在这样的有理b a ,,则
(1)当0>a 时,⎪⎩⎪⎨
⎧-=
++-=++-
,
1322,
323b a a b a a
无解;
(2)当0<a 时,⎩⎨⎧-=++--=++,
1323,
322b a a b a a 解得1-=a ,1=b ,
即存在1-=a ,1=b 满足要求.
22. 解:(1)()2sin 13f x x π⎛⎫
=-
+ ⎪⎝
⎭
. (2)∵函数()2sin 13y f kx kx π⎛
⎫
==-
+ ⎪⎝
⎭的周期为23
π, 又0k >, ∴3k =, 令33
t x π=-
,∵0,3x π
⎡⎤∈⎢
⎥⎣
⎦
, ∴2[,
]33
t ππ∈-, 如图,s t =sin 在2[,]33ππ-
上有两个不同的解,则)1,2
3[∈s , ∴方程()f kx m =在[0,
]3
x π∈
时恰好有两个不同的解,则)
1,3m ∈,
即实数m
的取值范围是)
1,3+。