2018年山东省泰安市中考数学试卷
- 格式:doc
- 大小:335.50 KB
- 文档页数:20
泰安市2018年初中学业水平考试数学试题第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1.计算:(2)(2)0的结果是()A.-3 B.0 C.-1 D.32.下列运算正确的是()A.2y 3y33y6B.y2y3y6C.(3y2)39y6D.y3y2y53.如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244,则1的大小为()B.16C.90D.44A.145.某中学九年级二班六级的 8名同学在一次排球垫球测试中的成绩如下(单位:个) 35384244404745 45则这组数据的中位数、平均数分别是( ) A .42、42B .43、42C .43、43D .44、436.夏季来临,某超市试销 A 、 B 两种型号的风扇,两周内共销售 30台,销售收入 5300元, A 型风扇每台 200 元, B 型风扇每台 150元,问 A 、 B 两种型号的风扇分别销售了多少台?若设 A 型风扇销售了 x 台, B 型 风扇销售了 y 台,则根据题意列出方程组为()x y 53005300x yA .B .200x 150y 30 150x 200y 3030x y30 x yC .D .200x 150y 5300150x 200y 53007.二次函数 yax 2 bx c 的图象如图所示,则反比例函数 y a 与一次函数 在同一坐标系内y ax b x的大致图象是()A .B .C .D .11xx 18.不等式组3 2有 3 个整数解,则 的取值范围是()a4(x 1) 2(x a )A .6 a 5B .6 a 5C .6 a 5D .6 a 59.如图, BM 与 : O 相切于点 B ,若 MBA 140 ,则 ACB 的度数为()A . 40B .50C . 60D . 70 10.一元二次方程 (x 1)(x 3) 2x 5根的情况是()A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于 3D .有两个正根,且有一根大于 311.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为 1, ABC 经过平移后得到,若上一点平移后对应点为 ,点 绕原点顺时针旋转,对应点为 ,则A B CACP (1.2,1.4)PP 180P1 1 1112点 的坐标为()P2A . (2.8,3.6)B . ( 2.8, 3.6)C . (3.8,2.6)D . ( 3.8, 2.6)12.如图, : M 的半径为 2,圆心 M 的坐标为 (3, 4) ,点 P 是 : M 上的任意一点, PA PB ,且 PA 、 PB与 x 轴分别交于 A 、 B 两点,若点 A 、点 B 关于原点O 对称,则 AB 的最小值为()A.3 B.4 C.6 D.8第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13.一个铁原子的质量是0.000000000000000000000000093kg,将这个数据用科学记数法表示为kg.14.如图,:O是ABC的外接圆,A45,BC4,则:O的直径为.15.如图,在矩形ABCD中,AB6,BC10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin ABE的值为.16.观察“田”字中各数之间的关系:,…,,则c的值为.17.如图,在ABC中,AC6,BC10,tan3,点是边上的动点(不与点重合),过C D AC C D4作DE BC,垂足为E,点F是BD的中点,连接EF,设CD x,DEF的面积为S,则S与x之间的函数关系式为.18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为步.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值m24m43,其中.m 22(m1)m 1m 120.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)21.为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为A,B,C,D四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.m22.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y的图象经x过点E,与AB交于点F.(1)若点B坐标为(6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF AE2,求反比例函数的表达式.23.如图,ABC中,D是AB上一点,DE AC于点E,F是AD的中点,FG BC于点G,与DE H FG AF AG CAB GE GD交于点,若,平分,连接,.(1)求证:ECG GHD;(2)小亮同学经过探究发现:AD AC EC.请你帮助小亮同学证明这一结论.(3)若B30,判定四边形AEGF是否为菱形,并说明理由.24.如图,在平面直角坐标系中,二次函数y ax2bx c交x轴于点A(4,0)、B(2,0),交y轴于点C y E(0,2)AE(0,6),在轴上有一点,连接.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使AEP为等腰三角形,若存在,请直接写出所有P点的坐标,若不存在请说明理由.25.如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,EAB EBA,过点B DA DA G作的垂线,交的延长线于点.(1)DEF和AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与AGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2MF MH.泰安市 2018年初中学业水平考试数学试题(A )参考答案一、选择题1-5: DDCAB6-10: CCBAD11、12:AC二、填空题13. 9.3102614. 4 2 15. 1016. 270(或 )28141017.323 18. 2000y x 252x3三、解答题(m 2)3 m12219.解:原式m 1m 1(m 2)(2 m )(2 m ) 2m 1 m 1 (m 2)m 1 2m 1 (2 m )(2 m )2 2m m. 当 m2 2 时,2 2 2 4 2原式.2 2 12 2 2220.解:(1)设乙种图书售价每本 x 元,则甲种图书售价为每本1.4x 元. 由题意得: 1400 1600,10 x 1.4x解得: x 20 .经检验, x20 是原方程的解.所以,甲种图书售价为每本1.42028元,答:甲种图书售价每本28元,乙种图书售价每本20元. (2)设甲种图书进货a本,总利润w元,则w(28203)a(20142)(1200a)a 4800.又∵ 20a 14(1200 a ) 20000,1600解得,a3∵ w 随 a 的增大而增大, ∴当 a 最大时 w 最大, ∴当 a533本时 w 最大,此时,乙种图书进货本数为1200533667(本).答:甲种图书进货 533本,乙种图书进货 667本时利润最大. 21.解:(1)由题意得,所抽取班级的人数为:8 20% 40(人), 该班等级为 A 的人数为: 40258 2 40355(人),5 1该校初三年级等级为 A 的学生人数约为:10001000 125(人).408答:估计该校初三等级为 A 的学生人数约为 125人. (2)设两位满分男生为,,三位满分女生为 ,,.mmggg12123从这 5名同学中选 3名同学的所有可能结果为:,,,,(m ,m ,g ) (m ,m ,g ) (m ,m ,g ) (m ,g ,g )121122123112(m ,g ,g )113,, , , , ,共 10种情况. (m ,g ,g ) (m ,g ,g ) (m ,g ,g ) (m ,g ,g ) (g ,g ,g ) 123212213223123其中,恰好有 2名女生,1名男生的结果为:,,,,(m ,g ,g ) (m ,g ,g ) (m ,g ,g ) (m ,g ,g )112113123212(m ,g ,g )213,,共 6种情况. (m ,g ,g ) 2236 3 所以恰有 2名女生,1名男生的概率为.10 522.解:(1)∵ B (6,0), AD 3, AB 8, E 为CD 的中点,∴ E (3,4), A (6,8),∵反比例函数图象过点 E (3,4),∴ m34 12.设图象经过 A 、 E 两点的一次函数表达式为: y kx b ,6k b 8∴,3k b 44kx解得,3b 04yx3∴.(2)∵ AD 3, DE 4,∴ AE 5,∵ AFAE2,∴ AF 7, ∴ BF1.设 E 点坐标为 (a ,4),则点 F 坐标为 (a3,1),m∵ E , F 两点在 y 图象上,x∴ 4a a3,解得 a 1, ∴ E (1,4),∴ m4,4yx∴.23.(1)证明:∵ AF FG ,∵AG平分CAB,∴CAG FAG,∴AC//FG.∵DE AC,∴FG DE,∵FG BC,∴DE//BC,∴AC BC,∴C DHG90,CGE GED,∵F是AD的中点,FG//AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE GD,GDE GED,∴CGE GDE,∴ECG GHD.(2)证明:过点G作GP AB于点P,∴GC GP,∴CAG PAG,∴AC AP.由(1)得EG DG,∴Rt ECG Rt GPD,∴EC PD,∴AD AP PD AC EC.(3)四边形AEGF是菱形,理由如下:∵B30 ,∴ADE30 ,1AE AD2∴,∴AE AF FG.由(1)得AE/ /FG,∴四边形AEGF是菱形.24.解:(1)由题意可得,16a4b c4a2b c0c 63a43b解得,2c 6所以二次函数的解析式为 3 2 3 6.y x x4 2(2)由A(4,0),E(0,2),可求得AE所在直线解析式为 1 2.y x2过点D作DN与y轴平行,交AE于点F,交x轴于点G,过点E作EH DF,垂足为H,3 3 1设D点坐标为(x,x2 x6),则F点坐标为(x,x2),0 0 0 0 04 2 23 3 1 3则 DF x 2 x6(x2) x 2 x8,4224又, SSSADE ADFEDF1 1 ∴SDF AG DF EH ADE2 214DF2322 ( x x8)0 043 2 50(x)2.2 3 32∴当时,的面积取得最大值.x ADE503 3(3)P点的坐标为(1,1),(1,11),(1,219).25.解:(1)DEF AEF,理由如下:∵EF//AB,∴DEF EBA,AEF EAB,又∵EAB EBA,∴DEF AEF.(2)EOA:AGB,证明如下:∵四边形ABCD是菱形,∴AB AD,AC BD,∴GAB ABE ADB2ABE.又∵AEO ABE BAE2ABE,∴GAB AEO,又AGB AOE90,∴EOA:AGB.(3)连接DM.∵四边形ABCD是菱形,由对称性可知BM DM ADM ABM,,∵AB//CH,∴ABM H,∴ADM H,又∵DMH FMD,∴MFD:MDH,DM MF∴,MHDM∴DM2MF MH,∴BM2MF MH.。
山东泰安市2018年中考数学真题试卷(含解析)山东省泰安市2018年中考数学真题试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1.计算:的结果是()A.-3B.0C.-1D.3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2.下列运算正确的是()A.B.C.D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3.如图是下列哪个几何体的主视图与俯视图()A.B.C.D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A.B.C.D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)3538424440474545则这组数据的中位数、平均数分别是()A.42、42B.43、42C.43、43D.44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:3538404244454547,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A.B.C.D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A.B.C.D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8.不等式组有3个整数解,则的取值范围是()A.B.C.D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9.如图,与相切于点,若,则的度数为()A.B.C.D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.10.一元二次方程根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A.B.C.D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A.3B.4C.6D.8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵PA⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13.一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.如图,是的外接圆,,,则的直径为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BCcos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BCcos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15.如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16.如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB的面积S等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18.先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷==﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20.为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22.如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析.【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠FAG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23.如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由. 【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E 作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三种情况讨论:当PA=PE时,=,解得:n=1,此时P(﹣1,1);当PA=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24.如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MFMH,∴BM2=MFMH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。
2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出得四个选项中,只有一个就是正确得,请把正确得选项选出来,每小题选对得3分,选错、不选或选出得答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0得结果就是( )A.﹣3B.0C.﹣1D.32.(3分)(2018•泰安)下列运算正确得就是( )A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图就是下列哪个几何体得主视图与俯视图( )A. B. C. D.4.(3分)(2018•泰安)如图,将一张含有30°角得三角形纸片得两个顶点叠放在矩形得两条对边上,若∠2=44°,则∠1得大小为( )A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组得8名同学在一次排球垫球测试中得成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据得中位数、平均数分别就是( )A.42、42B.43、42C.43、43D.44、436.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号得风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B 两种型号得风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为( )A. B.C. D.7.(3分)(2018•泰安)二次函数y=ax2+bx+c得图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内得大致图象就是( )A. B. C. D.8.(3分)(2018•泰安)不等式组有3个整数解,则a得取值范围就是( )A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣59.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB得度数为( )A.40°B.50°C.60°D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根得情况就是( )A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形得边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1、2,1、4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2得坐标为( )A.(2、8,3、6)B.(﹣2、8,﹣3、6)C.(3、8,2、6)D.(﹣3、8,﹣2、6)12.(3分)(2018•泰安)如图,⊙M得半径为2,圆心M得坐标为(3,4),点P就是⊙M上得任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB得最小值为( )A.3B.4C.6D.8二、填空题(本大题共6小题,满分18分。
2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A .42、42B .43、42C .43、43D .44、436.(3分)(2018•泰安)夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .{x +y =5300200x +150y =30B .{x +y =5300150x +200y =30C .{x +y =30200x +150y =5300D .{x +y =30150x +200y =53007.(3分)(2018•泰安)二次函数y=ax 2+bx +c 的图象如图所示,则反比例函数y=a x与一次函数y=ax +b 在同一坐标系内的大致图象是( )A .B .C .D .8.(3分)(2018•泰安)不等式组{x−13−12x <−14(x −1)≤2(x −a)有3个整数解,则a 的取值范围是( )A .﹣6≤a <﹣5B .﹣6<a ≤﹣5C .﹣6<a <﹣5D .﹣6≤a ≤﹣59.(3分)(2018•泰安)如图,BM 与⊙O 相切于点B ,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6) C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A .3B .4C .6D .8二、填空题(本大题共6小题,满分18分。
2018年山东省泰安市中考数学试卷一、选择题(本大题共12小题,满分36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.计算-(-2)+(-2)0的结果是()A.-3B.0C.-1D.32.下列运算正确的是()A.2y3+y3=3y6B.y2·y3=y6C.(3y2)3=9y6D.y3÷y-2=y53.如图是下列哪个几何体的主视图与俯视图()4.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上.若∠2=44°,则∠1的大小为()A.14°B.16°C.90°-αD.α-44°5.某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个):3538424440474545则这组数据的中位数、平均数分别是()A.42,42B.43,42C.43,43D.44,436.夏季来临,某超市试销A,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问A,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A.{x +y =5 300200x +150y =30 B.{x +y =5 300150x +200y =30C.{x +y =30200x +150y =5 300D.{x +y =30150x +200y =5 3007.二次函数y=ax 2+bx+c 的图象如图所示,则反比例函数y=a x与一次函数y=ax+b 在同一坐标系内的大致图象是( )8.不等式组{x -13-12x <-1,4(x -1)≤2(x -a)有3个整数解,则a 的取值范围是( )A.-6≤a<-5B.-6<a ≤-5C.-6<a<-5D.-6≤a ≤-59.如图,BM 与☉O 相切于点B,若∠MBA=140°,则∠ACB 的度数为( ) A.40° B.50° C.60° D.70°第9题图第11题图10.一元二次方程(x+1)(x-3)=2x-5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于311.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后的对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(-2.8,-3.6)C.(3.8,2.6)D.(-3.8,-2.6)12.如图,☉M的半径为2,圆心M的坐标为(3,4),点P是☉M上的任意一点,PA⊥PB,且PA,PB与x轴分别交于A,B两点,若点A,点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13.一个铁原子的质量是0.000000000000000000000000093kg,将这个数据用科学记数法表示为kg.14.如图,☉O是△ABC的外接圆,∠A=45°,BC=4,则☉O的直径为.第14题图第15题图15.如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A 落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.16.观察“田”字中各数之间的关系:则c的值为.,点D是AC边上的动点(不17.如图,在△ABC中,AC=6,BC=10,tan C=34与点C重合),过点D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为.第17题图第18题图18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K 位于ED的中点,出东门15步的A处有一树木,则出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为步.三、解答题(本大题共7小题,满分66分.解答应写出必要的文字说明、证明过程或推演步骤)19.(6分)先化简,再求值:m 2-4m+4m-1÷(3m-1-m-1),其中m=√2-2.20.(9分)文美书店决定用不多于20000元购进甲、乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲、乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完)21.(8分)为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取一个班学生的成绩进行整理,分为A,B,C,D四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.22.(9分)如图,矩形ABCD的两边AD,AB的长分别为3,8,E是DC的的图象经过点E,与AB交于点F.中点,反比例函数y=mx(1)若点B坐标为(-6,0),求m的值及图象经过A,E两点的一次函数的表达式;(2)若AF-AE=2,求反比例函数的表达式.23.(11分)如图,在△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论;(3)若∠B=30°,判定四边形AEGF是不是菱形,并说明理由.24.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(-4,0),B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,-2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.25.(12分)如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF ∥AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与△AGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF·MH.2018年山东省泰安市中考数学试卷一、选择题1.D2.D3.C4.A5.B6.C7.C8.B9.A 10.D 11.A 12.C 二、填空题 13.9.3×10-26 14.4√2 15.√101016.270或28+14 17.S=-325x 2+32x18.2 0003三、解答题 19.解析 原式=(m -2)2m -1÷(3m -1-m 2-1m -1)=(m -2)2m -1·-(m -1)(m+2)(m -2)=-m -2m+2,当m=√2-2时,原式=-√2-√2-2+2=-√2-√2=-1+2√2.20.解析 (1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元,由题意,得1 400x-1 6801.4x=10,解得x=20,经检验,x=20是原方程的解,∴甲种图书售价为每本1.4×20=28(元).答:甲种图书售价为每本28元,乙种图书售价为每本20元. (2)设甲种图书进货a 本,总利润W 元,则W=(28-20-3)a+(20-14-2)· (1 200-a)=a+4 800,∵20a+14×(1 200-a)≤20 000,解得a ≤1 6003,∵W 随a的增大而增大,∴当a 最大时W 最大,∴当a=533时,W 最大,此时,乙种图书进货本数为1 200-533=667.答:甲种图书进货533本,乙种图书进货667本时利润最大.21.解析 (1)∵所抽取学生的总人数为8÷20%=40,∴该班级等级为A 的学生人数为40-(25+8+2)=5,则估计本校初三年级等级为A 的学生人数为1 000×540=125.(2)设两位满分的男生记为A 1、A 2,三位满分的女生记为B 1、B 2、B 3,从这5名同学中选3人的所有等可能结果为(B 1,B 2,B 3)、(A 2,B 2,B 3)、(A 2,B 1,B 3)、(A 2,B 1,B 2)、(A 1,B 2,B 3)、(A 1,B 1,B 3)、(A 1,B 1,B 2)、(A 1,A 2,B 3)、(A 1,A 2,B 2)、(A 1,A 2,B 1),共有10种等可能的结果,其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为610=35.22.解析 (1)点B 坐标为(-6,0),AD=3,AB=8,E 为CD 的中点, ∴点A(-6,8),E(-3,4),∵反比例函数图象经过点E,∴m=-3×4=-12,设AE 的表达式为y=kx+b,则{-6k +b =8,-3k +b =4,解得{k =-43,b =0.∴一次函数的表达式为y=-43x.(2)如图,连接AE.AD=3,DE=4,∴AE=√AD 2+DE 2=5,∵AF-AE=2,∴AF=7,BF=1,设E 点坐标为(a,4),则F 点坐标为(a-3,1), ∵E,F 两点在函数y=mx 图象上,∴4a=a-3,解得a=-1,∴E(-1,4),∴m=-1×4=-4,∴y=-4x.23.解析 (1)证明:∵AF=FG,∴∠FAG=∠FGA,∵AG 平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC ∥FG,∵DE ⊥AC,∴FG ⊥DE, ∵FG ⊥BC,∴DE ∥BC,∴AC ⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED, ∵F 是AD 的中点,FG ∥AE,∴H 是ED 的中点,∴FG 是线段ED 的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG ≌△GHD(AAS).(2)证明:如图,过点G 作GP ⊥AB 于点P, ∴GC=GP,而AG=AG,∴△CAG ≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt △ECG ≌Rt △DPG,∴EC=PD, ∴AD=AP+PD=AC+EC.(3)四边形AEGF 是菱形,理由:∵∠B=30°,∴∠ADE=30°,∴AE=12AD,∴AE=AF=FG,由(1)得AE ∥FG,∴四边形AECF 是平行四边形,∴四边形AEGF 是菱形.24.解析 (1)∵二次函数y=ax 2+bx+c 经过点A(-4,0),B(2,0),C(0,6), ∴{16a -4b +c =0,4a +2b +c =0,c =6,解得{a =-34,b =-32,c =6.∴二次函数的表达式为y=-34x 2-32x+6.(2)由A(-4,0),E(0,-2),可求AE 所在直线的表达式为y=-12x-2,过点D 作DG ⊥x 轴于点G,交AE 于点F,过点E 作EH ⊥DF,垂足为H,如图.设D(m,-34m 2-32m+6),则点F(m,-12m-2),∴DF=-34m 2-32m+6-(-12m-2)=-34m 2-m+8, ∴S △ADE =S △ADF +S △EDF =12×DF×AG+12DF×EH=12×DF×(AG+EH)=12×4×DF=2×(-34m 2-m +8)=-32·(m +23)2+503, ∴当m=-23时,△ADE 的面积取得最大值为503. (3)抛物线y=-34x 2-32x+6的对称轴为x=-1, 设P(-1,n),又E(0,-2),A(-4,0),可求PA 2=9+n 2,PE 2=1+(n+2)2,AE 2=16+4=20.当PA 2=PE 2时,9+n 2=1+(n+2)2,解得n=1,此时P(-1,1);当PA 2=AE 2时,9+n 2=20,解得n=±√此时点P 坐标为(-1,±√当PE 2=AE 2时,1+(n+2)2=20,解得n=-2±√19,此时点P 坐标为(-1,-2±√19).综上所述,P 点的坐标为(-1,1),(-1,±√11),(-1,-2±√19). 25.解析 (1)∠DEF=∠AEF,理由:∵EF ∥AB, ∴∠DEF=∠EBA,∠AEF=∠EAB, ∵∠EAB=∠EBA,∴∠DEF=∠AEF.(2)△EOA ∽△AGB,证明:∵四边形ABCD 是菱形, ∴AB=AD,AC ⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE,∵∠AEO=∠ABE+∠BAE=2∠ABE,∵∠GAB=∠AEO,∠AGB=∠AOE=90°,∴△EOA∽△AGB.(3)如图,连接DM,∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM,∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H,∵∠DMH=∠FMD,∴△MFD∽△MDH,∴DMMH =MFDM,∴DM2=MF·MH,∴BM2=MF·MH.。
精品文档2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)0的结果是((﹣2))2018?(3分)(泰安)计算:﹣(﹣2)+1.A.﹣3 B.0C.﹣1 D.32.(3分)(2018?泰安)下列运算正确的是()336236236325﹣=y÷(3yy)=9yy .A2yy+D=3y B.y?y.=y C.3.(3分)(2018?泰安)如图是下列哪个几何体的主视图与俯视图().D .A B.C.角的三角形纸片的两个顶点叠放分)30°(2018?泰安)如图,将一张含有3.4()12=44°在矩形的两条对边上,若∠,则∠的大小为(精品文档.精品文档44°﹣.DαC.90°﹣αA.14°B.16°名同学在一次排球垫球测试8(2018?泰安)某中学九年级二班六组的5.(3分)中的成绩如下(单位:个)45 47 45 44 40 35 38 42)则这组数据的中位数、平均数分别是(43、.4443、43 DC.42、42 B.43、42 .A两种型号的风扇,两周内、B(分)2018?泰安)夏季来临,某超市试销A6.(3元,型风扇每台150型风扇每台200元,B共销售30台,销售收入5300元,A 型风台,BA型风扇销售了x问A、B两种型号的风扇分别销售了多少台?若设)y扇销售了台,则根据题意列出方程组为(.A B..C .D2y=的图象如图所示,c则反比例函数泰安)2018?二次函数y=ax+bx+(3.7(分))在同一坐标系内的大致图象是(by=ax与一次函数+精品文档.精品文档.CA.B..D<泰安)不等式组(3分)2018?(有3个整数解,则a的取8.)值范围是(5≤﹣≤a6<a<﹣5D.﹣6.﹣BA.﹣6≤a<﹣5.﹣6<a≤﹣5CACBMBA=140°,则∠泰安)如图,BM与⊙O相切于点B,若∠(9.3分)(2018?)的度数为(70°.60°.D A.40°B.50°C)=2x3)﹣5根的情况是(x+泰安)310.(分)(2018?一元二次方程(x1)(﹣.有一个正根,一个负根A.无实数根B3D.有两个正根,且都小于.有两个正根,且有一根大于3C泰安)如图,将正方形网格放置在平面直角坐标系中,其中(2018?(11.3分),AC,CBAABC,每个小正方形的边长均为1△经过平移后得到△若上一点1.2P(111精品文档.精品文档1.4)平移后对应点为P,点P绕原点顺时针旋转180°,对应点为P,则点P2121的坐标为())2.63.8,﹣D.(﹣C,﹣3.6).(3.8,2.6)A.(2.8,3.6)B.(﹣2.8,点4)M的坐标为(3,分)(2018?泰安)如图,⊙M的半径为2,圆心12.(3、AB两点,若点x、PB与轴分别交于A、⊥P是⊙M上的任意一点,PAPB,且PA)AB的最小值为(点B关于原点O对称,则8.D4 C.6 BA.3 .分。
2018年山东省泰安市中考数学试卷一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对的3分,选错,不选或选出的答案超过一个,均记零分)1.(2018泰安)(﹣2)﹣2等于()A.﹣4 B.4 C.﹣D.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行运算即可.解答:解:(﹣2)﹣2==.故选D.点评:本题考查了负整数指数幂的知识,解答本题的关键是掌握负整数指数幂的运算法则.2.(2018泰安)下列运算正确的是()A.3x3﹣5x3=﹣2x B.6x3÷2x﹣2=3x C.()2=x6 D.﹣3(2x﹣4)=﹣6x﹣12考点:整式的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方;负整数指数幂.分析:根据合并同类项的法则、整式的除法法则、幂的乘方法则及去括号的法则分别进行各选项的判断.解答:解:A.3x3﹣5x3=﹣2x3,原式计算错误,故本选项错误;B.6x3÷2x﹣2=3x5,原式计算错误,故本选项错误;C.()2=x6,原式计算正确,故本选项正确;D.﹣3(2x﹣4)=﹣6x+12,原式计算错误,故本选项错误;故选C.点评:本题考查了整式的除法、同类项的合并及去括号的法则,考察的知识点较多,掌握各部分的运算法则是关键.3.(2018泰安)2012年我国国民生产总值约52万亿元人民币,用科学记数法表示2012年我国国民生产总值为()A.5.2×1012元B.52×1012元C.0.52×1014元D.5.2×1013元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将52万亿元=5200000000000用科学记数法表示为5.2×1013元.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2018泰安)下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8考点:轴对称图形.分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.解答:解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;。
精选文档2018年山东泰安市中考数学试卷一、选择题(本大题共 12小题,在每题给出的四个选项中,只有一个是正确 的,请把正确的选项选出来,每题选对得 3分,选错、不选或选出的答案超 过一个,均记零分)1.(3分)(2018?泰安)计算:﹣(﹣ 2)+(﹣2)0的结果是()A .﹣3B .0C .﹣1D .32.(3 分)(2018?泰安)以下运算正确的选项是()33 6 . 236.( 2 ) 36. 3÷y ﹣25A .2y +y3y =9y=y=3yB y?y=yCDy3.(3 分)(2018?泰安)如图是以下哪个几何体的主视图与俯视图( )A .B .C .D .4.(3分)(2018?泰安)如图,将一张含有 30°角的三角形纸片的两个极点叠放在矩形的两条对边上,若∠ 2=44°,则∠1的大小为( )A .14°B .16°C .90°﹣αD .α﹣44°5.(3分)(2018?泰安)某中学九年级二班六组的 8名同学在一次排球垫球测试中的成绩以下(单位:个)35 38 42 44 40 47 45 45.精选文档则这组数据的中位数、均匀数分别是()A.42、42B.43、42C.43、43D.44、436.(3分)(2018?泰安)夏天到临,某商场试销共销售30台,销售收入5300元,A型电扇每台问A、B两种型号的电扇分别销售了多少台?若设扇销售了y台,则依据题意列出方程组为(A、B两种型号的电扇,两周内200元,B型电扇每台150元,A型电扇销售了x台,B型风)A.B.C.D.7.(3分)(2018?泰安)二次函数y=ax2+bx+c的图象以下图,则反比率函数y=与一次函数y=ax+b在同一坐标系内的大概图象是()A.B.C.D.8.(3分)(2018?泰安)不等式组有3个整数解,则a的取.精选文档值范围是()A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣59.(3分)(2018?泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018?泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的状况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于311.(3分)(2018?泰安)如图,将正方形网格搁置在平面直角坐标系中,此中每个小正方形的边长均为1,△ABC经过平移后获取△A1B1C1,若AC上一点(,)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(,)B.(﹣,﹣)C.(,)D.(﹣,﹣)12.(3分)(2018?泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的随意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B对于原点O对称,则AB的最小值为().精选文档A.3B.4C.6D.8二、填空题(本大题共6小题,满分18分。
2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3分)(2018•泰安)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3分)(2018•泰安)不等式组<有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5 9.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB 的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6) C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
2018年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3分)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一坐标系内的大致图象是()A.B.C.D.8.(3分)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣59.(3分)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.(3分)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6) C.(3.8,2.6)D.(﹣3.8,﹣2.6)12.(3分)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
只要求填写最后结果,每小题填对得3分) 13.(3分)一个铁原子的质量是0.000000000000000000000000093kg,将这个数据用科学记数法表示为kg.14.(3分)如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为.15.(3分)如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.16.(3分)观察“田”字中各数之间的关系:则c的值为.17.(3分)如图,在△ABC中,AC=6,BC=10,tanC=,点D是AC边上的动点(不与点C重合),过D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF 的面积为S,则S与x之间的函数关系式为.18.(3分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为步.三、解答题(本大题共7小题,满分66分。
解答应写出必要的文字说明、证明过程或推演步骤)19.(6分)先化简,再求值÷(﹣m﹣1),其中m=﹣220.(9分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)21.(8分)为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取一个班学生的成绩进行整理,分为A,B,C,D四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.22.(9分)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.23.(11分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG ⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.24.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.25.(12分)如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF∥AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与△AGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF•MH.2018年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.【解答】解:﹣(﹣2)+(﹣2)0=2+1=3,故选:D.2.【解答】解:2y3+y3=3y3,A错误;y2•y3=y5,B错误;(3y2)3=27y6,C错误;y3÷y﹣2=y3﹣(﹣2)=y5,故选:D.3.【解答】解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选:C.4.【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.5.【解答】解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42,故选:B.6.【解答】解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选:C.7.【解答】解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选:C.8.【解答】解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选:B.9.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.10.【解答】解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选:D.11.【解答】解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.12.【解答】解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.二、填空题(本大题共6小题,满分18分。
只要求填写最后结果,每小题填对得3分) 13.【解答】解:0.000000000000000000000000093=9.3×10﹣26,故答案为:9.3×10﹣26.14.【解答】解:如图,连接OB,OC,∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形,又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4,故答案为:4.15.【解答】解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x,在Rt△CDE中,根据勾股定理得,(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2,在Rt△ABE中,根据勾股定理得,BE==2,∴sin∠ABE==,故答案为:.16.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+1417.【解答】解:(1)在Rt△CDE中,tanC=,CD=x∴DE=x,CE=x,∴BE=10﹣x,=×(10﹣x)•x=﹣x2+3x.∴S△BED∵DF=BF,=x2,∴S=S△BED故答案为S=x2.18.【解答】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴=,即=,∴CK=.答:KC的长为步.故答案为.三、解答题(本大题共7小题,满分66分。