历年考研数学真题考查重点
- 格式:docx
- 大小:26.98 KB
- 文档页数:5
考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。
(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。
历年考研数学真题分析考研数学是考研考试中的一门重要科目,对于很多考生来说都是一个难点。
为了更好地备考数学,了解历年考研数学真题分析是非常必要的。
本文将对历年考研数学真题进行分析和总结,为考生提供参考。
一、高等数学1. 极限与连续高等数学中的极限与连续是一个重要的知识点。
过去几年的考研数学真题中,对于极限与连续的考察主要集中在函数的极限、无穷小量与无穷大量、函数的连续性等方面。
考生在备考过程中需要重点掌握这些知识点,并进行大量的练习。
2. 微分与积分微分与积分是高等数学中的另一个关键知识点。
历年考研数学真题中,微分与积分的考察主要涉及导数与微分、不定积分与定积分、微分方程等内容。
考生需要熟练掌握微分与积分的基本原理和计算方法,并能够灵活应用于解题过程中。
二、线性代数线性代数是考研数学中的一个重点和难点。
在历年的考研数学真题中,线性代数的考察主要包括向量、矩阵、线性方程组等内容。
考生在备考过程中,需要熟练掌握线性代数的基本概念、性质和运算规律,并能够运用相关知识解决实际问题。
三、概率论与数理统计概率论与数理统计是考研数学中的另一个重点。
过去几年的考研数学真题中,概率论与数理统计的考察主要涉及随机变量、概率分布、参数估计、假设检验等内容。
考生在备考过程中需要重点掌握这些知识点,并进行大量的习题训练,提高解题的能力。
四、数学建模数学建模是考研数学中的一个拓展内容。
过去几年的考研数学真题中,数学建模的考察主要围绕实际问题,要求考生能够将数学知识应用于实际情境中,解决实际问题。
考生在备考过程中,需要加强对数学建模的理解,并进行实践训练,提高解决实际问题的能力。
综上所述,历年考研数学真题分析对考生备考具有重要的指导意义。
考生应该重点关注高等数学、线性代数、概率论与数理统计等知识点,并进行大量的习题训练,提高解题能力和应试能力。
同时,考生还应注重数学与实际应用的结合,加强数学建模的训练,提高解决实际问题的能力。
历年考研数学二真题考点历年考研数学二真题考点数学二是考研数学中的一门重要科目,也是考生们备考的重点之一。
在历年的考研数学二真题中,有一些经典的考点是考生们需要重点关注和掌握的。
本文将从代数、几何、概率与统计三个方面来探讨历年考研数学二真题的考点。
一、代数在代数部分,常见的考点包括线性代数、矩阵、向量等内容。
在历年的考研数学二真题中,常见的考点有矩阵的运算、矩阵的逆、矩阵的秩、特征值与特征向量等。
此外,线性方程组、向量的内积、外积以及向量的线性相关性也是常见的考点。
二、几何几何部分是考研数学二中的另一个重要考点。
常见的考点包括平面几何、立体几何等内容。
在历年的考研数学二真题中,常见的考点有平面上的直线与曲线的方程、圆锥曲线的性质与方程、空间中的直线与平面的关系、球面与圆柱曲面等。
此外,解析几何中的距离、角度、中点等概念也是常见的考点。
三、概率与统计概率与统计是考研数学二中的另一个重要考点。
常见的考点包括概率、随机变量、概率分布、统计推断等内容。
在历年的考研数学二真题中,常见的考点有概率的计算、条件概率、随机变量的期望与方差、常见概率分布的性质与应用、假设检验等。
此外,样本调查、抽样分布以及统计推断中的置信区间与假设检验也是常见的考点。
综上所述,历年考研数学二真题中的考点主要集中在代数、几何、概率与统计三个方面。
在备考过程中,考生们需要重点关注这些考点,掌握相关的基本概念和解题方法。
此外,还需要通过做真题来熟悉考点的应用和解题技巧。
只有全面掌握了这些考点,才能在考试中取得好成绩。
值得注意的是,备考过程中不仅要注重基础知识的学习,还要注重解题能力的培养。
通过大量的练习和真题的训练,考生们可以提高解题的速度和准确性。
此外,还要注重总结和归纳,将解题方法和技巧进行总结和归纳,以便在考试时能够灵活运用。
总之,历年考研数学二真题的考点主要集中在代数、几何、概率与统计三个方面。
考生们在备考过程中需要重点关注这些考点,掌握相关的基本概念和解题方法。
数学要考什么?这是考⽣在备考数学之前就应该弄明⽩的问题。
提醒⼴⼤考⽣,⼤家不仅要知道研究⽣⼊学考试试卷中对数学具体知识点的考查,更要弄明⽩数学考试究竟想要考查考⽣哪些⽅⾯的能⼒。
⼀、数学考查四种能⼒
通过对历年考研数学试题的分析,我们发现,考研数学主要从4个⽅⾯对学⽣进⾏考查,分别是:
1.基础知识
包括基本概念、基本理论、基本运算。
2.简单的分析综合能⼒
3.数学理论在经济和理⼯学科中的运⽤
4.考⽣解题速度和解题的熟练程度
由于近⼏年考⽣不适应试卷对解题速度的要求,出现了⼀些考⽣由于做不完考题⽽导致成绩上不去的情况。
考研教育提醒⼤家,解题速度和熟练程度是考⽣平常训练的重点。
⼆、基础知识是重点
考研专家强调要重视基础知识。
数学的复习应该从梳理基础知识⼊⼿,考⽣应该对照教材把知识点系统梳理⼀遍。
在基础知识的复习过程中,要特别注重对基础知识理解的准确性、完整性与系统性。
如果对基础知识理解失误往往会导致对整个综合题⽬切⼊点判断的错误,进⽽造成全局性错误。
同时,考⽣还应注意基础概念的背景和各个知识点的相互关系,对基础题⽬涉及的⽅法与技巧进⾏总结和分析,⼒争做到举⼀反三,以⼀当⼗,这样的训练会使同学们在遇到个别难题时容易找到切⼊点与思路。
考研数学一历年大题考点
考研数学一的历年大题考点主要包括以下几个方面:
1. 高等代数,这部分主要包括矩阵与行列式、线性方程组、向
量空间、线性变换等内容。
历年考题中常涉及矩阵的特征值、特征
向量、矩阵的对角化、矩阵的秩等内容。
2. 解析几何,解析几何在考研数学一中也是一个重要的考点,
主要包括空间解析几何和曲面方程等内容。
历年考题中常涉及直线
与平面的位置关系、曲面的参数方程、曲面的法线方程等内容。
3. 数学分析,数学分析是考研数学一中的重点,主要包括极限、连续、导数、微分、积分等内容。
历年考题中常涉及函数的极限、
连续性、可导性、微分中值定理、不定积分、定积分、曲线长度、
曲线面积等内容。
4. 概率论与数理统计,这部分内容在考研数学一中也占有一定
的比重,主要包括基本概率、随机变量、概率分布、大数定律、中
心极限定理、参数估计、假设检验等内容。
历年考题中常涉及概率
分布的性质、参数估计的方法、假设检验的步骤等内容。
5. 线性代数,线性代数是考研数学一中的基础内容,主要包括向量空间、线性变换、矩阵、特征值、特征向量等内容。
历年考题中常涉及线性方程组的解法、向量空间的性质、线性变换的矩阵表示等内容。
以上是考研数学一历年大题的一些考点,希望对你有所帮助。
如果还有其他问题,欢迎继续提问。
考研数学一历年大题考点考研数学一作为考研数学中的一个重要科目,历年的大题考点总结对于备战考研的同学来说至关重要。
通过对历年考研数学一大题的分析总结,可以帮助考生更好地把握数学一的考点,提高备考效率,增加应试把握。
下面将对考研数学一历年大题考点进行总结和归纳。
一、高等数学部分高等数学是考研数学一中的重要组成部分,涵盖的知识点较为广泛,考点也比较多。
在历年的大题中,常见的考点主要包括极限、导数、积分、微分方程等内容。
考生在备考高等数学时,需要重点掌握这些考点,特别是在解题时要善于运用不同的方法和技巧,灵活应用数学知识,提高解题效率。
二、线性代数部分线性代数是考研数学一中的另一个重要组成部分,考点主要包括矩阵、向量、空间、行列式、特征值等内容。
在历年的大题中,线性代数的考点较为稳定,考生需要熟练掌握相关概念和定理,掌握解题的一般方法和技巧。
在备考线性代数时,考生可以通过做大量的题目来巩固知识,提高解题能力。
三、概率统计部分概率统计是考研数学一中的另一大模块,考点主要包括概率、统计、随机变量、分布、参数估计、假设检验等内容。
历年的大题中,概率统计的考点比较灵活,考生需要熟练掌握相关知识,灵活运用概率统计的方法和技巧,提高解题的准确性和效率。
在备考概率统计时,考生可以通过总结历年考题的解题思路和方法,加强考点的梳理和理解,提高解题的应试能力。
四、数学分析部分数学分析是考研数学一中的重要内容,考点主要包括序列、级数、函数、一元函数、多元函数、泰勒展开、积分、微分方程等内容。
在历年的大题中,数学分析的考点较为稳定,考生需要熟练掌握相关概念和定理,灵活应用数学分析的方法和技巧,提高解题的准确性和效率。
在备考数学分析时,考生可以通过做大量的题目来巩固知识,加强考点的梳理和理解,提高解题的应试能力。
总的来说,考研数学一历年大题考点的总结和归纳,可以帮助考生更好地把握数学一的考点,提高备考效率,增加应试把握。
考生在备考数学一的过程中,应该注重对考点的整理和总结,熟练掌握相关知识,灵活应用数学方法和技巧,不断提高解题的准确性和效率,为考研数学一的考试打下坚实的基础。
真题解析历年考研数学真题详解历年考研数学真题详解考研数学是很多考生的痛点,而历年真题是考生备考的重要资料。
下面为大家详细解析历年考研数学真题,希望对考生们有所帮助。
一、解析2019年考研数学一真题1. 数学一第1大题:选择题部分此部分主要考查考生对数学知识点的掌握程度。
大多数题目都是比较基础的知识点,但是需要考生们注意一些细节和特殊情况的处理方式。
例如,第2小题,如果学过复变函数的考生会很容易看出正确答案是B。
这题属于比较基础的知识点,但是需要考生们对导数性质的熟练掌握,在考前及时进行总复习是非常必要的。
2. 数学一第2大题:填空题部分此部分主要考查考生解题思路和数学运算能力。
出题人在考点方面也比较注重难度和深度。
例如,第3小题的解法比较巧妙,需要考生对数学公式的运用以及数学思维的巧妙结合。
此类填空题考察的是考生的创新思维能力。
3. 数学一第3大题:解答题部分此部分主要考查考生对于应用数学的理解和数学问题求解的能力。
出题人也比较注重考查考生的数学思维,对于数学模型的建立和问题分析有很高的要求。
例如,第5小题需要考生对电路计算能力的掌握,同时也涉及到一些物理和工程方面的知识,在解答此类题目时考生需要注意多方位的知识点的掌握。
二、解析2019年考研数学二真题1. 数学二第1大题:选择题部分此部分考查的知识点相较数学一略有提高,详情可参照各位考生自行参考真题。
2. 数学二第2大题:填空题部分此部分与数学一相较一样考查考生的数学思维能力和数学运算能力,对于计算过程和结果的要求都更加高一些。
例如,第3小题考查的是考生对于偏微分方程的分析和解答能力,需要考生有较高的数学功底。
3. 数学二第3大题:解答题部分此部分难度较大,需要考生掌握更多的数学理论知识和方法,解答所需时间也比较长。
例如,第6小题考查的是考生对于线性方程组的求解能力,需要对于线性方程组的概念以及高斯消元法和矩阵运算进行充分的掌握和理解。
总之,考研数学的备考过程中,历年真题解析是必不可少的内容,需要考生充分利用好历年真题,进行思路的梳理和重点发掘,加强对于基础知识点的掌握,完善自己的数学基础。
考研数学真题考点考研数学科目是很多考生的难点,尤其是数学真题部分更是令很多人头疼。
在备考过程中,了解数学真题的考点是非常重要的,能够帮助我们更有针对性地进行复习和准备。
本文将介绍一些常见的考研数学真题考点,供广大考生参考。
一、高等数学1. 极限与连续极限与连续是高等数学中的重要概念,也是考研数学中的热点考点。
考生需要熟练掌握极限的定义和性质,理解函数的连续性以及闭区间上连续函数的性质等。
2. 导数与微分导数与微分是高等数学中的基础知识,也是考研数学中的常见考点。
需要掌握导数的定义和性质,了解常见函数的导数公式和运算法则,并能够灵活运用导数来求解相关问题。
3. 一元函数积分学一元函数积分学也是考研数学中的必考内容。
需要熟悉函数积分的定义和性质,理解积分与导数的关系,掌握常见函数的积分公式和运算法则,并能够利用积分来求解相关问题。
二、线性代数1. 线性方程组与矩阵线性方程组与矩阵是线性代数中的重要内容,也是考研数学中的热门考点。
需要掌握线性方程组的基本概念和解法,了解矩阵的基本运算法则和性质,能够利用矩阵的运算来求解线性方程组。
2. 矩阵的特征值与特征向量矩阵的特征值与特征向量也是线性代数中的常见考点。
需要理解特征值与特征向量的定义和性质,能够求解矩阵的特征值和特征向量,并能够利用特征值和特征向量来进行矩阵的对角化等相关操作。
3. 线性空间与线性映射线性空间与线性映射是线性代数中的重要内容,需要掌握线性空间和线性映射的基本概念和性质,了解线性空间的基本性质和子空间的判定方法,能够判断线性映射的满射、单射和同构等相关性质。
三、概率论与数理统计1. 概率与随机变量概率与随机变量是概率论与数理统计中的基础概念,也是考研数学中的常见考点。
需要掌握概率的基本概念和性质,了解随机变量的定义和分类,掌握常用离散型和连续型随机变量的概率分布和分布函数。
2. 大数定律与中心极限定理大数定律和中心极限定理是概率论与数理统计中的重要定理,也是考研数学中的热点考点。
考研数学常考知识点整理一、代数部分1.1 数学基础知识1.1.1 函数与方程1.1.1.1 基本函数与其性质1.1.1.2 方程与不等式1.1.2 数列与数列极限1.1.2.1 等差数列与等比数列1.1.2.2 数列极限的定义与性质1.1.3 概率与统计1.1.3.1 随机事件与概率计算1.1.3.2 排列组合与基本统计知识二、微积分部分2.1 极限与连续2.1.1 极限的定义与性质2.1.2 连续的概念与判定2.2 导数与微分2.2.1 导数的定义与性质2.2.2 微分的概念与计算2.3 积分2.3.1 不定积分与定积分的概念2.3.2 基本积分公式与常见积分方法2.3.3 几何应用与物理应用三、线性代数部分3.1 矩阵与行列式3.1.1 矩阵的基本运算与性质3.1.2 行列式的定义与计算3.2 向量空间与线性变换3.2.1 向量空间与子空间的概念3.2.2 线性变换的定义与性质四、概率论与数理统计部分4.1 随机变量与概率分布4.1.1 随机变量的定义与常见概率分布 4.1.2 期望与方差的计算4.2 参数估计与假设检验4.2.1 参数估计的方法与性质4.2.2 假设检验的基本原理与步骤五、常微分方程部分5.1 一阶常微分方程5.1.1 可分离变量与线性方程5.1.2 齐次方程与一阶线性方程 5.2 高阶常微分方程5.2.1 二阶常系数线性齐次方程5.2.2 二阶非齐次线性方程六、离散数学部分6.1 图论与树6.1.1 图的基本概念与性质6.1.2 树的定义与常见性质6.2 排列组合与离散概率6.2.1 排列与组合的基本计算6.2.2 离散概率的计算与应用以上是考研数学常考知识点的整理,希望对你的学习有所帮助。
记得多做练习题,夯实基础,理解概念及性质,注重对解题方法的掌握与应用。
加油!。
《高等数学部分》题型考点01极限的概念与性质【通用方法】极限与无穷小的关系:00lim (),()(1)x x f x A x x f x A o .题型考点02无穷小的比较(1)高阶无穷小、等价无穷小【通用方法】用定义转化成函数极限的计算问题.(2)无穷小排序【通用方法】利用0()lim0n x f x k x,解得n ,然后排序.题型考点03函数求极限【通用方法】(1)分析:把?x 代入极限,分析类型和化简方法(2)化简:①根式有理化②提公因子③计算非零因子④等价无穷小替换⑤拆分极限存在的项⑥幂指函数指数化⑦变量替换(尤其是倒代换)(3)计算:①洛必达法则②泰勒公式题型考点04极限的反问题(1)已知极限求另一极限【通用方法】加减乘除凑已知极限(2)已知极限求参数【通用方法】7种化简方法、泰勒公式、洛必达法则题型考点05函数的渐近线【通用方法】(1)垂直渐近线:若 )(lim x f ax ,则函数存在渐近线a x ;(2)水平渐近线:若b x f x)(lim ,则函数存在渐近线b y ;(3)斜渐近线:若b kx x f kx x f x x ])([lim )(lim ,则函数存在渐近线b kx y .题型考点06利用单调有界准则求数列极限【通用方法】(1)单调性①计算n n u u 1.若01 n n u u ,则}{n u 单调递增;若01 n n u u ,则}{n u 单调递减.②若)(1n n u f u ,构造函数)(x f ,单调数列应该有0)( x f ,若12u u ,则}{n u 单调递增;若12u u ,则}{n u 单调递减;另外,若0)( x f ,则数列不单调.(2)有界性①数学归纳法②均值不等式题型考点07求n 项和的数列极限【通用方法】①定积分定义②夹逼准则题型考点08判断函数的连续性与间断点【通用方法】①连续的定义②四种间断点的定义题型考点09一个点的导数【通用方法】一个点的导数用定义题型考点10切线方程与法线方程【通用方法】①求00(),()f x f x ②代入切线方程与法线方程.题型考点11各类函数求导(1)反函数求导【通用方法】反函数的导数等于原来函数导数的倒数.(2)复合函数求导【通用方法】从外层往内层逐层求导相乘.(3)隐函数求导【通用方法】把y 看成x 的函数,等式两边直接求导.(4)参数方程求导【通用方法】()()(),()()y t h t y h t y x t x t.(5)变限积分函数求导【通用方法】①设)()(21)()(x x dt t f x F,则)()]([)()]([)(1122x x f x x f x F ;②设xdt t xf x F 0)()(,则)()()()(00x xf dt t f dt t f x x F xx;注:被积函数中含有求导的变量时,要把变量分离出来,再求导.③设xdt t x f x F 0)()(,则令t x u , xdu u f x F 0)()(,)()(x f x F .注:被积函数中含有求导的变量但不能直接分离时,要通过换元分离,再求导.(6)分段函数求导【通用方法】分段函数分段求,分段点处定义求题型考点12求0x 处的n 阶导数【通用方法】利用泰勒公式的唯一性题型考点13判断函数的单调性、极值点与凹凸性、拐点【通用方法】求函数的一阶导数、二阶导数进行判断题型考点14不等式的证明【通用方法】利用单调性证明(1)移项到大于号一边,构造()F x (2)求()()F x F x ,,判断()F x 的单调性(3)找()F x 的最小值点,验证最小值大于等于0.题型考点15方程根的问题【通用方法】①单调性②零点定理题型考点16曲率与曲率半径(仅数一、二要求)【通用方法】曲率公式232)1(y y K,KR 1.题型考点17罗尔定理的证明题【通用方法】(1)证明一阶导等于零(0)( f ),找两个原函数的点相等;(2)证明二阶导等于零(0)( f ),找三个原函数的点相等,或者两个一阶导相等;(3)证明表达式的题目(0)](),(,[ f f G ),思路如下:草稿纸上:① 换成x 把要证明的表达式抄下来;②两边移项,目的是便于积分求原函数注:遇到)(x f 可以把它除到)(x f 下面去,积分为)(ln x f ;③两边积分,目的是构造有用的)(x F 试卷上:令 )(x F ,易知)(x F 在],[b a 上连续,),(b a 内可导,再证明)(x F 两个点相等即可.(4)双介值问题:解题思路:①分离介值,把含不同介值的表达式移到等号两边;②结合(3)的思路,分别使用微分中值定理证明左边C ,右边C 即可注:C 为某常数,需要通过其中一边C ,满足罗尔定理的情况下,求得.另外,若只是证明存在两个介值,则不需要把区间分段;若要求证明存在两个不同的介值,则必须把区间分段,证明介值分别来自两个不同的区间.题型考点18拉格朗日中值定理的证明题【通用方法】找对区间(一般需要将区间等分或者根据第一问提示点将区间分开),在各区间上使用拉氏定理,然后相加相减凑所证结论.题型考点19泰勒中值定理的证明题【通用方法】找对展开点(一般为区间中点或端点),然后写出泰勒展开式,带入端点值,相加相减凑所证结论.题型考点20不定积分的计算【通用方法】①凑微分②去根号③分部积分④有理函数积分题型考点21定积分的计算【通用方法】①牛顿莱布尼兹公式②定积分的换元法③区间再现④分段函数分段积分⑤含抽象函数的积分使用分部积分题型考点22积分不等式的证明【通用方法】①转化为函数不等式,利用单调性证明②积分中值定理题型考点23含变限积分函数的等式方程【通用方法】①初值②求导题型考点24反常积分的计算【通用方法】在瑕点处拆开,直接按定积分计算.题型考点25反常积分敛散性的判定【通用方法】根据比较审敛法的极限形式,与P 积分进行比较判断.题型考点26定积分的几何应用【通用方法】微元法(1)求平面图形的面积① dxx y x y S ba121② d r S2221③dtt t ydx S ba3(2)求旋转体的体积① dxx fV bax2②bay dxx xf V2③d y V Dx(3)求平面曲线的弧长d r r dt t y t x dxx y ds 222221(仅数一、二要求)(4)求旋转体的侧面积ydsd S 2 侧(仅数一、二要求)题型考点27定积分的物理应用(仅数一、二要求)【通用方法】微元法(1)变力沿曲线做功①FSW ②maF (2)静水侧压力①PS F ②ghP(3)引力问题①221r m m GF 万②221r Q Q kF 库题型考点28微分方程的求解【通用方法】根据各类微分方程的固定求解步骤进行即可.(1)一阶微分方程①可分离变量的方程②齐次方程③一阶线性微分方程(2)可降阶的微分方程①不显含y 的微分方程②不显含x 的微分方程(3)二阶常系数线性微分方程①二阶常系数线性齐次方程②二阶常系数线性非齐次方程(4)伯努利方程、欧拉方程(仅数一)通过换元化为常见方程求解题型考点29微分方程的物理应用(仅数一、二要求)【通用方法】从问题出发,找两个变量,列微分方程.题型考点30多元复合函数求偏导【通用方法】①画出复合函数关系图②从外往内逐层求偏导题型考点31多元隐函数求偏导【通用方法】①直接求②公式法③一阶微分形式不变性(全微分法)题型考点32偏积分【通用方法】注意对x 积分时加)(y C ,对y 积分时加)(x C .题型考点33多元函数极值【通用方法】①令偏导数等于0解得驻点②根据充分条件判断极值题型考点34多元函数条件极值【通用方法】①代入法②拉格朗日乘数法题型考点35多元函数求闭区域上的最值【通用方法】①开区域内求极值②边界上求条件极值③比大小题型考点36各类积分比大小【通用方法】①不等式性质②对称性③格林公式、高斯公式(仅数一)题型考点37二重积分的计算【通用方法】①画D②观察对称性③选择坐标系和积分次序④化为累次积分计算题型考点38数项级数敛散性的判断(仅数一、三)【通用方法】(1)正项级数①比较审敛法(极限形式)②比值(根植)审敛法(2)交错级数①加绝对值后判断是否绝对收敛②莱布尼兹判别法(3)一般级数①加绝对值后判断是否绝对收敛②级数敛散性的性质题型考点39幂级数的收敛域及和函数(仅数一、三)【通用方法】(1)收敛域比值法(2)和函数逐项积分,逐项求导(3)函数展开成幂级数①逐项积分,逐项求导②常见泰勒级数题型考点40函数展开成傅里叶级数(仅数一)【通用方法】(1)周期为 2的傅里叶级数①10sin cos 2~)(n n n nx b nx a a x f ,其中,2,1,sin )(1,)(1,2,1,cos )(1n nxdx x f b dx x f a n nxdx x f a n n.②余弦级数若)(x f 为偶函数,则10cos 2~)(n n nx a a x f ,其中.0,)(2,2,1,cos )(200n n b dx x f a n nxdx x f a③正弦级数若)(x f 为奇函数,则1sin ~)(n nnx bx f ,其中,2,1,sin )(2,2,1,0,00n nxdx x f b n a n n(2)周期为l 2的傅里叶级数10sincos 2~)(n n n lxn b l x n a a x f ,其中 l l n l l n dx lxn x f l b dx l x n x f l a sin )(1,cos )(1.(3)狄里克雷收敛定理设)(x f 是周期为 2的可积函数,且满足①)(x f 上],[ 连续或只有有限个第一类间断点;②)(x f 上],[ 只有有限个单调区间,则)(x f 的以 2为周期的傅里叶级数收敛,且2)0()0()(000x f x f x S .题型考点41空间解析几何(仅数一)【通用方法】(1)平面与直线①平面点法式②直线点向式(2)曲面与曲线①旋转曲面轨迹法②投影曲线消元法(3)空间曲面的切平面与空间曲线的切线①曲面的法向量),,(z y x F F F ②曲线的切向量))(),(),((t z t y t x 或))(),(,1(x z x y 等.题型考点42三重积分的计算(仅数一)【通用方法】①投影法②截面法③柱面坐标④球面坐标题型考点43曲线积分的计算(仅数一)【通用方法】(1)第一类曲线积分①对称性②参数法(2)第二类曲线积分①对称性②参数法③积分与路径无关④格林公式题型考点44曲面积分的计算(仅数一)【通用方法】(1)第一类曲面积分①对称性②一投二代三计算(2)第二类曲面积分①对称性②一投二代三定号③轮换投影法④高斯公式题型考点45多元积分学的应用(仅数一)【通用方法】(1)质心、形心①质心横坐标D Dd y x f d y x xf x),(),(;dVz y x f dV z y x xf x ),,(),,(;LL dsy x f ds y x xf x ),(),(;dSz y x f dS z y x xf x ),,(),,(.②形心横坐标(数二、三的同学要求掌握平面图形的形心)DDd xd x;dVxdV x ;L Ldsxds x ;dSxdSx .(2)转动惯量2mr I 题型考点46场论公式(仅数一)【通用方法】(1)方向导数①定义),()cos ,cos (lim 00000y x f y x f l.②可微函数cos cos y x f f l.(2)梯度),(),(y x f f y x gradf (3)散度zR y Q x P A div(4)旋度Qy j A rot题型考点47经济学应用(仅数三)【通用方法】(1)边际)(x f dxdy(2)弹性xdx y dy E yx《线性代数部分》题型考点01数值型行列式的计算【通用方法】边化零,边展开题型考点02抽象行列式的计算【通用方法】①化为乘法②特征值的乘积题型考点03方阵的幂【通用方法】(1)找规律(2)若1)( A r ,则A A 1n nl,其中)(A tr l .(3)若1A P ΛP ,则P ΛP A nn1.题型考点04矩阵的秩【通用方法】①化行阶梯形②利用秩的9个结论题型考点05具体方程组的求解【通用方法】①化行阶梯形②化行最简形③写出同解方程组④写出通解题型考点06抽象方程组的求解【通用方法】解的结构(1)齐次方程组的基础解系:①是解②无关③个数()n r A (2)非齐次方程组的通解: 通通特非齐非题型考点07向量组的线性相关性【通用方法】①秩②定义题型考点08向量组的线性表示【通用方法】①秩②定义题型考点09向量组的极大无关组【通用方法】①部分组②无关③个数()r A .题型考点10相似对角化【通用方法】(1)解0 E A 得特征值123,, ;(2)解()0x E A 得特征向量123,,ααα;(3)令123(,,) P ααα,则1P AP Λ.题型考点11正交变换法化二次型为标准形【通用方法】(1)解0 E A 得特征值123,, ;(2)解()0x E A 得特征向量123,,ααα;(3)正交化得:123,,βββ;(4)单位化得:123,,γγγ;(5)令123(,,) Q γγγ,则在正交变换x y Q 下,二次型的标准形为222112233y y y .题型考点12配方法化二次型为标准形【通用方法】①优先配交叉项少的变量②所用变换必须为可逆变换题型考点13二次型的正定型【通用方法】等价条件:①0,0Tx x x A ;②特征值均大于0;③正惯性指数为n ;④顺序主子式均大于0.《概率统计部分》题型考点01概率计算公式【通用方法】(1)加法公式()P A B C 加奇减偶(2)减法公式()()()P AB P A P AB (3)乘法公式()(|)()(|)()P AB P A B P B P B A P A (4)条件概率()(|)()P AB P A B P B(5)全概率公式1()(|)()nk k k P A P A B P B (6)贝叶斯公式(|)()(|)()k k k P A B P B P B A P A题型考点02概率密度与分布函数【通用方法】(1)概率密度①()1f x dx;(,)1xoyf x y d ②()0f x ;(,)0f x y (2)分布函数①规范性()0,()1F F ②右连续性00(0)()F x F x ③单调不减性题型考点03常见分布【通用方法】题型考点04二维连续型随机变量的分布【通用方法】(1)边缘概率密度()(,),()(,)X Y f x f x y dy f y f x y dx(2)条件概率密度(,)()()X Y Y f x y f x y f y(3)独立性若(,)()()X Y f x y f x f y ,则,X Y 独立(4)事件概率{(,)}(,)DP X Y D f x y d题型考点05随机变量函数的分布【通用方法】(1)一维连续型随机变量函数的概率密度分布函数法:①定义②代入③讨论④求导(2)一维连续型随机变量函数的概率密度分布函数法:①定义②代入③讨论④求导公式法:()(,(,))Z y f z f x y x z dx z(3)离散型+连续型随机变量函数的概率密度分布函数法:①定义②代入③全概率公式④讨论⑤求导题型考点06数字特征【通用方法】(1)随机变量的数字特征①期望 取值概率②方差性质化简,公式计算③协方差性质化简,公式计算④相关系数性质化简,公式计算(2)统计量的数字特征①E X EX②1D X DX n③2ES DX④2()E n n⑤2()2D n n题型考点07二维正态分布的性质【通用方法】若221212(,)~(,;,;)X Y N ,则:(1)边缘分布都是服从一维正态分布,即 221122~,,~,X NY N .(2)X 和Y 任意的非零线性组合aX bY 服从一维正态分布.(3)X 和Y 相互独立的充要条件是相关系数0 .(4)若12,Z Z 是,X Y 的非零线性组合,则 12,Z Z 也服从二维正态分布.题型考点08三大抽样分布【通用方法】(1)2分布:222212()nn X X X (2)F 分布:22()(,)()m mF m n n n(4)t 分布:()t n(5)若12,,,n X X X 为来自正态总体2~(,)X N 的简单随机样本,则:~(0,1)X N②222(1)~(1)n S n ~(1)X t n 题型考点09点估计【通用方法】(1)矩估计总体的矩等于样本的矩(2)最大似然估计①离散型1()()n i i L P X X ;1()ln(())ni i LnL P X X ②连续型1()()ni i L f x ;1()ln(())ni i LnL f x 题型考点10估计量的评选标准【通用方法】(1)无偏性 ()E(2)有效性若 12()()D D ,则 1 比 2更有效(3)一致性P。
高等数学部分易混淆概念 第一章:函数与极限一、数列极限大小的判断 例1:判断命题是否正确. 若()nn x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y n n ==+,,n n x y n <∀,而lim lim 0nn n n x y →∞→∞==.例2.选择题 设nn n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确 分析:若lim lim 0nn n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n n n nn n x y z n n =--=-+=-,则n n n x z y ≤≤,且lim()0n n n y x →∞-=,但lim n n z →∞ 不存在,所以B 选项不正确,因此选C . 例3.设,nn x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确. 分析:由于,nn x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞-=及夹逼定理得lim()0n n a x →∞-=因此,lim nn x a →∞=,再利用lim()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大.例4:下列叙述正确的是: ② ① 如果()f x 在0x 某邻域内无界,则0lim ()x x f x →=∞② 如果lim ()x x f x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sin f x x x =,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞ lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.由定义,无穷大必无界,故②正确. 结论:无穷大必无界,而无界未必无穷大.三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩,当0x →时()f x 的极限不存在.四、如果lim ()0x x f x →=不能退出01lim()x x f x →=∞ 例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则0lim ()0x x f x →=,但由于1()f x 在0x =的任一邻域的无理点均没有定义,故无法讨论1()f x 在0x =的极限. 结论:如果lim ()0x x f x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则01lim()x x f x →=∞.反之,()f x 为无穷大,则1()f x 为无穷小。
高数一、选择题2009:1、讨论函数的连续性与确定间断点的类型2、无穷小量与它的阶3、函数不等式证明4、变限定积分及其应用2008:1、讨论函数的连续性与确定间断点的类型2、定积分的概念与计算3、偏导数与全微分4、在直角坐标系与极坐标系中计算二重积分2007:1、无穷小量与它的阶2、导数与微分概念3、定积分的概念与计算4、变换累次积分的次序与坐标系的转换5、导数的经济意义及最大值最小值应用问题6、利用导数研究函数的性态2006:7、利用导数研究函数的性态8、导数与微分概念9、常数项级数10、一阶微分方程11、极值与条件极值,最值及其应用问题2005:7、利用导数研究函数的性态8、二重积分的概念与性质9、常数项级数10、利用导数研究函数的性态11、微分学中值定理及其在函数或导数零点存在性问题上的应用2004:7、函数的概念与性质8、讨论函数的连续性与确定间断点的类型9、利用导数研究函数的性态10、常数项级数11、导数与微分概念2003:1、讨论函数的连续性与确定间断点的类型2、极值与条件极值,最值及其应用问题3、常数项级数2002:1、微分学中值定理及其在函数或导数零点存在性问题上的应用2、幂级数的收敛特性2001:1、利用导数研究函数的性态2、反常积分的概念与计算2000:1、求未定式的极限与等价无穷小因子代换2、导数与微分概念二、填空题2009:9、求未定式的极限与等价无穷小因子代换10、偏导数与全微分11、幂级数的收敛特性12、导数的经济意义及最大值最小值应用问题2008:9、讨论函数的连续性与确定间断点的类型10、定积分的概念与计算11、二重积分的简化计算12、一阶微分方程2007:11、求未定式的极限与等价无穷小因子代换12、求各类一元函数的导数与微分13、多元复合函数微分法14、一阶微分方程2006:1、求未定式的极限与等价无穷小因子代换2、求各类一元函数的导数与微分3、多元复合函数微分法2005:1、求未定式的极限与等价无穷小因子代换2、一阶微分方程3、偏导数与全微分2004:1、确定极限式中的参数2、偏导数与全微分3、定积分的概念与计算2003:1、导数与微分概念2、切线问题3、在直角坐标系与极坐标系中计算二重积分2002:1、求未定式的极限与等价无穷小因子代换2、变换累次积分的次序与坐标系的转换2001:1、导数的经济意义及最大值最小值应用问题2、微分方程的简单应用2000:1、多元复合函数微分法2、反常积分的概念与计算三、解答题2009:15、极值与条件极值,最值及其应用问题16、不定积分的计算17、二重积分的简化计算18、微分学中值定理及其在函数或导数零点存在性问题上的应用19、微分方程的简单应用2008:15、求未定式的极限与等价无穷小因子代换16、多元隐函数微分法17、二重积分的简化计算18、有关定积分的证明题19、级数求和2007:17、利用导数研究函数的性态18、二重积分的简化计算19、微分学中值定理及其在函数或导数零点存在性问题上的应用20、函数的幂级数展开式2006:15、求未定式的极限与等价无穷小因子代换16、在直角坐标系与极坐标系中计算二重积分17、函数不等式的证明18、微分方程的简单应用19、级数求和2005:15、求未定式的极限与等价无穷小因子代换16、多元复合函数微分法17、二重积分的简化计算18、级数求和19、有关定积分的证明题2004:15、求未定式的极限与等价无穷小因子代换16、在直角坐标系与极坐标系中计算二重积分17、有关定积分的证明题18、导数的经济意义及最大值最小值应用问题19、级数求和2003:三、讨论函数的连续性与确定间断点的类型四、多元复合函数微分法五、在直角坐标系与极坐标系中计算二重积分六、级数求和七、一阶微分方程八、微分学中值定理及其在函数或导数零点存在性问题上的应用2002:三、变限定积分及其应用四、多元隐函数微分法五、不定积分的计算六、定积分的应用七、级数求和八、有关定积分的证明题2001:三、多元隐函数微分法四、微分学中值定理及其在函数或导数零点存在性问题上的应用五、二重积分的简化计算六、定积分的应用七、有关定积分的证明题八、级数求和2000:三、二阶常系数线性微分方程四、在直角坐标系与极坐标系中计算二重积分五、极值与条件极值,最值及其应用问题六、利用导数研究函数的性态七、级数求和八、有关定积分的证明题线性代数一、选择题2009:5、伴随矩阵6、初等变换2008:5、可逆矩阵6、合同矩阵2007:7、向量组的线性相关问题8、合同矩阵2006:12、向量组的线性相关问题13、初等变换2005:12、伴随矩阵13、向量组的线性相关问题2004:12、初等变换13、齐次方程组有非零解、基础解系、通解等问题2003:4、矩阵的秩5、向量组的线性相关问题2002:3、齐次方程组有非零解、基础解系、通解等问题4、矩阵的特征值、特征向量的概念与计算2001:3、初等变换4、有解判定及解的结构2000:3、有解判定及解的结构4、公共解、同解二、填空题2009:13、相似拒阵与相似对角化2008:13、抽象型行列式的计算2007:15、矩阵的秩2006:4、抽象型行列式的计算2005:4、向量组的线性相关问题2004:4、二次型的概念及标准形2003:4、可逆矩阵2002:3、向量组的线性相关问题2001:3、矩阵的秩2000:3、抽象型行列式的计算三、解答题2009:20、非齐次线性方程组的求解21、二次型的概念及标准形2008:20、I数字型行列式的计算II、III非齐次线性方程组的求解21、向量组的线性相关问题2007:21、公共解、同解22、实对称矩阵的特征值与特征向量2006:20、向量组的极大线性无关组与秩21、实对称矩阵的特征值与特征向量2005:20、公共解、同解21、二次型的正定性2004:20、向量的线性表出21、相似矩阵与相似对角化2003:九、齐次方程组有非零解、基础解系、通解等问题十、二次型的概念及标准形2002:九、齐次方程组有非零解、基础解系、通解等问题十、实对称矩阵的特征值与特征向量2001:九、实对称矩阵的特征值与特征向量十、合同矩阵2000:九、向量的线性表出十、二次型的正定性概率论一、选择题2009:7、随机事件的关系与运算8、随机变量函数的分布2008、7、随机变量函数的分布8、随机变量的数字特征2007:9、事件的独立性与独立重复试验10、随机变量的独立性与相关性2006:14、常见随机变量的概率分布及其应用2005:14、无2004:14、常见随机变量的概率分布及其应用2003:6、事件的独立性与独立重复试验2002:5、数理统计的基本概念2001:5、随机变量的独立性与相关性2000:5、随机事件的关系与运算二、填空题2009:14、参数估计2008、14、随机变量的数字特征2007:16、随机事件的关系与运算2006:5、随机变量函数的分布6、参数估计2005:5、概率与条件概率的性质和基本公式6、随机变量的联合分布、边缘分布与条件分布2004:5、、常见随机变量的概率分布及其应用6、参数估计2003:5、随机变量的数字特征6、大数定律与中心极限定理2002:4、随机变量的数字特征5、参数估计2001:4、大数定律与中心极限定理5、数理统计的基本概念2000:4、连续型随机变量的概率密度5、随机变量的数字特征三、解答题2009:22、随机变量的联合分布、边缘分布与条件分布23、随机变量的联合分布、边缘分布与条件分布2008:22、随机变量函数的分布23、参数估计2007:23、随机变量函数的分布24、参数估计2006:22、随机变量的联合分布、边缘分布与条件分布23、参数估计2005:22、随机变量函数的分布23、参数估计2004:22、随机变量的联合分布、边缘分布与条件分布23、参数估计2003:十一、随机变量函数的分布十二、随机变量函数的分布2002:十一、随机变量的联合分布、边缘分布与条件分布十二、随机变量函数的分布2001:十一、大数定律与中心极限定理十二、随机变量函数的分布2000:十一、无十二、随机变量的独立性与相关性。
考研数学真题的重要知识点考研数学真题的重要知识点我们在准备考研数学的复习时,要掌握好真题的重要知识点有哪些,才能更好的提高效率。
店铺为大家精心准备了考研数学真题重点指南,欢迎大家前来阅读。
考研数三真题知识点汇总(1)极值以及拐点的充分条件(2)偏导数的计算(3)二重积分的比较定理(4)常数项级数的敛散性判断(5)矩阵相似的定义以及性质(6)惯性指数的定义以及充要条件(7)条件概率的定义(8)常见分布的数字特征以及数字特征的计算(9)极限的计算(10)极限的计算(11)偏导数的计算以及全微分的概念(12)二重积分的计算(13)行列式的计算(14)概率的计算(15)极限的计算(16)导数的经济学应用(17)积分变限函数求导以及最值的求解(18)积分变限函数求导以及微分方程的求解(19)幂级数求和(20)线性方程组解的判定以及求解(21)矩阵的相似对角化(22)随机变量的分布(23)随机变量的分布以及数字特征的求考研数一真题考点总结(1)反常积分敛散性判断。
(2)原函数的概念。
(3)微分方程的概念。
(4)连续以及可导的概念。
(5)矩阵相似的概念。
(6)二次型与空间解析几何的结合。
(7)一维正态分布的标准化。
(8)二维离散型随机变量的分布律以及数字特征。
(9)极限的计算。
(10)旋度的计算。
(11)偏导数的计算以及全微分的概念。
(12)导数的计算。
(13)行列式的计算。
(14)区间估计。
(15)二重积分的计算。
(16)反常积分、微分方程的计算。
(17)微分方程、曲线积分以及Green公式的使用。
(18)第二类曲面积分以及Gauss公式的使用(19)常数项级数敛散性的判断、数列极限的计算。
(20)线性方程组的求解。
(21)矩阵的相似对角化。
(22)随机变量分布的相关计算。
(23)随机变量分布的相关计算以及参数估计的评选标准。
考研数学临考知识点串讲一、双扭线我们看93年数学一这道真题。
题目给出双扭线的直角坐标方程,要求考生写出用极坐标表示的该曲线围成区域的面积。
历年考研数学真题高等数学部分考查重点
高等数学历来是考研的考查重点,往往大题、难题都会出自在这一部分,在最后复习阶段,希望大家能仔细的研究一下历年考研数学真题的出现过的内容。
一、函数、极限与连续
1.求分段函数的复合函数;
2.求极限或已知极限确定原式中的常数;
3.讨论函数的连续性,判断间断点的类型;
4.无穷小阶的比较;
5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
二、一元函数微分学
1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2.利用洛比达法则求不定式极限;
3.讨论函数极值,方程的根,证明函数不等式;
4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足……,此类问题证明经常需要构造辅助函数;
5.几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三、一元函数积分学
1.计算题:计算不定积分、定积分及广义积分;
2.关于变上限积分的题:如求导、求极限等;
3.有关积分中值定理和积分性质的证明题;
4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
5.综合性试题。
四、向量代数和空间解析几何
1.计算题:求向量的数量积,向量积及混合积;
2.求直线方程,平面方程;
3.判定平面与直线间平行、垂直的关系,求夹角;
4.建立旋转面的方程;
5.与多元函数微分学在几何上的应用或与线性代数相关联的题目。
五、多元函数的微分学
1.判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;
2.求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;
3.求二元、三元函数的方向导数和梯度;
4.求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;
5.多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。
这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。
六、多元函数的积分学
1.
二重、三重积分在各种坐标下的计算,累次积分交换次序;
2.第一型曲线积分、曲面积分计算;
3.第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;
4.第二型(对坐标)曲面积分的计算,高斯公式及其应用;
5.梯度、散度、旋度的综合计算;
6.重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
数学一考生对这部分内容和题型要引起足够的重视。
七、无穷级数
1.判定数项级数的收敛、发散、绝对收敛、条件收敛;
2.求幂级数的收敛半径,收敛域;
3.求幂级数的和函数或求数项级数的和;
4.将函数展开为幂级数(包括写出收敛域);
5.将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);
6.综合证明题。
八、微分方程
1.求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;
2.求解可降阶方程;
3.求线性常系数齐次和非齐次方程的特解或通解;
4.根据实际问题或给定的条件建立微分方程并求解;
5.综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
以下给出了《线性代数》每章近10年(1997-2006)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。
线性代数
(①10年考题总数:51题②总分值:256分③占三部分题量之比重:23%④占三部分分值之比重:20%)
第一章行列式
(①10年考题总数:5题②总分值:18分③占第二部分题量之比重:9%④占第二部分分值之比重:7%)
题型 1 求矩阵的行列式(十(2),2001;一(5),2004;一(5),2005;一(5),2006)
题型2 判断矩阵的行列式是否为零(二(4),1999)
第二章矩阵
(①10年考题总数:8题②总分值:35分③占第二部分题量之比重:15%④占第二部分分值之比重:13%)
题型 1 判断矩阵是否可逆或求逆矩阵(八,1997)
题型 2 解矩阵方程或求矩阵中的参数(一(4),1997;十,2000;一(4),2001)
题型3 求矩阵的n次幂(十一(3),2000)
题型 4 初等矩阵与初等变换的关系的判定(二(11),2004;二(12),2006)
题型5 矩阵关系的判定(二(12),2005)
第三章向量
(①10年考题总数:9题②总分值:33分③占第二部分题量之比重:17%④占第二部分分值之比重:12%)
题型 1 向量组线性相关性的判定或证明(十一,1998;二(4),2000;十一(2),2000;二(4),2003;二(12),2004;二(11),2005;二(11),2006)
题型 2 根据向量的线性相关性判断空间位置关系或逆问题(二(4),1997;二(4),2002)
第四章线性方程组
(共考过约11题,约 67分)
题型 1 齐次线性方程组基础解系的求解或判定(七(1),1997;九,2001)
题型 2 求线性方程组的通解(十二,1998;九,2002;三(20(Ⅲ)),2005)
题型 3 讨论含参数的线性方程组的解的情况,如果方程组有解时求出通解(三(20),2004;三(21),2005)
题型 4 根据含参数的方程组的解的情况,反求参数或其他(一(4),2000;三(20),2006)
题型 5 两个线性方程组的解的情况和它们的系数矩阵的关系的判定(一(5),2003)
题型 6 直线的方程和位置关系的判定(十,2003)
第五章矩阵的特征值和特征向量
(①10年考题总数:13题②总分值:76分③占第二部分题量之比重:25%④占第二部分分值之比重:29%)
题型 1 求矩阵的特征值或特征向量(一(4),1999;十一(2),2000;九,2003;三(21(Ⅰ)),2006)
题型 2 已知含参数矩阵的特征向量或特征值或特征方程的情况,求参数(七(2),1997;三(21),2004)
题型 3 已知伴随矩阵的特征值或特征向量,求矩阵的特征值或参数或逆问题(一(4),1998;十,1999)
题型 4 将矩阵对角化或判断矩阵是否可对角化(七(2),1997;三(21),2004;三(21(Ⅱ)),2006)
题型 5 矩阵相似的判定或证明或求一个矩阵的相似矩阵(二(4),2001;十(1),2001)
题型 6 矩阵相似和特征多项式的关系的证明或判定(十,2002)
第六章二次型
(①10年考题总数:5题②总分值:27分③占第二部分题量之比重:9%④占第二部分分值之比重:10%)
题型 1 化实二次型为标准二次型或求相应的正交变换(三(20(Ⅱ)),2005)
题型 2 已知一含参数的二次型化为标准形的正交变换,反求参数或正交矩阵(十,1998;一(4),2002)
题型 3 已知二次型的秩,求二次型中的参数和二次型所对应矩阵的表达式(三(20(Ⅰ)),2005)
题型 4 矩阵关系合同的判定或证明(二(4),2001)
题型 5 矩阵正定的证明(十一,1999)
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待你的好评与关注!)。