【真卷】2018年河南省南阳市镇平县中考数学一模试卷和解析
- 格式:doc
- 大小:569.00 KB
- 文档页数:26
2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3。
00分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2。
147×102B.0。
2147×103C.2。
147×1010D.0.2147×1011 3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3。
00分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15。
3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15。
3%C.平均数是15。
98% D.方差是06.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3。
00分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3。
00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是() A.B.C.D.9.(3.00分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3。
2018年河南省中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A 出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD 的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.2018年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【解答】解:因为在数轴上﹣3在其他数的左边,所以﹣3最小;故选:A.【点评】此题考负数的大小比较,应理解数字大的负数反而小.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11﹣1=10.【解答】解:929亿=92 900 000 000=9.29×1010.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.【点评】本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【解答】解:﹣=1去分母,得1﹣(x﹣2)=x,故①错误,故选:A.【点评】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+k+2=0有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.【点评】本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC =S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.【点评】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【解答】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD EDE AE BE CE DE EE∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选:B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.二、填空题(每小题3分,共15分)11.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:2【点评】此题主要考查了学生开平方的运算能力,比较简单.12.【分析】根据一元二次方程的解的定义,将x=a代入方程3x2﹣5x+2=0,列出关于a的一元二次方程,通过变形求得3a2﹣5a的值后,将其整体代入所求的代数式并求值即可.【解答】解:∵方程3x2﹣5x+2=0的一个根是a,∴3a2﹣5a+2=0,∴3a2﹣5a=﹣2,∴6a2﹣10a+2=2(3a2﹣5a)+2=﹣2×2+2=﹣2.故答案是:﹣2.【点评】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【分析】由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.【解答】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.【点评】本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【分析】由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.【解答】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°﹣2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.【点评】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.三、解答题(本大题共8小题,满分75分)16.【分析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y=﹣2时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.【解答】解:(1)接受问卷调查的共有30÷20%=150人,m=150﹣(12+30+54+9)=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出AE 与OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD中,利用勾股定理求出AC的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.【解答】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【点评】此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【分析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan ∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣4,根据BE=DE可得关于x的方程,解之可得.【解答】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【分析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx ﹣3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程﹣1=1﹣(n﹣3),解方程即可.【解答】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图.当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.21.【分析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.【解答】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案是:PM=PN,PM⊥PN.(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【点评】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.23.【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,解方程即可解决问题;【解答】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或;【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2018年中招调研测试(一)九年级数学一、选择题。
(每小题3分,共30分)下列各小题均有四个答案其中只有一个是正确的。
1、下列各数中,绝对值最小的数是( ) A 、π B 、21 C 、−2 D 、−312、下列运算正确的是( )A 、523532a a a =+B 、ab b a b a 33223=÷C 、()222b a b a -=- D 、()3332a a a =+-3、已知关于x 的一元二次方程0122=+-x kx 有实数根,若k 为非负整数,则k 等于( ) A 、0 B 、1 C 、0,1 D 、24、不等式组⎩⎨⎧≥->-02213x x 的解集在数轴上表示为( )5、一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球;随机从中摸出一球,不再放回,充分搅均后再随机摸出一球。
则两次都摸到红球的概率是( ) A 、31 B 、32 C 、21 D 、416、如图,BE ∥AF ,点D 是AB 上一点,且DC ⊥BE 于点C ,若∠A=35°,则∠ADC 的度数( ) A 、105° B 、115° C 、125° D 、135°7、如图,在平行四边形ABCD 中,点E 是边AD 上一点,且AE=2ED ,EC 交对角线BD 于点F ,则FCEF等于( ) A 、31 B 、21 C 、32 D 、438、如图,已知AB 是⊙O 直径,BC 是弦,∠ABC=40°,过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB 为( ) A 、20° B 、25° C 、30° D 、35° 9、已知一次函数y=(k+1)x+b 的图象与x 轴负半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( ) A 、k>−1,b>0 B 、k>−1,b<0 C 、k<−1,b>0 D 、k<−1,b<010、如图,已知二次函数()02≠++=a c bx ax y 图象与x 轴交于A ,B 两点,对称轴为直线x=2,下列结论:①abc>0; ②4a+b=0;③若点A 坐标为(−1,0),则线段AB=5; ④若 点M(x 1,y 1)、N(x 2,y 2)在该函数图象上,且满足0<x 1<1,2<x 2<3,则y 1<y 2其中正确结论的序号为( )A 、①,②B 、②,③C 、③,④D 、②,④二、填空题(本大题共5小题,每小题3分,共15分) 11、计算:()2142-+-= 。
2018年河南省中考数学试卷(解析版)2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,co s80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD 交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.【解答】解:﹣的相反数是:.故选:B.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB 于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,==π.∴S阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD 交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠O CD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC 下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N (3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M 1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M(x,x﹣5),2∵3=,∴x=,(,﹣),∴M2综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.。
年河南省南阳市镇平县中考数学一模试卷一、选择题(本大题共小题,每小题分,共分).(分)一个正方形的面积是,估计它的边长大小在().与之间.与之间.与之间.与之间.(分)如图,在平面直角坐标系中,有点(,),(,),以原点为位似中心,相似比为,在第一象限内把线段缩小后得到,则点的坐标为().(,).(,).(,).(,).(分)如图,⊙是△的外接圆,∠°,则∠的度数是().°.°.°.°.(分)某种品牌运动服经过两次降价,每件零售价由元降为元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为,下面所列的方程中正确的是().().(﹣).(﹣).(﹣).(分)如图,正六边形内接于⊙,半径为,则这个正六边形的边心距的长为().....(分)四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是().....(分)如图,△中,,,,则△的面积是().....(分)抛物线﹣上部分点的横坐标,纵坐标的对应值如下表所示:从上表可知,下列说法中,错误的是().抛物线于轴的一个交点坐标为(﹣,).抛物线与轴的交点坐标为(,).抛物线的对称轴是直线.抛物线在对称轴左侧部分是上升的.(分)某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在月份初连续几天观察电表的度数,电表显示的度数如下表:这个家庭六月份用电度数为().度.度.度.度.(分)如图,一段抛物线:﹣(﹣)(≤≤)记为,它与轴交于两点,;将绕旋转°得到,交轴于;将绕旋转°得到,交轴于;…如此进行下去,直至得到,若点(,)在第段抛物线上,则为()..﹣..﹣二、填空题(本大题共小题,每小题分,共分).(分)计算(﹣)÷(﹣)的结果为..(分)一个不透明的袋中装有除颜色外均相同的个黑球、个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中约有红球个..(分)如图,是半圆的直径,点、是半圆的三等分点,若弦,则图中阴影部分的面积为..(分)已知抛物线﹣与轴一个交点的坐标为(﹣,),则一元二次方程﹣的根为..(分)如图,矩形中,,,点是边上的一个动点,把△沿折叠,点落在′处,如果′恰在矩形的对称轴上,则的长为.三、解答题(本大题共小题,满分分).(分)已知:关于的方程﹣()不解方程,判列方程根的情况;()若方程有一个根为,求的值..(分)一个不透明的布袋里装有个白球,个黑球和若干个红球,它们除颜色外其余都相同.从中任意摸出个球,取出白球的概率为.()布袋里红球有多少个?()先从布袋中摸出个球后不再放回,再摸出个球,求两次摸到的球都是白球的概率..(分)某校七年级共有名学生,团委准备调查他们对“低碳”知识的了解程度,()在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生请问其中最具有代表性的一个方案是;()团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;()请你估计该校七年级约有多少名学生比较了解“低碳”知识..(分)如图,已知抛物线﹣与轴交于,两点,与轴交于点,点的坐标为(,)()求的值及抛物线的顶点坐标.()点是抛物线对称轴上的一个动点,当的值最小时,求点的坐标..(分)如图,某校八年级()班学生利用寒假期间到郊区进行社会实践活动,活动之余,同学们准备攀登附近的一个小山坡,从点出发,沿坡脚°的坡面以千米时的速度行至点,用了分钟,然后沿坡比为:的坡面以千米时的速度达到山顶点,用了分钟,求小山坡的高(即的长度)(精确到千米)(°≈,°≈,≈).(分)如图,已知为⊙的直径,和为⊙的切线,切点分别为和.()求证:∥;()当,且时,求图中阴影部分的面积(结果不取近似值)..(分)()问题发现如图,四边形为矩形,,,点在矩形的对角线上,△的两条直角边,分别交,于点,,当⊥,⊥时,(用含,的代数式表示).()拓展探究在()中,固定点,使△绕点旋转,如图,的大小有无变化?请仅就图的情形给出证明.()问题解决如图,四边形为正方形,,点在对角线上,,分别在,上,⊥,当时,(是正实数),直接写出四边形的面积是(用含,的代数式表示).(分)如图,直线与抛物线相交于(,)和(,),点是上的动点,设点的横坐标为,过点作⊥轴,交抛物线于点,与轴交于点.()求抛物线的表达式;()点是线段上异于,的动点,是否存在这样的点,使线段的长有最大值?若存在,求出这最大值,若不存在,请说明理由;()点在直线上自由移动,当三个点,,中恰有一点是其它两点所连线段的中点时,请直接写出的值.年河南省南阳市镇平县中考数学一模试卷参考答案与试题解析一、选择题(本大题共小题,每小题分,共分).【解答】解:∵一个正方形的面积是,∴该正方形的边长为,∵<<,∴<<.故选:..【解答】解:由题意得,△∽△,相似比是,∴,又∵,,∴,,∴点的坐标为:(,),故选:..【解答】解:∵⊙是△的外接圆,∠°,∴∠∠×°°.故选:..【解答】解:设每次降价的百分率为,由题意得:(﹣),故选:..【解答】解:如图所示,连接、∵多边形是正六边形,∴∠°,∵,∴△是等边三角形,∴∠°,∴∠×,故选:..【解答】解:在,,,这张卡片中不是最简二次根式的是,所以卡片上写的不是最简二次根式的概率是,故选:..【解答】解:过点作⊥,∵△中,,,,∴,∴∠°,∵,∴,∴,∴,则△的面积是:××××().故选:..【解答】解:当﹣时,,∴抛物线过(﹣,),∴抛物线与轴的一个交点坐标为(﹣,),故正确;当时,,∴抛物线与轴的交点坐标为(,),故正确;当和时,,∴对称轴为,故错误;当<时,随的增大而增大,∴抛物线在对称轴左侧部分是上升的,故正确;故选:..【解答】解:这七天一共用电的度数(﹣)÷,月份用电度数×(度),故选..【解答】解:∵﹣(﹣)(≤≤),∴配方可得﹣(﹣)(≤≤),∴顶点坐标为(,),∴坐标为(,)∵由旋转得到,∴,即顶点坐标为(,﹣),(,);照此类推可得,顶点坐标为(,),(,);顶点坐标为(,﹣),(,);顶点坐标为(,),(,);顶点坐标为(,﹣),(,);∴﹣.故选:.二、填空题(本大题共小题,每小题分,共分).【解答】解:(﹣)÷(﹣)﹣;故答案为:..【解答】解:由题意可得,摸到黑球和白球的频率之和为:﹣,∴总的球数为:()÷,∴红球有:﹣()(个),故答案为:..【解答】解:如图连接、、.∵点、是半圆的三等分点,∴∠∠∠°,∵,∴△、△是等边三角形,∴∠∠°,,∴∥,∴,△△.∴阴扇形.【解答】解法一:将﹣,代入﹣得:.解得:﹣.将﹣代入方程得:﹣﹣.∴(﹣﹣).∴()(﹣).∴﹣,.解法二:已知抛物线的对称轴为,又抛物线与轴一个交点的坐标为(﹣,),则根据对称性可知另一个交点坐标为(,);故而﹣的两个根为﹣,故答案为:﹣,..【解答】解:分两种情况:①如图,过′作∥交于,交于,则直线是矩形的对称轴,∴,∵△沿折叠得到△′,∴′,′,∴′,即′与重合,∴′,∴′′,∴′(﹣′),解得:′,∴;②如图,过′作∥交于,交于,则直线是矩形的对称轴,∴⊥,,∥∥,∴′,∴∠′°,∴∠′°,∴∠′°,∴′′×°×;综上所述:的长为或;故答案为:或.三、解答题(本大题共小题,满分分).【解答】解:()∵△()﹣(﹣)>,∴无论为何值,方程总有两个不相等的实数根.()将时,原方程为﹣,即()(),解得:﹣,﹣..【解答】解:()设布袋里红球有个.由题意可得:,解得,经检验是原方程的解.∴布袋里红球有个.()记两个白球分别为白,白画树状图如下:由图可得,两次摸球共有种等可能结果,其中,两次摸到的球都是白球的情况有种,∴(两次摸到的球都是白球)..【解答】解:()方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;()如上图;()×(名),∴七年级约有名学生比较了解“低碳”知识..【解答】解:()把点的坐标为(,)代入抛物线﹣得:﹣,解得:,∴﹣﹣(﹣),∴顶点坐标为:(,).()连接交抛物线对称轴于点,则此时的值最小,设直线的解析式为:,∵点(,),点(,),∴,解得:,∴直线的解析式为:﹣,当时,﹣,∴当的值最小时,点的坐标为:(,)..【解答】解:过作⊥于,⊥于点,∵沿坡比为:的坡面以千米时的速度达到山顶点,∴,∴∠°,∵×(),×(),∴•°•°××≈(千米).答:小山坡的高为千米..【解答】()证明:连接.∵和为⊙的切线,⊥,为圆心,∴⊥,⊥,∵,,∴△≌△.∴∠,平分.∴⊥又∵为⊙的直径,∴⊥∴∥;()∵,为切线,,为切点,∴.又∵,∴△为等边三角形.∴∠°﹣°﹣°﹣°°,∠°﹣°°,.∴,.∴阴影部分扇形﹣△﹣××π﹣()..【解答】解:()∵四边形是矩形,∴⊥,∵⊥,∴△∽△∴∵四边形是矩形,∴∠°,∵⊥,⊥,∴∠∠°∠,∴四边形是矩形,∴,∴,故答案为;()如图,过作⊥于,作⊥于,则∠∠°,∠°∵△中,∠°∴∠∠∴△∽△∴由∥,∥可得,∵,∴,即∴,故答案为;()∵⊥,⊥∴△∽△∴当时(是正实数),∴∴四边形的面积(),故答案为:..【解答】解:()∵(,)在直线上,∴,则(,),∵(,)、(,)在抛物线上,∴解得,∴所求抛物线的表达式为﹣;()设的坐标为(,)(<<),则点的坐标为(,﹣),∴()﹣(﹣)﹣﹣﹣(﹣),∵﹣<,∴当时,线段取得最大值;()设的坐标为(,),则点的坐标为(,﹣),若点为的中点,则,即﹣(﹣),整理得﹣,此方程没有实数解;若点为的中点,则,即﹣(),整理得﹣,解得,;若点为的中点,则,即(﹣),整理得﹣,解得,;综上所述,的值为或.。
2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,及“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC及△ABC 关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D 到直线AB的距离DF的长为234cm,已知低杠的支架AC及直线AB的夹角∠CAE为82.4°,高杠的支架BD 及直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)及销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量及销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C及点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不及点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM及直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.2018年河南省中考数学试卷参考答案及试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值及小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,及“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”及“害”是相对面,“了”及“厉”是相对面,“我”及“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根及△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化及动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC及△ABC 关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC及△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC及△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用及设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定及性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D 到直线AB的距离DF的长为234cm,已知低杠的支架AC及直线AB的夹角∠CAE为82.4°,高杠的支架BD 及直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH 得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)及销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量及销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C及点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB 的度数;(3)正确画图形,当点C及点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,同理得:,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C及点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C及点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不及点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM及直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x 轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,。
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前河南省2018年初中学业水平考试数 学(考试时间100分钟,满分120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.25-的相反数是( )A .25-B .25C .52-D .522.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元.数据“214.7亿”用科学记数法表示为( ) A .22.14710⨯ B .30.214710⨯ C .102.14710⨯D .110.214710⨯ 3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( ) A .厉 B .害 C .了 D .我(第3题) 4.下列运算正确的是()A .235()x x -=-B .235x x x +=C .347x x x =gD .3321x x -=5.河南省游资源丰富,2013—2017年旅游收入不断增长,同比增速分别为15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )A .中位数是12.7%B .众数是15.3%C .平均数是15.98%D .方差是06.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .54573y x y x =+⎧⎨=+⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=-⎩D .54573y x y x =-⎧⎨=-⎩7.下列一元二次方程中,有两个不相等实数根的是( )A .2690x x ++=B .2x x =C .232x x +=D .2(1)10x -+=8.现有4张卡片,其中3张卡片正面上的图案是“♢”,1张卡片正面上的图案是“♣”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取2张卡片,则这两张卡片正面图案相同的概率是( )A .916B .34C .38 D .129.如图,已知AOBC Y 的顶点0,0,(),2()1O A -,点B 在x 轴正半轴上.按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边,OA OB 于点,D E ;②分别以点,D E 为圆心,大于12DE 的长为半径作弧,两弧在AOB ∠内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( ) A .1,2) B . C .(3- D .2,2)-10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A D B →→以1cm/s 的速度匀速运动到点B .图2是点F 运动时,FBC △的面积2(cm )y 随时间(s)x 变化的关系图象,则a的值为( ) A B .2-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------国我的了害厉毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第3页(共20页) 数学试卷 第4页(共20页)C .5D .(第10题)二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:|5|-= .12.如图,直线,AB CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=,则BOC ∠的度数为 .(第12题)13.不等式组5243x x +⎧⎨-⎩≥>的最小整数解是 .14.如图,在ABC △中,90,2ACB AC BC ∠===.将ABC △绕AC 的中点D 逆时针旋转90得到A B C '''△,其中点B 的运动路径为BB ',则图中阴影部分的面积为 .(第14题)15.如图,90MAN ∠=,点C 在边AM 上,4AC =,点B 为边AN 上一动点,连接BC ,A BC '△与ABC △关于BC 所在直线对称.点,D E 分别为,AC BC 的中点,连接DE 并延长交A B '所在直线于点F ,连接A E '.当A EF '△为直角三角形时,AB 的长为 .(第15题)三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:21(1)11xx x -÷+-,其中1x . 17.(本小题满分9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如右表所示),并根据调查结果绘制(第17题)根据以上统计图,解答下列问题: (1)本次接受调查的市民共有 人.(2)扇形统计图中,扇形E 的圆心角度数是 . (3)请补全条形统计图.(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 18.(本小题满分9分)如图,反比例函数0ky x x=(>)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式.(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点,O P . ②矩形的面积等于k 的值.(第18题)19.(本小题满分9分)如图,AB 是O e 的直径,DO AB ⊥于点O ,连接DA 交O e 于点C ,过点C 作O e 的切线交DO 于点E ,连接BC 交DO 于点F .(1)求证:CE EF =.ABCD EOC D B A 调查结果扇形统计图E 25%40%12%15%调查结果条形统计图NM F EA′BCD B数学试卷 第5页(共20页) 数学试卷 第6页(共20页)(2)连接AF 并延长,交O e 于点G ,填空:①当D ∠的度数为 时,四边形ECFG 为菱形. ②当D ∠的度数为 时,四边形ECFG 为正方形.(第19题)20.(本小题满分9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自已的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上,A B 两点间的距离为90cm ,低杠上点C 到直线AB 的距离CE 的长为155cm ,高杠上点D 到直线AB 的距离DF 的长为234cm ,已知低杠的支架AC 与直线AB 的夹角CAE ∠为82.4,高杠的支架BD 与直线AB 的夹角DBF ∠为80.3,求高、低杠间的水平距离CH 的长.(结果精确到1cm .参考数据:sin82.40.991≈,cos82.40.132,tan82.47.500,sin80.30.983,cos80.30.168≈≈︒≈︒≈,tan80.3 5.850≈)(第20题)21.(本小题满分10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之[注:日销售利润=日销售量⨯(销售单价-成本单价)](1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值;(2)该产品的成本单价是 元.当销售单价x = 元时,日销售利润ω最大,最大值是 元.(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3 750元的销售目标,该产品的成本单价应不超过多少元? 22.(本小题满分10分) (1)问题发现如图1,在OAB △和OCD △中,,,40OA OB OC OD AOB COD ==∠=∠=,连接,AC BD 交于点M .填空:①AC BD的值为 ;②AM B ∠的度数为 . (2)类比探究如图2,在OAB △和OCD △中,90,30AOB COD OAB OCD ∠=∠=∠=∠=,连接AC 交BD 的延长线于点M .请判断ACBD的值及AM B ∠的度数,并说明理由. (3)拓展延伸在(2)的条件下,将OCD △绕点O 在平面内旋转,,AC BD 所在直线交于点M .若1,OD OB ==请直接写出当点C 与点M 重合时AC 的长.图1 图2 备用图(第22题)23.(本小题满分11分)如图,抛物线26y ax x c =++交x 轴于,A B 两点,交y 轴于点C .直线5y x =-经过点,B C .(1)求抛物线的解析式.(2)过点A 的直线交直线BC 于点M .①当AM BC ⊥时,过抛物线上一动点P (不与点,B C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点,,,A M P Q 为顶点的四边形是平行四边形,求点P 的横坐标. ②连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.MOD CBA M DCOBA OAB毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)(第23题) 备用图数学试卷 第9页(共20页) 数学试卷 第10页(共20页)河南省2018年初中学业水平考试数学答案解析一、选择题 1.【答案】B【解析】25-的相反数是25. 【考点】相反数. 2.【答案】C【解析】214.7亿1021470000000 2.14710==⨯. 【考点】科学记数法. 3.【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面. 故选:D .【考点】正方体的表面展开图. 4.【答案】C【解析】A 、236()x x -=-,此选项错误; B 、2x 、3x 不是同类项,不能合并,此选项错误; C 、347x x x =g ,此选项正确; D 、3332x x x -=,此选项错误; 故选:C .【考点】整式的运算. 5.【答案】B【解析】A 、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%, 故中位数是:15.3%,故此选项错误; B 、众数是15.3%,正确;C 、1(15.3%12.7%15.3%14.5%17.1%)14.98%5++++=,故选项C 错误;D 、∵5个数据不完全相同, ∴方差不可能为零,故此选项错误. 故选:B .【考点】中位数,众数,平均数,方差.6.【答案】A【解析】设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为:54573y x y x =+⎧⎨=+⎩.故选:A .【考点】列二元一次方程组解应用题. 7.【答案】B【解析】A 、2690x x ++=264936360∆=-⨯=-=,方程有两个相等实数根; B 、2x x =20x x -=2(1)41010∆=--⨯⨯=>,两个不相等实数根; C 、232x x +=2230x x -+=2(2)41380∆=--⨯⨯=-<,方程无实根; D 、2(1)10x -+=2(1)1x -=-,则方程无实根; 故选:B .【考点】一元二次方程根的判别式. 8.【答案】D数学试卷 第11页(共20页) 数学试卷 第12页(共20页)【解析】根据题意可列表如下表所示.通过表格可以看出,所有等可能结果共有12种,其中2张卡片正面图案相同的结果有6种,所以P (2张卡片正面图案相同)61122==.【考点】概率. 9.【答案】A【解析】∵AOBC 的顶点(0,0),(1,2)O A -,∴1,2AH HO ==,∴Rt AOH △中,AO =OF 平分AOB ∠,∴AOG EOG ∠=∠,又∵AG OE ∥,∴AGO EOG ∠=∠,∴AGO AOG∠=∠,∴AG AO =,∴1HG =,∴1,2)G ,故选:A .【考点】平行四边形的性质,角平分线的画法,平面直角坐标系中点的坐标. 10.【答案】C【解析】过点D 作DE BC ⊥于点E ,由图象可知,点F 由点A 到点D 用时为s a ,FBC △的面积为2cm a . ∴AD a =∴12DE AD a =g ∴2DE =当点F 从D 到B∴BD =Rt DBE △中,1BE ==∵ABCD 是菱形 ∴1EC a =-,DC a =Rt DEC △中,2222(1)a a =+-解得32a =.故选:C .【考点】函数图象的阅读理解. 二、填空题 11.【答案】2【解析】原式532=-=. 【考点】实数的运算. 12.【答案】140【解析】∵直线,AB CD 相交于点O ,EO AB ⊥于点O , ∴90EOB ∠=, ∵50EOD ∠=, ∴40BOD ∠=,则BOC ∠的度数为:18040140-=.故答案为:140.【考点】垂直的性质和补角的性质. 13.【答案】2-数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【解析】5243x x +⎧⎨-⎩>①≥②∵解不等式①得:3x >-, 解不等式②得:1x ≤, ∴不等式组的解集为31x -<≤, ∴不等式组的最小整数解是2-, 故答案为:2-.【考点】解一元一次不等式组及其最小整数解.14.【答案】53π42-【解析】如图,连接,BD B D '.由旋转可知,90BDB BCD B C D '''∠=,△≌△. ∵2AC BC ==,点D 为AC 的中点,∴1CD =.又∵90ACB ∠=,∴B D BD '===∴153(12)1π242BDB CDC B S S S '''=-⨯+⨯=-阴影部分扇形梯形.【考点】阴影部分的面积. 15.【答案】4或【解析】当A EF '△为直角三角形时,存在两种情况: ①当∠A'EF=90°时,如图1,∵A BC '△与ABC △关于BC 所在直线对称, ∴'4,'A C AC ACB A CB ==∠=∠, ∵点,D E 分别为,AC BC 的中点, ∴D 、E 是ABC △的中位线,∴DE AB ∥,∴90CDE MAN ∠=∠=, ∴CDE A EF '∠=∠, ∴AC A E '∥, ∴ACB A EC '∠=∠, ∴A CB A EC ''∠=∠, ∴4A C A E ''==,Rt A CB '△中,∵E 是斜边BC 的中点,∴28BC A B '==,由勾股定理得:222AB BC AC =-,∴AB == ②当90A FE '∠=︒时,如图2, ∵90ADF A DFB ∠=∠=∠=, ∴90ABF ∠=,∵A BC '△与ABC △关于BC 所在直线对称, ∴45ABC CBA '∠=∠=, ∴ABC △是等腰直角三角形, ∴4AB AC ==;综上所述,AB的长为或4;故答案为:或4.【考点】直角三角形的性质,轴对称的性质. 三、解答题16.【答案】解:原式11(1)(1)1x x xx x--+-=+1x=-.当1x=时,原式11)=-=【解析】根据分式的运算法则即可求出答案.【考点】分式的运算.17.【答案】解:(1)2000(2)28.8(3)补全条形统计图如图所示.(4)9040%36⨯=(万人)即估计赞同“选育无絮杨品种,并推广种植”的人数约为36万人.【解析】(1)将A选项人数除以总人数即可得;(2)用360乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【考点】条形统计图和扇形统计图的综合运用.18.【答案】解:(1)∵点(2,2)P在反比例函数(0)ky xx=>的图象上,∴22k=,即4k=.∴反比例函数的解析式为4yx=.(2)如图所示,矩形OAPB,矩形OCDP,矩形OEFP都是符合题意的图形,任意画出两个即可.【解析】(1)将P点坐标代入kyx=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【考点】应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质.19.【答案】(1)证明:连接OC.∵CE 是O的切线,∴OC CE⊥.∴90FCO ECF∠+∠=.∵DO AB⊥,∴90B BFO∠+∠=.∵CFE BFO∠=∠,∴90B CFE∠+∠=.∵,OC OB FCO B=∠=∠.∴ECF CFE∠=∠.∴CE EF=.(2)解:①30②22.5【解析】(1)连接OC,如图,利用切线的性质得1490∠+∠=,再利用等腰三角形和互余证明12∠=∠,然后根据等腰三角形的判定定理得到结论;(2)①当30D∠=时,60DAO∠=,证明CEF△和FEG△都为等边三角形,从而得到EF FG GE CE CF====,则可判断四边形ECFG为菱形;②当22.5D∠=时,67.5DAO∠=,利用三角形内角和计算出45COE∠=,利用对称得45EOG∠=,则90COG∠=,接着证明OECOEG△≌△得到90OEG OCE∠=∠=,从而证明四边形ECOG为矩形,然后进一步证明四边形数学试卷第15页(共20页)数学试卷第16页(共20页)数学试卷 第17页(共20页) 数学试卷 第18页(共20页)ECOG 为正方形.【考点】切线的性质. 四、解答题20.【答案】解:在Rt CAE △中,15515520.7(cm)tan 7.500tan82.4CE AE CAE ==≈≈∠.在Rt DBF △中,23423440(cm)tan 5.850tan80.3DF BF DBF ==≈=∠.∴20.79040150.7151(cm)EF AE AB BF =++≈++=≈. ∵四边形CEFH 为矩形,∴151cm CH EF =≈. 即高、低杠间的水平距离CH 的长约是151cm .【解析】利用锐角三角函数,在Rt ACE △和Rt DBF △中,分别求出AE 、BF 的长.计算出EF .通过矩形CEFH 得到CH 的长. 【考点】锐角三角函数解直角三角形.21.【答案】解:(1)设y 关于x 的函数解析式为y kx b =+.由题意,得85175,95125,k b k b +=⎧⎨+=⎩解得5,600.k b =-⎧⎨=⎩∴y 关于x 的函数解析式为5600y x =-+. (2)80 100 2 000(3)设该产品的成本单价为a 元.由题意,得(590600)(90)3750a -⨯+-≥, 解得65a ≤.答:该产品的成本单价应不超过65元.【解析】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和ω的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【考点】二次函数的应用,一元二次方程的应用,不等式的应用. 22.【答案】解:(1)①1②40 (2)90ACAMB BD=∠=. 理由如下:∵9030AOB COD OAB OCD ∠=∠=∠=∠=,, ∴tan603CO AODO BO===, COD AOD AOB AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,∴AOC BOD △∽△. ∴AC COCAO DBO BD DO=∠=∠. ∵90AOB ∠=,∴90DBO ABD BAO ∠+∠+∠=, ∴90CAO ABD BAO ∠+∠+∠=,∴90AMB ∠=.(3)AC的长为【解析】(1)①证明()COA DOB SAS △≌△,得AC BD =,比值为1;②由()COA DOB SAS △≌△,得CAO DBO ∠=∠,根据三角形的内角和定理得:180()18014040AMB DBO OAB ABD ∠=-∠+∠+∠=-=;(2)根据两边的比相等且夹角相等可得△AOC ∽△BOD ,则 = ,由全等三角形的性质得∠AMB 的度数;(3)正确画图形,当点C 与点M 重合时,有两种情况:如图3和4,同理可得:AOCBOD △∽△,则90,ACAMB BD∠=AC 的长.【考点】三角形全等和相似的性质和判定,几何变换问题.23.【答案】解:(1)∵直线5y x =-交x 轴于点B ,交y 轴于点C , ∴(5,0),(0,5)B -.∵抛物线26y ax x c=++过点,B C ,数学试卷 第19页(共20页) 数学试卷 第20页(共20页)∴25300,5,a c c ++=⎧⎨=-⎩∴1,5.a c =-⎧⎨=-⎩∴抛物线的解析式为265y x x =-+-.(2)①∵5,90OB OC BOC ==∠=,∴45ABC ∠=. ∵抛物线265y x x =-+-交x 轴于,A B 两点, ∴(1,0)A .∴4AB =. ∵AM BC ⊥,∴AM =. ∵PQ AM ∥,∴PQ ⊥.若以点,,,A M P Q为顶点的四边形是平行四边形,则PQ AM ==过点P 作PD x ⊥轴交直线BC 于点D ,则45PDQ ∠=.∴4PD ==.设2(,65)P m m m -+-,则(,5)D m m -. 分两种情况讨论:a .当点P 在直线BC 上方时,2265(5)54PD m m m m m =-+---=-+=. ∴11m =(舍去),24m =. b .当点P 在直线BC 下方时,225(65)54PD m m m m m =---+-=-=.∴345522m m +==. 综上所述,点P 的横坐标为4或52+52-. ②1317(,)66M -或237(,)66-. 【解析】(1)利用一次函数解析式确定(0,5)C -,(5,0)B ,然后利用待定系数法求抛物线解析式;(2)①先解方程2650x x -+-=得(1,0)A ,再判断OCB △为等腰直角三角形得到45OBC OCB ∠=∠=,则A M B △为等腰直角三角形,所以AM =平行四边形的性质得到PQ AM PQ BC ==⊥,作PD x ⊥轴交直线BC 于D ,如图1,利用45PDQ ∠=得到4PD ==,设2(,65)P m m m -+-,则(,5)D m m -,讨论:当P 点在直线BC 上方时,265(5)4PD m m m =-+---=;当P 点在直线BC 下方时,25(65)4PD m m m =---+-=,然后分别解方程即可得到P 点的横坐标;②作AN BC ⊥于N ,NH x ⊥轴于H ,作AC 的垂直平分线交BC 于1M ,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到12AM B ACB ∠=∠,再确定(3,2)N -,AC 的解析式为55y x =-,E 点坐标为15(,)22-,利用两直线垂直的问题可设直线1EM 的解析式为15y x b =-+,把15(,)22E -代入求出b 得到直线1EM 的解析式为11255y x =--,则解方程组511255y x y x =-⎧⎪⎨=-⎪⎩得1M 点的坐标;作直线BC 上作点1M 关于N 点的对称点2M ,如图2,利用对称性得到212AM C AM B ACB ∠=∠=∠,设2(,5)M x x -,根据中点坐标公式得到13632x =,然后求出x 即可得到2M 的坐标,从而得到满足条件的点M 的坐标.【考点】二次函数综合题.。
2018年河南省南阳市镇平县中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间2.(3分)如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O 为位似中心,相似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)3.(3分)如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是()A.120°B.80°C.60°D.30°4.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3155.(3分)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A .2B .2C .D .46.(3分)四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是( )A .B .C .D . 7.(3分)如图,△ABC 中,cosB=,sinC=,AC=5,则△ABC 的面积是( )A .B .12C .14D .218.(3分)抛物线y=﹣x 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表所示: 从上表可知,下列说法中,错误的是( ) A .抛物线于x 轴的一个交点坐标为(﹣2,0) B .抛物线与y 轴的交点坐标为(0,6) C .抛物线的对称轴是直线x=0 D .抛物线在对称轴左侧部分是上升的9.(3分)某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:这个家庭六月份用电度数为()A.105度B.108.5度 C.120度D.124度10.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m为()A.1 B.﹣1 C.2 D.﹣2二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算(﹣2)÷(﹣)的结果为.12.(3分)一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.13.(3分)如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为.14.(3分)已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为.15.(3分)如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判列方程根的情况;(2)若方程有一个根为3,求m的值.17.(9分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同.从中任意摸出1个球,取出白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不再放回,再摸出1个球,求两次摸到的球都是白球的概率.18.(9分)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生请问其中最具有代表性的一个方案是;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.19.(9分)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.20.(9分)如图,某校八年级(1)班学生利用寒假期间到郊区进行社会实践活动,活动之余,同学们准备攀登附近的一个小山坡,从B点出发,沿坡脚15°的坡面以5千米/时的速度行至D点,用了10分钟,然后沿坡比为1:的坡面以3千米/时的速度达到山顶A点,用了5分钟,求小山坡的高(即AC的长度)(精确到0.01千米)(sin15°≈0.2588,cos15°≈0.9659,≈1.732)21.(10分)如图,已知AB为⊙O的直径,BD和CD为⊙O的切线,切点分别为B和C.(1)求证:AC∥OD;(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值).22.(10分)(1)问题发现如图1,四边形ABCD为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE,PF分别交BC,DC于点M,N,当PM⊥BC,PN⊥CD 时,=(用含a,b的代数式表示).(2)拓展探究在(1)中,固定点P,使△PEF绕点P旋转,如图2,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决如图3,四边形ABCD为正方形,AB=BC=a,点P在对角线AC上,M,N分别在BC,CD上,PM⊥PN,当AP=nPC时,(n是正实数),直接写出四边形PMCN的面积是(用含n,a的代数式表示)23.(11分)如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),点P是AB上的动点,设点P的横坐标为n,过点P作PC⊥x轴,交抛物线于点C,与x轴交于M点.(1)求抛物线的表达式;(2)点P是线段AB上异于A,B的动点,是否存在这样的点P,使线段PC的长有最大值?若存在,求出这最大值,若不存在,请说明理由;(3)点P在直线AB上自由移动,当三个点C,P,M中恰有一点是其它两点所连线段的中点时,请直接写出m的值.2018年河南省南阳市镇平县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选:B.2.(3分)如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O 为位似中心,相似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.3.(3分)如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是()A.120°B.80°C.60°D.30°【分析】由⊙O是△ABC的外接圆,∠BOC=120°,根据圆周角定理可求得∠BAC 的度数.【解答】解:∵⊙O是△ABC的外接圆,∠BOC=120°,∴∠BAC=∠BOC=×120°=60°.故选:C.4.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.5.(3分)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A.2 B.2 C.D.4【分析】连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.【解答】解:如图所示,连接OC、OB∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OA=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2,故选:B.6.(3分)四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A.B.C.D.【分析】由,,,这4张卡片中不是最简二次根式的是,利用概率公式计算可得.【解答】解:在,,,这4张卡片中不是最简二次根式的是,所以卡片上写的不是最简二次根式的概率是,故选:A.7.(3分)如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A.B.12 C.14 D.21【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【解答】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,则△ABC的面积是:×AD×BC=×3×(3+4)=.故选:A.8.(3分)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x <时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选:C.9.(3分)某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:这个家庭六月份用电度数为()A.105度B.108.5度 C.120度D.124度【分析】先计算出这七天一共用电的度数,再算出平均每天用电的度数,从而计算出这个家庭六月份用电度数.【解答】解:这七天一共用电的度数=(143﹣115)÷7=4,月份用电度数=4×30=120(度),故选C.10.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m为()A.1 B.﹣1 C.2 D.﹣2【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算(﹣2)÷(﹣)的结果为5.【分析】用括号中的每一项分别与﹣相除,然后把所得结果相加即可.【解答】解:(﹣2)÷(﹣)=﹣1+6=5;故答案为:5.12.(3分)一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.13.(3分)如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为π.=S△BDO,所以S阴=S扇形OBD,由此即可计算.【分析】首先证明OC∥BD,得到S△BDC【解答】解:如图连接OC、OD、BD.∵点C、D是半圆O的三等分点,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD=OB,∴△COD、△OBD是等边三角形,∴∠COD=∠ODB=60°,OD=CD=2,∴OC∥BD,∴S=S△BDO,△BDC∴S阴=S扇形OBD==.14.(3分)已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为﹣1,3.【分析】将x=﹣1,y=0代入抛物线的解析式可得到c=﹣3a,然后将c=﹣3a代入方程,最后利用因式分解法求解即可.【解答】解法一:将x=﹣1,y=0代入y=ax2﹣2ax+c得:a+2a+c=0.解得:c=﹣3a.将c=﹣3a代入方程得:ax2﹣2ax﹣3a=0.∴a(x2﹣2x﹣3)=0.∴a(x+1)(x﹣3)=0.∴x1=﹣1,x2=3.解法二:已知抛物线的对称轴为x==1,又抛物线与x轴一个交点的坐标为(﹣1,0),则根据对称性可知另一个交点坐标为(3,0);故而ax2﹣2ax+c=0的两个根为﹣1,3故答案为:﹣1,3.15.(3分)如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为1或.【分析】分两种情况:①过A′作MN∥CD交AD于M,交BC于N,则直线MN 是矩形ABCD 的对称轴,得出AM=BN=AD=1,由勾股定理得到A′N=0,求得A′M=1,再由勾股定理解得A′E即可;②过A′作PQ∥AD交AB于P,交CD于Q;求出∠EBA′=30°,由三角函数求出AE=A′E=A′B×tan30°;即可得出结果.【解答】解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD 的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD 的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三、解答题(本大题共8小题,满分75分)16.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判列方程根的情况;(2)若方程有一个根为3,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=4>0,由此可得出无论m为何值,方程总有两个不相等的实数根;(2)将x=3代入原方程,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)∵△=(2m)2﹣4(m2﹣1)=4>0,∴无论m为何值,方程总有两个不相等的实数根.(2)将x=3时,原方程为9+6m+m2﹣1=0,即(x+2)(x+4)=0,解得:m1=﹣2,m2=﹣4.17.(9分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同.从中任意摸出1个球,取出白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不再放回,再摸出1个球,求两次摸到的球都是白球的概率.【分析】(1)设布袋里红球有x个,根据白球的概率列方程求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)设布袋里红球有x个.由题意可得:,解得x=1,经检验x=1是原方程的解.∴布袋里红球有1个.(2)记两个白球分别为白1,白2画树状图如下:由图可得,两次摸球共有12种等可能结果,其中,两次摸到的球都是白球的情况有2种,∴P(两次摸到的球都是白球)=.18.(9分)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生请问其中最具有代表性的一个方案是方案三;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.【分析】(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)因为不了解为6人,所占百分比为10%,所以调查人数为60人,比较了解为18人,则所占百分比为30%,那么了解一点的所占百分比是60%,人数为36人;(3)用总人数乘以“比较了解”所占百分比即可求解.【解答】解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)如上图;(3)500×30%=150(名),∴七年级约有150名学生比较了解“低碳”知识.19.(9分)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,【解答】解:解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).20.(9分)如图,某校八年级(1)班学生利用寒假期间到郊区进行社会实践活动,活动之余,同学们准备攀登附近的一个小山坡,从B点出发,沿坡脚15°的坡面以5千米/时的速度行至D点,用了10分钟,然后沿坡比为1:的坡面以3千米/时的速度达到山顶A点,用了5分钟,求小山坡的高(即AC的长度)(精确到0.01千米)(sin15°≈0.2588,cos15°≈0.9659,≈1.732)【分析】过点D作DF⊥BC于F,DE⊥AC于点E,分别利用坡角及三角函数求出AE,DF的值即可求得AC的长.【解答】解:过D作DF⊥BC于F,DE⊥AC于点E,∵沿坡比为1:的坡面以3千米/时的速度达到山顶A点,∴=,∴∠ADE=30°,∵BD=×10=(km),AD=×5=(km),∴AC=AE+EC=AE+DF=AD•sin30°+BD•sin15°=×+×0.2588≈0.34(千米).答:小山坡的高为0.34千米.21.(10分)如图,已知AB 为⊙O 的直径,BD 和CD 为⊙O 的切线,切点分别为B 和C .(1)求证:AC ∥OD ;(2)当BC=BD ,且BD=6cm 时,求图中阴影部分的面积(结果不取近似值).【分析】(1)连接OC ,证明∠OCD=90°.根据垂径定理得OD 垂直平分BC ,所以DB=DC .从而△OBD ≌△OCD ,得∠OCD=∠OBD=90°;(2)阴影面积=S 扇形OBC ﹣S △OBC .根据切线长定理知△BCD 为等边三角形,可求∠BOC 的度数,运用相关公式计算.【解答】(1)证明:连接OC .∵BD 和CD 为⊙O 的切线,OD ⊥BC ,O 为圆心,∴OB ⊥BD ,OC ⊥CD ,∵OB=OC ,DO=DO ,∴△OBD ≌△OCD .∴OC=∠BD ,OD 平分BC .∴BC ⊥OD又∵AB 为⊙O 的直径,∴AC ⊥BC∴AC∥OD;(2)∵DB,DC为切线,B,C为切点,∴DB=DC.又∵DB=BC=6,∴△BCD为等边三角形.∴∠BOC=360°﹣90°﹣90°﹣60°=120°,∠OBM=90°﹣60°=30°,BM=3.∴OM=,OB=2 .∴S阴影部分=S扇形OBC﹣S△OBC=﹣×6×=4π﹣3 (cm2).22.(10分)(1)问题发现如图1,四边形ABCD为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE,PF分别交BC,DC于点M,N,当PM⊥BC,PN⊥CD时,=(用含a,b的代数式表示).(2)拓展探究在(1)中,固定点P,使△PEF绕点P旋转,如图2,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决如图3,四边形ABCD为正方形,AB=BC=a,点P在对角线AC上,M,N分别在BC,CD上,PM⊥PN,当AP=nPC时,(n是正实数),直接写出四边形PMCN的面积是,(用含n,a的代数式表示)【分析】(1)先判断出△PMC∽△ABC,得出=,再判断出四边形CNPM是矩形,即可得出结论;(2)先过P作PG⊥BC于G,作PH⊥CD于H,判定△PGM∽△PHN,再根据相似三角形的性质以及平行线分线段成比例定理进行推导计算即可;(3)先判定△PMC∽△ABC,再根据相似三角形的对应边成比例进行求解,再计算其面积;【解答】解:(1)∵四边形ABCD是矩形,∴AB⊥BC,∵PM⊥BC,∴△PMC∽△ABC∴=∵四边形ABCD是矩形,∴∠BCD=90°,∵PM⊥BC,PN⊥CD,∴∠PMC=∠PNC=90°=∠BCD,∴四边形CNPM是矩形,∴CM=PN,∴,故答案为;(2)如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°∵Rt△PEF中,∠FPE=90°∴∠GPM=∠HPN∴△PGM∽△PHN∴=由PG∥AB,PH∥AD可得,∵AB=a,BC=b∴,即=∴=,故答案为;(3)∵PM⊥BC,AB⊥BC∴△PMC∽△ABC∴=当AP=nPC时(n是正实数),=∴PM=a∴四边形PMCN的面积=(a)2=,故答案为:.23.(11分)如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),点P是AB上的动点,设点P的横坐标为n,过点P作PC⊥x轴,交抛物线于点C,与x轴交于M点.(1)求抛物线的表达式;(2)点P是线段AB上异于A,B的动点,是否存在这样的点P,使线段PC的长有最大值?若存在,求出这最大值,若不存在,请说明理由;(3)点P在直线AB上自由移动,当三个点C,P,M中恰有一点是其它两点所连线段的中点时,请直接写出m的值.【分析】(1)把B(4,m)代入y=x+2中求出m得到B(4,6),然后把A点和B点坐标代入y=ax2+bx+6得到关于a、b的方程组,再解方程组即可得到抛物线解析式;(2)设P的坐标为(n,n+2)(<n<4),则点C的坐标为(n,2n2﹣8n+6),用n表示PC得到PC=(n+2)﹣(2n2﹣8n+6),然后根据二次函数的性质解决问题;(3)设P的坐标为(n,n+2),则点C的坐标为(n,2n2﹣8n+6),讨论:若M 点为PC的中点,则PM=CM,即n+2=﹣(2n2﹣8n+6);若P点为CM的中点,则PM=PC,即2n2﹣8n+6=2(x+2);若C点为PM的中点,则PC=CM,即n+2=2(2n2﹣8n+6),然后分别解方程可确定满足条件的n的值.【解答】解:(1)∵B(4,m)在直线y=x+2上,∴m=6,则B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx+6上,∴解得,∴所求抛物线的表达式为y=2x2﹣8x+6;(2)设P的坐标为(n,n+2)(<n<4),则点C的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4=﹣2(n﹣)2+,∵a=﹣2<0,∴当n=时,线段PC取得最大值;(3)设P的坐标为(n,n+2),则点C的坐标为(n,2n2﹣8n+6),若M点为PC的中点,则PM=CM,即n+2=﹣(2n2﹣8n+6),整理得2n2﹣7n+8=0,此方程没有实数解;若P点为CM的中点,则PM=PC,即2n2﹣8n+6=2(x+2),整理得n2﹣5n+5=0,解得n1=,n2=;若C点为PM的中点,则PC=CM,即n+2=2(2n2﹣8n+6),整理得4n2﹣17n+10=0,解得n1=,n2=;综上所述,n的值为或.。