2018年春季新版苏科版八年级数学下学期9.2、中心对称与中心对称图形素材7
- 格式:doc
- 大小:158.00 KB
- 文档页数:3
中心对称在生活中的应用
数学是自然科学的基础,作为数学图形的一种特殊的位置关系的中心对称,当然不会脱离自然而孤立存在.您瞧,六角形亮晶晶的雪花,不正是自然对中心对称的美的概括吗?
说到美,中心对称的美是公认的,因而从古到今以中心对称设计的图形多不胜举。
请看这一组:
中国古代太极图凤凰卫视台徽
《仙剑Ⅱ》鱼形
它们是否给你一种异曲同工的感觉,这就是中心对称!
1、广告商标
中心对称应用于广告商标的设计制作,往往能以简单的色彩、线条,勾画出生动、富于创意和内涵的作品。
因而只要你细心观察,就不难发现,原来中心对称就在我们身边!瞧,下边的你认识多少?
2、工农业生产
旋转的物体必须具有稳定性,而中心对称的设计恰恰满足了旋转物体的这一需求。
因而在工农业生产制作转动工具时,都不可避免地考虑应用中心对称的设计,小的如日常生活中单车、闹钟内的齿轮,电风扇的扇叶;大的如推动飞机、轮船的轮桨,风力发电用的风车等等。
另外,在日常使用的一些生活工艺品(如:地毯、挂毯),也不难发现中心对称的影子!。
【上好课】2021-2022学年八年级数学下册同步备课系列(苏科版)9.2 中心对称与中心对称图形一、单选题1.学校举办了“送福迎新春,剪纸庆佳节”比赛.请问以下参赛作品中,是中心对称图形的是()A.B.C.D.【答案】D【解析】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项符合题意;故选:D.2.等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.3.下列说法正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须能完全重合C.旋转后能重合的两个图形成中心对称D.成中心对称的两个图形不一定全等【答案】B【解析】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选B.4.如图,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是( )A.点EB.点FC.点G【答案】D【解析】解:由于四边形ABCD 与四边形EFGH 都是菱形,且关于直线BD 上某个点成中心对称,根据中心对称的定义可知,点B 的对称点是H .故选D .5.3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是 ( )A .第一张B .第二张C .第三张D .第四张【答案】A【解析】解:根据旋转的性质,旋转前后图形的大小和形状没有改变,其必须是中心对称图形.分析可得只有第一张是中心对称图形;而第(2)(3)(4)张均不符合.故选A .6.如图,ABC V 与A B C ¢¢¢V 关于O 成中心对称,下列结论中不一定成立的是( )A .ABC A CB ¢¢¢Ð=ÐB .OA OA ¢=C .BC B C ¢¢=D .OC OC ¢=【答案】A【解析】解:∵对应点的连线被对称中心平分,∴OA OA ¢=,OC OC ¢=,即B 、D 正确,∵成中心对称图形的两个图形是全等形,∴对应线段相等,即BC B C ¢¢=,∴C 正确,故选A .7.如图,已知长方形的长为10,宽为4,则图中阴影部分的面积为( )A .20B .15C .10D .25【答案】A 【解析】解:根据题意观察图形可知,长方形的面积=10×4=40cm2,再根据中心对称的性质得:图中阴影部分的面积即是长方形面积的一半,×40=20cm2.则图中阴影部分的面积=12故选:A.8.如图所示,在33´的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有()A.3种B.4种C.5种D.6种【答案】C【解析】如图所示:5种不同的颜色即为使整个图案构成一个轴对称图形的办法.故选:C.二、填空题9.ABO V 与11A B O V 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点(4,2)A ,则点1A 的坐标是________.【答案】(-4,-2)【解析】∵△ABO 与△A1B1O 关于点O 成中心对称,点A (4,2),∴点A1的坐标是:(-4,-2).故答案为:(-4,-2).10.如图是一个中心对称图形,点A 为对称中心,若3AC =,5AB =,4BC =,则CC ¢的长为______.【答案】6【解析】∵图形是一个中心对称图形,A 为对称中心,∴3AC AC ¢==,∴6CC AC AC ¢¢=+=,故答案为:6.11.平面直角坐标系中,点()3,2P -关于点()1,0Q 成中心对称的点的坐标是_______.【答案】(-1,2)【解析】解:如图,设Q (1,0),连结PQ 并延长到点P ′,使P ′Q =PQ ,设P ′(x ,y ),则x <0,y >0.过P 作PM ⊥x 轴于点M ,过P ′作PN ⊥x 轴于点N .在△QP ′N 与△QPM 中,QNP QMP NQP MQP QP QP Ð=ÐìïÐ==¢Ð¢í¢ïî,∴△QP ′N ≌△QPM (AAS ),∴QN =QM ,P ′N =PM ,∴1-x =3-1,y =2,∴x =-1,y =2,∴P ′(-1,2).故答案为(-1,2).三、解答题12.在直角坐标平面内,点A1、B1、C1的坐标如图所示.(1)请写出点A1、B1、C1的坐标:点A1的坐标是 ;点B1的坐标是 ;点C1的坐标是 .(2)将点A1绕原点逆时针旋转90°得到点A,则点A的坐标是 .(3)若点B1与点B关于原点对称,则点B的坐标是 .(4)将C1沿x轴翻折得到点C,则点C的坐标是 .(5)分别联结AB、BC、AC,得到△ABC,则△ABC的面积是 .【答案】(1)(3,0);(﹣5,﹣3);(3,2);(2)(0,3);(3)(5,3);(4)(3,﹣2);(5)252.【解析】解:(1)在直角坐标平面内,点A1、B1、C1的坐标如图所示:点A1的坐标是(3,0);点B1的坐标是(﹣5,﹣3);点C1的坐标是(3,2),故答案为:(3,0);(﹣5,﹣3);(3,2);(2)将点A1绕原点逆时针旋转90°得到点A,则点A的坐标是(0,3),故答案为:(0,3);(3)若点B1与点B关于原点对称,则点B的坐标是(5,3),故答案为:(5,3);(4)将C1沿x轴翻折得到点C,则点C的坐标是(3,﹣2),故答案为:(3,﹣2);(5)分别连接AB、BC、AC,得到△ABC,则△ABC的面积是:2555122´´=,故答案为:252.13.图中的两个四边形关于某点对称,找出它们的对称中心.【答案】见解析【解析】解:如图,点O即为所求14.如图,已知AD是ABCD的中线,画出以点D为对称中心、与ABDD成中心对称的三角形.【答案】见解析【解析】解:延长AD,且使AD A D¢D的中线,所以B点关于中心D的对称点为C,连接=,因为AD是ABCD为所求作的三角形,如图所示.'A C,则'A CD15.如图,下列4×4网格图都是由16个相同的小正方形组成,每个网格图中有4个小正方形已涂上阴影,按下列要求涂上阴影(1)在(图1)中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形;(2)在(图2)中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【解析】(1)添加图形如下:(2)添加图形如下:16.已知△OAB在平面直角坐标系中的位置如图所示,请解答以下问题:(1)按要求作图:先将△OAB绕原点O逆时针旋转90°,得到△OA1B1,再作出△OA2B2,使它与△OA1B1关于原点成中心对称;(2)直接写出点A1的坐标;点B2的坐标.【答案】(1)见解析(2)(﹣1,3);(2,﹣2)【解析】(1)如图,△OA1B1,△OA2B2即为所求;(2)点A1的坐标(﹣1,3);点B2的坐标(2,﹣2).故答案为:(﹣1,3);(2,﹣2).17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点( , )对称.【答案】(1)见解析(2)见解析(3)−2,0【解析】(1)点A(1,3),B(4,4),C(2,1)分别向左平移4个单位后的对应点的坐标分别为A1(−3,3),B1 (0,4),C1(−2,1),依次连接这三个点得到平移后的△A1B1C1,如图所示.(2)△ABC的三个顶点A(1,3),B(4,4),C(2,1)绕原点O旋转180゜后可得对应点A2,B2,C2的坐标分别为(−1,−3),(−4,−4),(−2,−1),依次连接这三个点得到旋转后的△A2B2C2,如图所示;(3)如(2)中图所示,连接12C C 、12A A 、12B B ,可得12,C C 关于(−2,0)对称设直线12A A 的解析式为y =kx +b ,则有:333k b k b -+=ìí-+=-î解得:36k b =-ìí=-î 即直线12A A 的解析式为36y x =--当2x =-时,y =0,则(−2,0)是12,A A 的对称中心;同理可求得直线12B B 的解析式为24y x =+当2x =-时,y =0,则(−2,0)是12,B B 的对称中心;综上所述,△A 1B 1C 1与△A 2B 2C 2关于点(−2,0)对称.18.在一次数学探究活动中,小强只用一条直线就把矩形分割成面积相等的两部分.(1)在如图所示的三个矩形中,请你大胆尝试,画出符合上述要求的直线(注:①所画直线经过的特殊点必须标注清楚,②一个矩形只画一种).(2)根据你的分割法:只用一条直线就把矩形分割成面积相等的两部分,你认为这样的直线有条?(3)由上述实验操作过程,你发现所画的这条直线的特征是;(4)经验迁移:如图④,在正方形ABCD中,AB=6,点E在边AD上,且AE=2.若直线l经过点E,并将该正方形的面积平分,与正方形的BC边交于点F,求线段EF的长.【答案】(1)见解析;(2)无数;(3)经过对角线的交点(矩形的对称中心);(4)【解析】解:(1)①直线经过矩形对角线,如图,,②直线经过一组对边中点,如图,,③直线经过矩形对称中心,如图,,此处可借助△OAE≌△OCF,证面积被平分.(2)只要经过矩形的对称中心,便可以平分矩形面积,所以有无数条,故答案为无数,(3)分析图形得到平分矩形面积的直线都经过了矩形的对称中心(对角线的交点),故答案为经过对角线的交点(矩形的对称中心).(4)根据题意,连接AC,BD交于点O,过E,O的直线交BC于点F,过点E作EG⊥BC于点G.如图,,∵四边形ABCD是正方形,∴AB=BC=6.OA=OC,∠FCO=∠OAE=45°,∵∠FOC=∠AOE,∴△FOC≌△AOE(ASA),∴AE=CF=2,∴GF=6﹣2﹣2=2,在Rt△EFG中,EG=AB=6,GF=2,∴EF=。
苏科版数学八年级下册第9章《中心对称图形小结与思考》说课稿1一. 教材分析《中心对称图形小结与思考》是苏科版数学八年级下册第9章的内容。
本节内容是在学生已经掌握了中心对称图形的定义、性质和判定方法的基础上进行进一步的拓展和应用。
教材通过一系列的问题引导学生在实际情境中发现和探究中心对称图形的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了中心对称图形的定义和性质,具备了一定的观察和推理能力。
但是,对于中心对称图形在实际问题中的应用,学生可能还不够熟练,需要通过实例和练习来进一步巩固和提高。
三. 说教学目标1.知识与技能目标:使学生理解和掌握中心对称图形的性质和判定方法,能够运用中心对称图形解决实际问题。
2.过程与方法目标:通过观察、实验、推理等方法,培养学生的观察能力、推理能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣和好奇心,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:中心对称图形的性质和判定方法。
2.教学难点:中心对称图形在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、小组合作法等。
2.教学手段:利用多媒体课件、实物模型、练习题等辅助教学。
六. 说教学过程1.导入:通过展示一些实际生活中的中心对称图形,引导学生回顾中心对称图形的定义和性质。
2.新课导入:介绍中心对称图形的判定方法,并通过实例进行解释和演示。
3.探究活动:学生分组进行探究,通过实际操作和推理,发现和总结中心对称图形的性质。
4.应用拓展:教师提出一些实际问题,引导学生运用中心对称图形的方法进行解决。
5.总结提升:教师引导学生总结本节课的主要内容和收获,强调中心对称图形在实际问题中的应用。
七. 说板书设计板书设计要简洁明了,能够突出中心对称图形的性质和判定方法。
可以采用图示、列表、流程图等形式进行设计。
八. 说教学评价教学评价可以通过学生的课堂表现、练习完成情况和小组合作情况进行综合评价。
9.2 中心对称与中心对称图形一.选择题(共7小题)1.如图将①②③④中的一块涂成阴影能与图中原有阴影部分组成中心对称图形的是()A.④B.③C.②D.①2.下列说法正确的是()A.关于某个点成中心对称的两个三角形全等B.两个全等三角形一定关于某个点成中心对称C.中心对称图形也是轴对称图形D.轴对称图形也是中心对称图形3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是中心对称图形的是()A.中B.国C.富D.强4.如果图示中六边形ABCDEF是正六边形,那么这个图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形5.下面是“湖南新田”四个汉字的声母的大写,不是中心对称图形的是()A.H B.N C.X D.T6.用两条直线四等分正方形的面积,不同的画法有()A.一种B.两种C.三种D.无数种7.下列图形中,是中心对称图形的是()A.B.C.D.二.填空题(共5小题)8.如图,△ADE是由△ABC绕A点旋转180度后得到的.那么,△ABC与△ADE关于A 点对称,A点叫做.9.如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB 的延长线的H点处,且BH=4,则∠BAG=度,△ABG的面积是.10.把下列图形的序号填在相应的横线上:①线段;②角;③等边三角形;④等腰三角形(底边和腰不等);⑤平行四边形;⑥矩形;⑦菱形;⑧正方形.(1)轴对称图形:.(2)中心对称图形:.(3)既是轴对称图形,又是中心对称图形:.(4)是轴对称图形,而不是中心对称图形:.(5)不是轴对称图形,而是中心对称图形:.11.小明把如图所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过来,然后小明很快辨认为被倒过来的那张扑克牌是.12.填空:(1)把一个图形绕着某一个点旋转180°,如果它能够与另一个图形,那么就说这两个图形关于这个点对称或中心,这个点叫做中心,这两个图形中的对应点叫做关于中心的点.(2)中心对称的性质有:中心对称的两个图形是图形;中心对称的两个图形,对称点所连线段都对称中心,而且被对称中心所.三.解答题(共3小题)13.如图,在四边形ABCD中,AD∥BC,E是CD的中点.(1)画图:连接AE并延长,交BC的延长线于点F,连接BE;(2)填空:点A与点F关于点成中心对称,若AB=AD+BC,则△ABF是三角形,此时点A与点F关于直线成轴对称;(3)图中△的面积等于四边形ABCD的面积.14.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标为(写出所有可能的点的坐标);(2)顺次连接(1)中的所有点,得到的图形是图形(填“中心对称”、“旋转对称”或“轴对称”);(3)将(2)中得到的图形的各顶点的坐标都乘以1.5,请在平面直角坐标系中画出变化后的图形,并与原图形比较,形状和大小有怎样的变化?15.(1)能把平行四边形分成面积相等的两部分的直线有条,它们的共同特点是.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.9.2 中心对称与中心对称图形参考答案与试题解析一.选择题(共7小题)1.如图将①②③④中的一块涂成阴影能与图中原有阴影部分组成中心对称图形的是()A.④B.③C.②D.①【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合中心对称图形的概念进行求解.【解答】解:由图可得,应该将②涂成阴影,可与图中原有阴影部分组成中心对称图形.故选:C.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列说法正确的是()A.关于某个点成中心对称的两个三角形全等B.两个全等三角形一定关于某个点成中心对称C.中心对称图形也是轴对称图形D.轴对称图形也是中心对称图形【分析】直接利用中心对称图形以及轴对称图形的定义、关于点对称图形的性质分析得出答案.【解答】解:A、关于某个点成中心对称的两个三角形全等,正确;B、两个全等三角形不一定关于某个点成中心对称,故此选项不合题意;C、中心对称图形不一定是轴对称图形,故此选项不合题意;D、轴对称图形不一定是中心对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了中心对称图形以及轴对称图形的定义、关于点对称图形的性质,正确把握相关定义是解题关键.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是中心对称图形的是()A.中B.国C.富D.强【分析】利用中心对称图形的定义判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】此题考查了中心对称图形,熟练掌握中心对称图形的定义是解本题的关键.4.如果图示中六边形ABCDEF是正六边形,那么这个图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形【分析】直接利用轴对称图形以及中心对称图形的性质进而分析得出答案.【解答】解:如图所示:是轴对称图形但并不是中心对称图形.故选:B.【点评】此题主要考查了轴对称图形以及中心对称图形的性质,正确把握相关定义是解题关键.5.下面是“湖南新田”四个汉字的声母的大写,不是中心对称图形的是()A.H B.N C.X D.T【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、H是中心对称图形,故此选项不符合题意;B、N是中心对称图形,故此选项不符合题意;C、X是中心对称图形,故此选项不符合题意;D、T不是中心对称图形,故此选项符合题意;故选:D.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形概念.6.用两条直线四等分正方形的面积,不同的画法有()A.一种B.两种C.三种D.无数种【分析】根据正方形是中心对称图形解答即可.【解答】解:用两条直线四等分正方形的面积,不同的画法有无数种,故选:D.【点评】此题考查中心对称,关键是根据正方形是中心对称图形解答.7.下列图形中,是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点评】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二.填空题(共5小题)8.如图,△ADE是由△ABC绕A点旋转180度后得到的.那么,△ABC与△ADE关于A点中心对称,A点叫做对称中心.【分析】把一个图形绕一点旋转180度,能够与另一个图形重合,则这个点就叫做对称中心,这两个图形就是中心对称,依据定义即可解决.【解答】解:△ABC与△ADE关于A点中心对称,A点叫做对称中心.【点评】本题主要考查了中心对称的定义,是一个基础题.9.如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB 的延长线的H点处,且BH=4,则∠BAG=80度,△ABG的面积是14.【分析】根据中心对称的性质和折叠的性质计算即可,同时运用了三角形的面积公式.【解答】解:依题意有AD=AB=AG,AE=AH=AC.又∠B=50°,则∠BAG=180°﹣50°×2=80°;作AD⊥BC于D,根据三角形的面积公式得到BC=9.6.根据等腰三角形的三线合一,可以证明CG=BH=4,则BG=5.6.根据三角形的面积公式得△ABG的面积是14.【点评】此题能够根据中心对称的性质和折叠的性质发现相等的线段,解题的关键是熟练运用等腰三角形的三线合一的性质进行证明HB=CG.10.把下列图形的序号填在相应的横线上:①线段;②角;③等边三角形;④等腰三角形(底边和腰不等);⑤平行四边形;⑥矩形;⑦菱形;⑧正方形.(1)轴对称图形:①②③④⑥⑦⑧.(2)中心对称图形:①⑤⑥⑦⑧.(3)既是轴对称图形,又是中心对称图形:①⑥⑦⑧.(4)是轴对称图形,而不是中心对称图形:②③④.(5)不是轴对称图形,而是中心对称图形:⑤.【分析】把一个图形绕一点旋转180度,能够与原来的图形重合,则这个点就叫做对称点,这个图形就是中心对称图形;一个图形的一部分绕一条直线旋转180度,能够和另一个部分重合,这个图形就是轴对称图形,依据定义即可进行分类.【解答】解:(1)轴对称图形:①②③④⑤⑥⑦⑧;(2)中心对称图形:①⑤⑥⑦⑧;(3)既是轴对称图形,又是中心对称图形:①⑥⑦⑧;(4)是轴对称图形,而不是中心对称图形:②③④;(5)不是轴对称图形,而是中心对称图形:⑤.故答案为:①②③④⑤⑥⑦⑧;①⑤⑥⑦⑧;①⑥⑦⑧;②③④;⑤.【点评】本题主要考查了图形的对称,综合性很强,综合了我们在七、八、九年级所学的平面图形,关于对称的知识要全面掌握.11.小明把如图所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过来,然后小明很快辨认为被倒过来的那张扑克牌是方块5.【分析】根据每张扑克的特征,前三张如果发生颠倒都可辨认,如果前三张都未发生颠倒,那么就一定是第四张发生了颠倒.【解答】解;∵前三张扑克都可根据他们的特征看出是否发生了颠倒,只要方块5不能看出,而颠倒后,我们可看出前三张都未发生颠倒∴发生颠倒的扑克一定是:方块5.【点评】本题考查了图形的旋转,做题时根据图形的特征仔细分析.12.填空:(1)把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)中心对称的性质有:中心对称的两个图形是全等图形;中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.【分析】根据中心对称的定义及性质即可完成填空.【解答】解:(1)中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.故答案为:重合、对称、对称、对称;全等、经过、平分.【点评】本题考查中心对称的定义与性质的内容,属于基础题,掌握基本的概念与性质是解答此题的关键.三.解答题(共3小题)13.如图,在四边形ABCD中,AD∥BC,E是CD的中点.(1)画图:连接AE并延长,交BC的延长线于点F,连接BE;(2)填空:点A与点F关于点E成中心对称,若AB=AD+BC,则△ABF是等腰三角形,此时点A与点F关于直线BE成轴对称;(3)图中△ABF的面积等于四边形ABCD的面积.【分析】(1)根据要求直接作出图形即可;(2)利用中心对称的定义回答即可,然后证得AB=BF,利用等腰三角形的性质判定等腰三角形即可;(3)得到三角形ADE的面积等于三角形ECF的面积,从而得到答案;【解答】解:(1)如图:(2)∵AD∥BC,∴∠D=∠DCF,∵DE=CE,∠AED=∠FEC在△ADE与△FCE中,∴△ADE≌△FCE(ASA),∴AE=FE,AD=CF,∴点A与点F关于点E成中心对称,∵若AB=AD+BC,∴AB=BF,则△ABF是等腰三角形,此时点A与点F关于直线BE成轴对称;(3)图中△ABF的面积等于四边形ABCD的面积.故答案为:E,等腰,BE,ABF.【点评】本题考查了中心对称的知识,解题的关键是了解中心对称的定义,利用中心对称的定义判定两点关于某点成中心对称.14.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标为(0,0),(0,2),(1,3),(3,3),(4,2),(4,0)(写出所有可能的点的坐标);(2)顺次连接(1)中的所有点,得到的图形是轴对称图形(填“中心对称”、“旋转对称”或“轴对称”);(3)将(2)中得到的图形的各顶点的坐标都乘以1.5,请在平面直角坐标系中画出变化后的图形,并与原图形比较,形状和大小有怎样的变化?【分析】(1)马走日,就是说在平面直角坐标系中要走到与P相邻正方形的对角位置,(2)连线可以看出是轴对称图形;(3)画出图形解答即可.【解答】解:(1)下一步“马”可能到达的点的坐标:(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)连线可以看出得的图形为轴对称;(3)将(2)中得到的图形的各顶点的坐标都乘以1.5,如图所示,与原图形比较,形状不变,图形变大了.故答案为:(1)(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)轴对称.【点评】本题主要考查轴对称的性质和坐标确定位置等知识点,不是很难,做题要细心.15.(1)能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.【分析】(1)根据平行四边形的性质可知能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)延长BC交EF于点M,连接AM、BF交于点P,连接CE、DM交于点Q,P、Q 分别为四边形ABMF、四边形CDEM的对称中心,直线PQ即为所求.(3)根据题意先作出图形,分别找到两个图形的对称中心,连接即可.【解答】解:(1)无数.均经过两条对角线的交点.(2)延长BC交EF于点M,连接AM、BF交于点P,连接CE、DM交于点Q,过P、Q的直线将这个图形分成面积相等的两部分,因为PQ既将平行四边形ABMF的面积平分,又将平行四边形CDEM的面积平分,所以直线PQ即为所求.(3)如图所示:【点评】本题考查了中心对称图形的性质:经过对称中心的直线将中心对称图形分成面积相等的两部分.。
§9.1 图形的旋转【知识点总结】1、生活中的旋转例1:下列现象中:①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.属于旋转的有()A。
2个 B.3个C。
4个 D.5个2、旋转的概念将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
图形的旋转不改变图形的形状、大小,只改变图形上点的位置. 例2:如图所示,ΔABC绕顶点C顺时针方向旋转某一角度后,得到ΔA′B′C′.请回答下列问题:(1)旋转中心是哪一点?(2)旋转角是哪个角?(3)经过旋转,点A、B分别移动到什么位置?(4)找出图形中所有相等的角和线段。
例2图3、旋转的性质一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等.例3:四边形ABCD是正方形,E、F分别是DC和CB延长线上的点,且DE=BF,连接AE、AF、EF (1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,DE=6,求△AEF的面积.4、画旋转后的图形利用图形的旋转的性质,可以画出一个图形绕某点按照一定的方向旋转一定角度后的图形。
基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。
例4:如图,O为ΔABC外的一点,求作:ΔABC绕点O按顺时针方向旋转60°后所得的ΔA′B′C′。
题型一确定图形的旋转角度例1:如图所示,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A。
30°B。
45°C。
90°D。
135°题型二确定图形的旋转中心.O例2:如图,O为正方形ABCD的边CD的中点,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共个。
苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计一. 教材分析《中心对称与中心对称图形》是苏科版数学八年级下册第九章第二节的内容。
本节内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的,旨在让学生了解中心对称的概念和性质,以及中心对称图形的特点。
教材通过丰富的实例,引导学生探究中心对称图形的性质,从而培养学生的观察能力、操作能力和推理能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的相关知识,对对称性有一定的认识。
但由于中心对称与轴对称在概念和性质上有较大的区别,学生在理解和掌握上可能会有一定的难度。
因此,在教学过程中,教师需要关注学生的认知差异,针对不同学生的学习情况,采取合适的教学策略,引导学生逐步理解和掌握中心对称的概念和性质。
三. 教学目标1.了解中心对称的概念和性质,能识别中心对称图形。
2.能运用中心对称的性质解决一些简单的问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.中心对称的概念和性质。
2.中心对称图形的特点。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察和操作,从而理解和掌握中心对称的概念和性质。
2.小组合作学习:学生在小组内进行讨论和探究,分享学习心得,培养团队合作精神。
3.启发式教学:教师提问引导学生思考,激发学生的学习兴趣,提高学生的解决问题的能力。
六. 教学准备1.教学课件:制作中心对称与中心对称图形的课件,包括图片、动画和例题等。
2.教学素材:准备一些中心对称图形的图片,用于课堂展示和练习。
3.学生活动用品:如剪刀、彩纸等,用于学生的操作活动。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的对称现象,如建筑、艺术作品等,引导学生关注对称性。
提问:你们认为这些现象是什么对称?引出中心对称的概念。
2.呈现(15分钟)展示一些中心对称图形的图片,如圆、平行四边形等,引导学生观察和思考:这些图形有什么特点?教师引导学生总结出中心对称图形的定义和性质。
9.2 中心对称与中心对称图形
一、自主先学
“双鱼”剪纸作品是由两个形状、大小完全相同的图案组成的,这
两个图案的位置有怎样的特殊关系?怎样改变其中一个图案的位置,可以使
它与另一个图案重合?
二、合作助学
活动一:1.用透明纸覆盖在图1上,描出四边形ABCD .
2.用大头针钉在点O 处,把四边形ABCD 绕点O 旋转180°,你能发现什么?
D'C'
B'D C B A'
A
(图1)
定义:一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称.这个点叫做 .两个图形中的对应点叫做 。
活动二:1.如图2,点A 与点A′关于点O 对称,连接A A′,你能发现什么?
2.在图1中分别连接A A′、B B′、C C′、D D′,你发现了什么?
性质:(1)具备 的一切性质。
(2)成中心对称的两个图形中对应点的连线经过 ,且被对称中心 . 活动三: 阅读课本59页操作中的图9-6,9-7,9-8,并画图思考:
(1)如何画出点A 关于点O 的对称点A ’?
(2)画线段的中心对称图形与画点的中心对称图形有什么关系? A'A O C'B'D C B A'A (图2)
(3)画三角形的中心对称图形与画点的中心对称图形有什么关系?
活动四:观察下列图案说一说它们有什么共同特征?
在日常生活中,你还见到过具有这种特征的图案吗?试举例说明.
概念:把 图形绕某一点旋转 ,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做中心对称图形.这个点就是它的 . 思考:我们已经知道,轴对称与轴对称图形既有联系又有区别.类似地,中心对称与中心对称图形又有怎样的联系和区别呢?
三、拓展导学
1.如图,已知四边形ABCD 按要求画出图形
(1) 以点D 为对称中心,并且与四边形ABCD 成中心对称的图形;
(2) 以四边形ABCD 外一点O 为对称中心,并且与四边形ABCD 成中心对称的四边形。
2.如图,已知△ABC 和△A’B’C’成中心对称,画出它们的对称中心。
总结:找对称中心的方法 四、检测促学
1.如图,在△ABC 中,O 是AC 的中点,画出△ABC 关于点O 对称的△A’B’C’
2.线段是中心对称图形吗?如果是,说出它的对称中心。
3.在正方形的4个角上减去4个相同的小正方形,剩下部分是中心对称图形吗?如果是画出它的对称中心。
五、反思悟学
C'
B
O
B
C
通过这节课的学习,你有什么感受?。