带电粒子在有界磁场中的运动 教学设计(定)
- 格式:doc
- 大小:44.00 KB
- 文档页数:3
带电粒子在有界磁场中的运动公开课教案课题:带电粒子在有界磁场中的运动课型:专题复习课教学目标(一)知识与技能1、理解公式F=qvB的适用条件和左手定则,并能熟练地应用该公式和左手定则分析有关洛伦兹力的问题2、理解带电粒子在匀强磁场中做匀速圆周运动的条件,掌握匀速率圆周运动的半径公式与周期公式,并能熟练应用它们分析与解答有关问题(二)过程与方法通过引导学生由洛仑兹力对运动电荷的作用力的分析,得出带电粒子在磁场中的运动规律,以及通过让学生半径公式、周期公式做定性的分析等教学过程,培养学生的迁移能力,体会如何用已学知识来探讨研究新问题。
(三)情感、态度与价值观通过一题多变和课件演示,训练学生的思考能力和知识的迁移能力,树立学生独立准确解题的信心教学重点、难点、关键:重点:同一个情境中的不同问题设置难点:显示带电粒子的运动轨迹关键:确定带电粒子作匀速圆周运动的圆心位置、半径大小教学内容一、知识回顾(投影)1、洛仑兹力大小的计算:f = qvB此式成立的条件是v与B垂直若v与B平行,则 f =02、洛仑兹力方向的判定:f、 v、B三者方向间的关系满足左手定则,f既垂直于v又垂直于B3、带电粒子在匀强磁场中的运动规律:(不计粒子重力)(1).若带电粒子的速度方向v与磁场方向B平行,做匀速直线运动。
(2).若带电粒子的速度方向v 与磁场方向B垂直,做匀速圆周运动。
4、带电粒子在磁场中的匀速圆周运动洛仑兹力提供向心力Bqv = mv2/R= m(2π/T)2R两个关系式R=mv/qB T=2πm/qB二、带电粒子在磁场中的匀速圆周运动思考方法1、找圆心2、定半径3、确定运动时间三、问题情景:(一)投影 A、B为水平放置的足够长的平行板,板间距离为d=1.0×10-2m, A板中央有一电子源P, 在纸面内能向各个方向发射速度在0 ~3.2×107m/s范围内的电子, Q为P点正上方B板上的一点, 若在垂直纸面方向上加一匀强磁场, 磁感应强度B=9.1×10-3T, 已知电子的质量m=9.1×10-31kg, 电子电量e=1.6×10-19C, 不计电子的重力和电子间相互作用力, 且电子打到板上均被吸收,并转移到大地。
带电粒子在有界磁场中的运动公开课教案教学设计课件教学目标:1. 了解带电粒子在磁场中的基本概念。
2. 掌握带电粒子在有界磁场中的运动规律。
3. 能够运用相关知识解决实际问题。
教学重点:1. 带电粒子在磁场中的运动规律。
2. 带电粒子在有界磁场中的轨迹。
教学难点:1. 带电粒子在有界磁场中的运动方程。
2. 带电粒子在有界磁场中的轨迹计算。
教学准备:1. 教学课件。
2. 带电粒子在磁场中的实验视频。
3. 相关练习题。
教学过程:一、导入(5分钟)1. 引入磁场概念,让学生回顾磁场的性质和特点。
2. 提问:带电粒子在磁场中会怎样运动?引发学生思考。
二、带电粒子在磁场中的基本概念(10分钟)1. 讲解带电粒子在磁场中的受力情况。
2. 介绍洛伦兹力的公式:F = q(v ×B)。
3. 讲解带电粒子在磁场中的运动规律:垂直磁场中的圆周运动,平行磁场中的直线运动。
三、带电粒子在有界磁场中的运动规律(15分钟)1. 讲解带电粒子在有界磁场中的运动方程:qvB = mv^2/R。
2. 推导出带电粒子在有界磁场中的轨迹方程:R = mv/qB。
3. 分析不同条件下带电粒子的轨迹特点。
四、带电粒子在有界磁场中的轨迹(10分钟)1. 讲解带电粒子在有界磁场中的轨迹形状:圆周轨迹、螺旋轨迹、直线轨迹。
2. 分析轨迹形状与粒子速度、磁场强度、粒子电荷的关系。
3. 展示实验视频,让学生直观了解带电粒子在磁场中的轨迹。
五、应用拓展(10分钟)1. 讲解带电粒子在有界磁场中的应用实例:粒子加速器、磁共振成像、粒子束武器等。
2. 让学生思考:带电粒子在有界磁场中的运动规律在现实生活中的应用。
3. 布置练习题,巩固所学知识。
教学反思:本节课通过讲解和实验让学生了解了带电粒子在磁场中的运动规律和轨迹特点。
在教学过程中,注意引导学生思考,激发学生的兴趣。
通过练习题的布置,让学生巩固所学知识,为后续课程打下基础。
六、带电粒子在非均匀磁场中的运动(15分钟)1. 介绍非均匀磁场的概念,让学生了解磁场强度和方向的变化。
《带电粒子在磁场中的运动》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“带电粒子在磁场中的运动”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计以及教学反思这几个方面来展开我的说课。
一、教材分析“带电粒子在磁场中的运动”是高中物理选修 3-1 第三章第六节的内容。
这部分知识是磁场这一章的重点和难点,也是高考的热点之一。
它不仅在电磁学中有着重要的地位,还为后续学习带电粒子在复合场中的运动以及现代科技中的应用奠定了基础。
本节课的主要内容包括:带电粒子在匀强磁场中的运动规律,如匀速圆周运动的半径和周期公式;带电粒子在有界磁场中的运动轨迹分析。
教材在编排上,先通过实验引入,让学生观察带电粒子在磁场中的运动现象,然后从理论上进行分析推导,得出运动规律。
这种从感性认识到理性认识的过程,符合学生的认知规律,有助于学生对知识的理解和掌握。
二、学情分析学生已经学习了电场、磁场的基本概念和性质,掌握了牛顿运动定律、圆周运动的相关知识,具备了一定的分析和解决问题的能力。
但是,对于带电粒子在磁场中的运动这一较为抽象的内容,学生可能会感到理解困难。
在学习过程中,学生可能会遇到以下几个问题:一是对洛伦兹力的方向判断不够熟练;二是难以将牛顿运动定律和圆周运动的知识灵活应用到带电粒子在磁场中的运动分析中;三是对于有界磁场中带电粒子运动轨迹的分析,空间想象力不足。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解带电粒子在匀强磁场中做匀速圆周运动的条件和规律。
(2)掌握带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能熟练应用。
(3)学会分析带电粒子在有界磁场中的运动轨迹。
2、过程与方法目标(1)通过实验观察和理论推导,培养学生的观察能力、分析推理能力和逻辑思维能力。
(2)通过对带电粒子在有界磁场中运动轨迹的分析,提高学生的空间想象力和应用数学知识解决物理问题的能力。
带电粒子在有界磁场中的运动1.带电粒子在有界磁场中运动的三种常见情形(1)直线边界(进出磁场具有对称性,如图2所示)图2(2)平行边界(存在临界条件,如图3所示)图3(3)圆形边界(沿径向射入必沿径向射出,如图4所示)图42.分析带电粒子在匀强磁场中运动的关键(1)画出运动轨迹;(2)确定圆心和半径;(3)利用洛伦兹力提供向心力列方程.[深度思考] 1.当带电粒子射入磁场时速度v大小一定,但射入方向变化时,如何确定粒子的临界条件?2.当带电粒子射入磁场的方向确定,但射入时的速度大小或磁场的磁感应强度变化时,又如何确定粒子的临界条件?答案 1.当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的.在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件.2.当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.例题1.判断下列说法是否正确.(1)带电粒子在磁场中运动时一定会受到磁场力的作用.(×)(2)洛伦兹力的方向在特殊情况下可能与带电粒子的速度方向不垂直.(×)(3)洛伦兹力和安培力是性质完全不同的两种力.(×)(4)粒子在只受到洛伦兹力作用时运动的动能不变.(√)(5)带电粒子只要速度大小相同,所受洛伦兹力就相同.(×)2.(人教版选修3-1P98第1题改编)下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是()答案B3.(人教版选修3-1P102第3题改编)如图5所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法中正确的是()图5A .组成A 束和B 束的离子都带负电B .组成A 束和B 束的离子质量一定不同C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外答案 C4.质量和电量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图6中虚线所示,下列表述正确的是( )图6A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间答案 A解析 由左手定则可知,N 粒子带正电,M 粒子带负电,A 正确.又r N <r M ,由r =m v qB可得v N <v M ,B 错误.洛伦兹力与速度时刻垂直,不做功,C 错误.粒子在磁场中的运行时间t =θ2πT =T 2,又T =2πm qB,所以t M =t N ,D 错误.。
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图T动态分析T找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。
)二、常见题型(B为磁场的磁感应强度,V。
为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率V。
垂直匀强磁场射入,入射方向与CD边界夹角为9。
已知电子的质量为m电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v o至少多大?分析:如图2,通过作图可以看到:随着V。
的增大,圆半径增大,临界状态就是圆与边界EF 相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点0正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m电量为e、速度为v o=BeL/ m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP,打在O点左侧最远距离OO ___ 。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m带电荷量为一q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
《带电粒子在有边界磁场中运动》教学设计一、教学目标1、知识与技能目标(1)学生能够理解带电粒子在有边界磁场中的运动规律,包括运动轨迹的形状、半径和周期等。
(2)学生能够熟练运用左手定则判断带电粒子在磁场中的受力方向,从而确定运动轨迹。
(3)学生能够解决与带电粒子在有边界磁场中运动相关的简单问题,如求粒子的速度、磁场强度等。
2、过程与方法目标(1)通过实验观察和理论分析,培养学生的观察能力、逻辑思维能力和分析问题的能力。
(2)通过实例计算和讨论,提高学生运用数学知识解决物理问题的能力。
3、情感态度与价值观目标(1)激发学生对物理学科的兴趣,培养学生探索自然科学的精神。
(2)让学生体会物理知识在实际生活中的应用,增强学生的学习动力和成就感。
二、教学重难点1、教学重点(1)带电粒子在匀强磁场中的运动规律,包括半径公式和周期公式的推导和应用。
(2)带电粒子在有边界磁场中的运动轨迹的分析和求解。
2、教学难点(1)带电粒子在不同边界磁场中的运动轨迹的确定,特别是在圆形边界和矩形边界磁场中的情况。
(2)综合运用数学知识和物理规律解决带电粒子在有边界磁场中运动的复杂问题。
三、教学方法1、讲授法讲解带电粒子在磁场中的运动规律、左手定则等基本概念和原理。
2、实验法通过演示实验,让学生直观地观察带电粒子在磁场中的运动轨迹,增强学生的感性认识。
3、讨论法组织学生对一些复杂的问题进行讨论,培养学生的合作精神和思维能力。
4、练习法通过课堂练习和课后作业,让学生巩固所学知识,提高解题能力。
四、教学过程1、导入新课(1)通过播放一段关于磁悬浮列车的视频,引导学生思考磁悬浮列车的工作原理,从而引出带电粒子在磁场中的运动这一课题。
(2)提问学生:“你们在生活中还见过哪些与磁场和带电粒子运动有关的现象?”引发学生的兴趣和思考。
2、新课讲授(1)复习电场和磁场的基本概念,以及洛伦兹力的计算公式和左手定则。
(2)推导带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式。
专题三第二讲 带电粒子在电场、磁场中的运动1.(2020·浙江7月选考)如图所示,一质量为m 、电荷量为q (q >0)的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中。
已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30°解析:C 粒子从P 点垂直电场方向出发到达MN 连线上某点时,由几何知识得沿水平方向和竖直方向的位移大小相等,即v 0t =12at 2,其中a =Eq m ,联立解得t =2m v 0qE ,A 项错误;粒子在MN 连线上某点时,粒子沿电场方向的速度v =at =2v 0,所以合速度大小v =(2v 0)2+v 02=5v 0,B 项错误;该点到P 点的距离s =2x =2v 0t =22m v 02qE ,C 项正确;由平行四边形定则可知,在该点速度方向与竖直方向夹角的正切值tan θ=v 02v 0=12,则θ≠30°,D 项错误。
2.(2021·河北高考)如图,距离为d 的两平行金属板P 、Q 之间有一匀强磁场,磁感应强度大小为B 1,一束速度大小为v 的等离子体垂直于磁场喷入板间,相距为L 的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为B 2,导轨平面与水平面夹角为θ,两导轨分别与P 、Q 相连,质量为m 、电阻为R 的金属棒ab 垂直导轨放置,恰好静止,重力加速度为g ,不计导轨电阻、板间电阻和等离子体中的粒子重力,下列说法正确的是( )A .导轨处磁场的方向垂直导轨平面向上,v =mgR sin θB 1B 2Ld B .导轨处磁场的方向垂直导轨平面向下,v =mgR sin θB 1B 2LdC .导轨处磁场的方向垂直导轨平面向上,v =mgR tan θB 1B 2LdD .导轨处磁场的方向垂直导轨平面向下,v =mgR tan θB 1B 2Ld解析:B 等离子体垂直于磁场喷入板间时,根据左手定则可得等离子体中的正离子向金属板Q 偏转,负离子向金属板P 偏转,所以金属板Q 带正电荷,金属板P 带负电荷,则电流方向由金属棒a 端流向b 端。
《带电粒子在有界磁场中的运动》教学设计
一、教学内容分析
1、在教材中的地位和作用
带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。
在历年的高考试题中几乎年年都有这方面的考题。
带电粒子在有界磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。
这节课就针对带电粒子有界磁场的运动规律进行解析。
2、学情分析:学生对带电粒子在匀强磁场中做匀速圆周运动的周期、半径公式比较熟悉,对数学中圆周知识和三角函数也有了一定的了解,但是并没有在心中建构起分析带电粒子在磁场中的运动的方法和思路,这节课通过带电粒子在无界磁场运动的周期、半径的分析,过渡到有界磁场运动的周期、半径分析,让学生掌握分析匀速圆周运动的一般方法。
3、教学目标
根据以上分析,结合大纲和新课程要求,考虑到学生的认知水平和思维特点,制定本节课的教学目标如下:
(1)知识与技能:掌握对带电粒子在匀强磁场中做圆周运动的规律,学会运用数学知识解决相关物理问题。
(2)过程与方法:在分析中对比,在讨论中找规律。
(3)情感态度与价值观:通过对带电粒子在有界匀强磁场中做匀速圆周运动分析,寻找解决问题的方法,培养学生对具体问题具体分析的能力和解决问题的能力。
4、教学重点、难点
掌握带电粒子在有界磁场中运动的规律,并能灵活运用解决实际问题。
二、教学设计思路
1、教法设计:课堂教学应该尽可能让学生多动脑想、动手做、动眼看、动嘴说,培养学生主动参与课堂问题解决的习惯,在教学过程中充分体现教师的主导作用和学生的主体地位,通过设疑质疑,引导学生观察思考、分析并得出结论,使学生在积极参与的基础上强化科学思维,提高学生的逻辑思维的能力。
2、学法指导:学生先预习学案,在教师的指导和帮助下,学生进行有目的、
有侧重地阅读教材,自主获取知识,变被动学习为主动学习,引导学生对规律观察、分析、归纳,使所学知识系统化、完善化。
三、课堂教学过程
四、板书设计
一、带电粒子在无界匀强磁场中的运动规律
1、带电粒子在磁场中( v ⊥B )只受洛仑兹力,粒子做匀速圆周运动。
2、轨道半径:R=mv /qB
3、周期:T=2πm /qB
二、探究带电粒子在有界匀强磁场中运动的半径和运动时间
1、圆心的确定: 利用v ⊥f 洛
利用弦的中垂线
2、定半径: 几何法求半径
向心力公式求半径
3、确定运动时间:注意:θ用弧度表示)。