北京四中2011中考数学全真模拟试题及答案(5份)
- 格式:doc
- 大小:659.00 KB
- 文档页数:12
2011年北京四中自主招生考试数学试卷一、选择题(共6小题,每小题5分,满分30分)1.(5分)已知<cosA<sin80°,则锐角A的取值范围是()A.60°<A<80°B.30°<A<80°C.10°<A<60°D.10°<A<30°2.(5分)实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数3.(5分)x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1B.或﹣1C.D.﹣或1 4.(5分)代数式的最小值为()A.12B.13C.14D.115.(5分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1至6六个数.连续掷两次,掷得面向上的点数之和是3的倍数的概率为()A.B.C.D.6.(5分)1×2+2×3+3×4+…+99×100=()A.223300B.333300C.443300D.433300二、填空题(共6小题,每小题5分,满分30分)7.(5分)多项式6x3﹣11x2+x+4可分解为.8.(5分)已知点P(x,y)位于第二象限,并且y≤2x+6,x、y为整数,则点P 的个数是.9.(5分)已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是.10.(5分)方程(2007x)2﹣2006×2008x﹣1=0的较大根为a,方程x2+2006x ﹣2007=0的较小根为b,则a﹣b=.11.(5分)已知x=,则x3+12x的算术平方根是.12.(5分)如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B 为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.三、解答题(共5小题,满分60分)13.(12分)现将一个表面涂满红色的正方体的每条棱十等分,此正方体分割成若干个小正方体.在这些小正方体中,求:(1)两面涂有红色的小正方体的个数;(2)任取一个小正方体,各面均无色的小正方体的概率;(3)若将原正方体每条棱n等分,只有一面涂有红色的小正方体的个数.14.(12分)已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求:代数式x4+x3y+x2y2+xy3+y4的值.15.(12分)在直角△ABC中,∠C=90°,直角边BC与直角坐标系中的x轴重合,其内切圆的圆心坐标为P(0,1),若抛物线y=kx2+2kx+1的顶点为A.求:(1)求抛物线的对称轴、顶点坐标和开口方向;(2)用k表示B点的坐标;(3)当k取何值时,∠ABC=60°?16.(12分)如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上的任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.(1)求证:RQ是⊙O的切线;(2)求证:OB2=PB•PQ+OP2;(3)当RA≤OA时,试确定∠B的取值范围.17.(12分)平面上有n个点(n≥3,n为自然数),其中任何三点不在同一直线上.证明:一定存在三点,以这三点作为顶点的三角形中至少有一个内角不大于.2011年北京四中自主招生考试数学试卷参考答案一、选择题(共6小题,每小题5分,满分30分)1.D;2.C;3.A;4.B;5.C;6.B;二、填空题(共6小题,每小题5分,满分30分)7.(x﹣1)(3x﹣4)(2x+1);8.6;9.15°或75°;10.2008;11.2;12.9π;三、解答题(共5小题,满分60分)13.;14.;15.;16.;17.;。
一元一次不等式(组)的应用一、选择题1.(河北省中考模拟试卷)某商场的老板销售一种商品,他要以不低于进价20% 的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多可降价( ) A .80元 B .100元 C .120元D .160元答案:C2.(2011广东南塘二模)已知ab >15,且a =-5,则b 的取值范围是 ( ) A 、b >3 B 、b <3 C 、b >-3 D 、b <-3 答案:D二、填空题1、(2011山西阳泉盂县月考)如果点P (x,y )关于原点的对称点为(-2,3)则x+y= . 【答案】x+y=2+(—3)=-1三、解答题1. (2011年浙江省杭州市高桥初中中考数学模拟试卷)杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元? 答案:(1)设动漫公司第一次购进x 套玩具,由题意得:6800032000102x x-= 解这个方程,得200x =经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以动漫公司两次共购进这种玩具600套 (2)设每套玩具的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套玩具的售价至少是200元.2、(2011年北京四中模拟26)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元.问:(1)该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值?)(2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年平均盈利额(精确0.1万元)答案:(1)设该船厂运输X年后开始盈利,72X-(120+40X)﹥0,X﹥154,因而该船运输4年后开始盈利(2)()()157********25.315⨯---≈(万元)[来源:Z*xx*]3、(2011年浙江省杭州市模拟)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个………1分依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx…………………………………………3分解得:7≤ x≤ 9 ………………………………………………………………4分∵x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种.. ……………5分(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+60 ………………………………………………6分∵-1< 0,∴y随x 增大而减小,当x=9 时,y的值最小,此时y= 51( 万元) …………………………………7分∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.……………8分解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分 方案二: 建造A 型沼气池8个, 建造B 型沼气池12个, 总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分 方案三: 建造A 型沼气池9个, 建造B 型沼气池11个, 总费用为:9×2 + 11×3 = 51( 万元 ) ∴方案三最省钱. …………………………………………… 8分4. (2011武汉调考模拟)已知△ABC 在平面直角坐标系中的位置如图所示.点A 和点C 坐标;②画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B ′C ,并写出点A ③求点A 旋转到点A ′所经过的路线长.(结果保留π).【答案】.解:(1)A(0,4),C(3,1) (2)图略,A ′ (6,4) (3)lAA ′=223π5(北京四中模拟)解不等式组:⎩⎨⎧-≥->+.410)35(3,425x x x x 并把解集在数轴上表示出来.解: 解不等式x x 425>+,得2->x .解不等式x x 410)35(3-≥-,得1≤x 把不等式的解集在数轴上表示出来.12≤<-∴x6 (2011湖北省天门市一模)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
2011年北京市四中中考数学全真模拟试卷(一)2011年北京市四中中考数学全真模拟试卷(一)一、填空题(共12小题,每空2分,满分38分)1.(8分)①的相反数是_________;②﹣2的倒数是_________;③16的算术平方根是_________;④﹣8的立方根是_________.2.(2分)不等式组的解集是_________.3.(2分)(2013•宝应县一模)函数的自变量x的取值范围是_________.4.(2分)直线y=3x﹣2一定过(0,﹣2)和(_________,0)两点.5.(6分)样本5,4,3,2,1的方差是_________;标准差是_________;中位数是_________.6.(2分)等腰三角形的一个角为30°,则底角为_________度.7.(2分)(2009•冷水江市二模)梯形的高为4cm,中位线长为5cm,则梯形的面积为_________cm2.8.(4分)如图PA切⊙O于点A,∠PAB=30°,则∠AOB=_________度,∠ACB=_________度.9.(4分)如图PA切⊙O于A割线PBC过圆心,交⊙O于B、C,若PA=6;PB=3,则PC=_________;⊙O的半径为_________.10.(2分)(2010•河北区模拟)如图△ABC中,∠C=90°,点D在BC上,BD=6,AD=BC,cos∠ADC=,则DC的长为_________.11.(2分)(2009•无锡模拟)图中的同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则阴影部分即圆环的面积为_________.12.(2分)已知Rt△ABC的两直角边AC、BC分别是一元二次方程x2﹣5x+6=0的两根,则此Rt△ABC的外接圆的半径为_________.二、选择题(共5小题,每小题4分,满分20分)214.(4分)徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两15.(4分)(2003•常德)二次函数y=ax2+bx+c的图象如图所示,则关于此二次函数的下列四个结论①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()16.(4分)(2002•荆州)如图点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP=4,PB=2,则PC的长为().D17.(4分)(2009•鄂尔多斯)为了美化城市,建设中的某小广场准备用边长相等的正方形和正八边形两种地砖镶嵌三、解答题(共12小题,满分92分)18.(5分)(2004•福州)计算﹣()0+(﹣2)3÷3﹣1.19.(5分)(2004•泰州)计算:.20.(5分)计算[+]÷().21.(5分)(2012•德州)解方程:22.(7分)(2004•重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.23.(7分)如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D,E,已知DC=2,求BE的长.24.(7分)(2004•新疆)在一块长16m,宽12m的矩形荒地上建造一个花园,要求花轩占地面积为荒地面积的一半,下面分别是小强和小颖的设计方案.(1)你认为小强的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x.(3)你还有其他的设计方案吗?请在右边的图中画出一个与图(1)(2)有共同特点的设计草图,并加以说明.25.(7分)(2004•福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)(1)根据图象分别求出l1,l2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.26.(10分)(2005•河源)已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.27.(10分)阅读下列材料并填空.平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…S n发现:如下表A有n种取法,取第二个点B有(n﹣1)种取法,所以一共可连成n(n﹣1)条直线,但AB与BA是同一条直线,故应除以2;即S n=④结论:S n=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?(1)分析:当仅有3个点时,可作出_________个三角形;当仅有4个点时,可作出_________个三角形;当仅有5个点时,可作出_________个三角形;…和可作出的三角形的个数S n,发现:(填下表)(3)推理:(4)结论:28.(10分)实践操作题:把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形裁下一部分,与剩下部分能拼成一个平行四边形A′BCD(见示意图1).(以下探究过程中有画图要求的,工具不限,不必写画法和证明).探究一:(1)想一想:判断四边形A′BCD是平行四边形的依据是_________;(2)做一做:按上述的裁剪方法,请你拼一个与图1位置或形状不同的平行四边形,并在图2中画出示意图.探究二:在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形.(1)试一试:你能拼出所有不同类型的特殊四边形有_________;它们的裁剪线分别是_________;(2)画一画:请在图3中画出一个你拼得的特殊四边形示意图.29.(14分)(2004•济南)已知半径为R的⊙O′经过半径为r的⊙O的圆心,⊙O与⊙O′交于E、F两点.(1)如图1,连接OO′交⊙O于点C,并延长交⊙O′于点D,过点C作⊙O的切线交⊙O′于A、B两点,求OA•OB 的值;(2)若点C为⊙O上一动点.①当点C运动到⊙O′时,如图2,过点C作⊙O的切线交⊙O′,于A、B两点,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由;②当点C运动到⊙O′外时,过点C作⊙O的切线,若能交⊙O′于A、B两点,如图3,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由.2011年北京市四中中考数学全真模拟试卷(一)参考答案与试题解析一、填空题(共12小题,每空2分,满分38分)1.(8分)①的相反数是;②﹣2的倒数是;③16的算术平方根是4;④﹣8的立方根是﹣2.的相反数是;2.(2分)不等式组的解集是﹣4<x<10.3.(2分)(2013•宝应县一模)函数的自变量x的取值范围是x≤1.主要考查了二次根式的意义和性质.概念:式子4.(2分)直线y=3x﹣2一定过(0,﹣2)和(,0)两点.x=,直线过点(5.(6分)样本5,4,3,2,1的方差是2;标准差是;中位数是3.×标准差是;6.(2分)等腰三角形的一个角为30°,则底角为30或75度.=7.(2分)(2009•冷水江市二模)梯形的高为4cm,中位线长为5cm,则梯形的面积为20cm2.梯形的中位线长为(上底梯形的面积为(上底(上底8.(4分)如图PA切⊙O于点A,∠PAB=30°,则∠AOB=60度,∠ACB=30度.9.(4分)如图PA切⊙O于A割线PBC过圆心,交⊙O于B、C,若PA=6;PB=3,则PC=12;⊙O的半径为 4.5.10.(2分)(2010•河北区模拟)如图△ABC中,∠C=90°,点D在BC上,BD=6,AD=BC,cos∠ADC=,则DC的长为9.ADC=,设11.(2分)(2009•无锡模拟)图中的同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则阴影部分即圆环的面积为9π.ABAP=12.(2分)已知Rt△ABC的两直角边AC、BC分别是一元二次方程x2﹣5x+6=0的两根,则此Rt△ABC的外接圆的半径为.斜边长为:的外接圆直径为的外接圆的半径为..二、选择题(共5小题,每小题4分,满分20分)214.(4分)徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两15.(4分)(2003•常德)二次函数y=ax2+bx+c的图象如图所示,则关于此二次函数的下列四个结论①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()x=,∴16.(4分)(2002•荆州)如图点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP=4,PB=2,则PC的长为().DPC=217.(4分)(2009•鄂尔多斯)为了美化城市,建设中的某小广场准备用边长相等的正方形和正八边形两种地砖镶嵌三、解答题(共12小题,满分92分)18.(5分)(2004•福州)计算﹣()0+(﹣2)3÷3﹣1.÷19.(5分)(2004•泰州)计算:.×+2×+2﹣20.(5分)计算[+]÷().﹣]÷×21.(5分)(2012•德州)解方程:22.(7分)(2004•重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值..∵,故舍去.23.(7分)如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D,E,已知DC=2,求BE的长.中,24.(7分)(2004•新疆)在一块长16m,宽12m的矩形荒地上建造一个花园,要求花轩占地面积为荒地面积的一半,下面分别是小强和小颖的设计方案.(1)你认为小强的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x.(3)你还有其他的设计方案吗?请在右边的图中画出一个与图(1)(2)有共同特点的设计草图,并加以说明.)依题意得:,依题意得25.(7分)(2004•福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)(1)根据图象分别求出l1,l2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.∴26.(10分)(2005•河源)已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.为27.(10分)阅读下列材料并填空.平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…S n发现:如下表A有n种取法,取第二个点B有(n﹣1)种取法,所以一共可连成n(n﹣1)条直线,但AB与BA是同一条直线,故应除以2;即S n=④结论:S n=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?(1)分析:当仅有3个点时,可作出1个三角形;当仅有4个点时,可作出4个三角形;当仅有5个点时,可作出10个三角形;…和可作出的三角形的个数S n,发现:(填下表)(4)结论:=..28.(10分)实践操作题:把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形裁下一部分,与剩下部分能拼成一个平行四边形A′BCD(见示意图1).(以下探究过程中有画图要求的,工具不限,不必写画法和证明).探究一:(1)想一想:判断四边形A′BCD是平行四边形的依据是一组对边平行且相等的四边形是平行四边形;(2)做一做:按上述的裁剪方法,请你拼一个与图1位置或形状不同的平行四边形,并在图2中画出示意图.探究二:在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形.(1)试一试:你能拼出所有不同类型的特殊四边形有平行四边形、矩形、等腰梯形和直角梯形;它们的裁剪线分别是三角形的三条中位线、裁剪线EF∥BC,且AE:EC=:1;(2)画一画:请在图3中画出一个你拼得的特殊四边形示意图.EC=:EC=29.(14分)(2004•济南)已知半径为R的⊙O′经过半径为r的⊙O的圆心,⊙O与⊙O′交于E、F两点.(1)如图1,连接OO′交⊙O于点C,并延长交⊙O′于点D,过点C作⊙O的切线交⊙O′于A、B两点,求OA•OB 的值;(2)若点C为⊙O上一动点.①当点C运动到⊙O′时,如图2,过点C作⊙O的切线交⊙O′,于A、B两点,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由;②当点C运动到⊙O′外时,过点C作⊙O的切线,若能交⊙O′于A、B两点,如图3,则OA•OB的值与(1)中的结论相比较有无变化?请说明理由.参与本试卷答题和审题的老师有:HJJ;张长洪;zxw;zhehe;Linaliu;zhangCF;lanchong;wenming;ln_86;CJX;HLing;自由人;张超。
2011年北京市四中中考数学全真模拟试卷(二)2011年北京市四中中考数学全真模拟试卷(二)一、选择题(共14小题,每小题3分,满分42分)D.4.(3分)(2008•天河区一模)一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,.C D.5.(3分)(2006•临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().C9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)13.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是_________.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为_________.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为_________cm2(不考虑接缝等因素,计算结果用π表示).18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为_________.19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=_________(n是整数,且1≤n<7).三、解答题(共7小题,满分63分)20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?23.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.2011年北京市四中中考数学全真模拟试卷(二)参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)D.4.(3分)(2008•天河区一模)一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,.C D...5.(3分)(2006•临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().CBD+DF=×9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)OC=BC=.,﹣)ABC==60ABC==3013.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()∠∠PCB=((+∠(﹣BCP=∠∠﹣∠(﹣二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣..观察数轴知其解集为∴.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为.AC==,=r=.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为300πcm2(不考虑接缝等因素,计算结果用π表示).=18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为3.∴BE=﹣)+4x19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=2(n是整数,且1≤n<7).三、解答题(共7小题,满分63分)20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?=16x+32023.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)∴.7.2=解得.y=y=3.2=.25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.,a=xa=y=y=a aNS=a(∴MR=.x+bc=0∴SR=2.∴∴MT=PQ=∴参与本试卷答题和审题的老师有:Liuzhx;zhehe;feng;Linaliu;lf2-9;wdxwwzy;jpz;lanchong;zhjh;蓝月梦;hbxglhl;csiya;kuaile;hnaylzhyk;cook2360;算术;张超。
ABCDE 122010~2011学年九年级综合水平质量调研数学试卷 2011.3学校___________________班级_______________姓名________________学号_____________ 考 生 须 知1. 本试卷共8页,共五道大题,25道小题,满分120分,考试时间120分钟. 2. 在试卷和答题卡上准确填写学校.班级.姓名.学号. 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4. 考试结束,请将本试卷和答题卡一并交回.注意事项 1. 考生要按规定的要求在机读答题卡上作答,题号要对应,填涂要规范. 2. 考试结束后,试卷和机读答题卡由监考人一并收回.第一卷(机读卷32分)一 选 择 题 本 题32分, 每 小 题 4 分1. 4的算术平方根是A .2B .±2C .16D .±16 2. 如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C , 则∠1+∠2等于 A . 90° B . 135° C . 150°D . 270°第2题图3.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任 意摸出一个球,摸出的球是白球..的概率是 A .13 B .16 C .12 D . 564.某班的9名同学的体重分别是(单位:千克): 61,59, 70,59,65,67,59, 63,57,这组数据的众数和中位数分别是A .59,61B .59,63C .59,65D . 57,615.全球可被人类利用的淡水总量仅占地球上总水量的0.00003,因此珍惜水、保护 水,是我们每一位公民义不容辞的责任.其中数字0.00003用科学记数法表示为 A .4103-⨯ B .5103-⨯ C .4103.0-⨯ D .5103.0-⨯6.如图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成. 现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体. 则下列选择方案中,能够完成任务的为A.模块②,④,⑤B.模块①,③,⑤C.模块①,②,⑤D.模块③,④,⑤一选择题本题32 分,每小题4分7. 如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PC=4,则两圆组成的圆环的面积是A.16π B.36π C.52π D.81π8. 矩形ABCD中,8cm6cmAD AB==,.动点E从点C开始沿边CB向点B以2cm/s的速度运动至点B停止,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:2cm),则y与x之间的函数关系用图象表示大致是下图中的第8题图第7题图注意事项1.第Ⅱ卷包括4道填空题和13道解答题,共8页.答题前要认真审题,看清题目要求,按要求认真作答.2.答题时字迹要工整,画图要清晰,卷面要整洁.3.考生除画图可以用铅笔外,答题必须用蓝色或黑色钢笔、圆珠笔.第二卷(非机读卷88分)二填空题本题共16分,每小题4分9.若分式2x4x2--的值为0,则x的值为.10. 如图,点A、B、C是半径为6的⊙O上的点,30B∠=︒,则的长为_____________.第10题图11. 如图,在△ABC中,D、E分别AB、AC边上的点,DE∥BC.若AD=3,DB=5,DE=1.2,则BC=.第11题图12. 如图,在ABC∆中,α=∠A,ABC∠的平分线与ACD∠的平分线交于点1A,得1A∠,则1A∠= .BCA1∠的平分线与CDA1∠的平分线交于点2A,得2A∠,……,BCA2009∠的平分线与CDA2009∠的平分线交于点2010A,得2010A∠,则2010A∠= .第12题图ACOABCCAEDB三解答题本题共30分,每小题5 分13. (本小题5分)(31)4sin6027-+-14. (本小题5分)解不等式组31422xx x->-⎧⎨<+⎩,并把它的解集表示在数轴上.15. (本小题5分)如图,E F、是平行四边形ABCD对角线AC上两点,BE DF∥,求证:AF CE=。
A OBCD ABC E D数 学 试 卷学校 姓名 准考证号 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.- 34的绝对值是( )A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是( )A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为( ) A . 1 2 B . 1 3 C . 1 4 D . 195.北京今年6月某日部分区县的高气温如下表:区县 大兴 通州 平谷 顺义 怀柔 门头沟 延庆 昌平 密云 房山 最高气温32323032303229323032则这10个区县该日最高气温的人数和中位数分别是( )A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是 AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示 y 与x 的函数关系图象大致是( )二、填空题(本题共16分,每小题4分) 9.若分式x ―8x的值为0,则x 的值等于________. A .B .C .D . OOOOx x x x y y y y 1 1 1 11 1 1 12 2 2 2A CB DFE O y xA11 11.若右图是某几何体的表面展开图,则这个几何体是__________. 12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a ij =a 21=1.按此规定,a 13=_____;表中的25个数中,共有_____个1;计算:a 11·a i 1+a 12·a i 2+a 13·a i 3+a 14·a i 4+a 15·a i 5的值为________. 三、解答题(本题共30分,每小题5分)13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25 a 31 a 32 a 33 a 34 a 35 a 41 a 42 a 43 a 44 a 45 a 51 a 52 a 53 a 54 a 55A B C E DAOBF CDE路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分) 19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.20.如图,在△ABC ,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF = 12∠CAB .(1)求证:直线BF 是⊙O 的切线; (2)若AB =5,sin ∠CBF =55,求BC 和BF 的长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;北京市2001~2010年 私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图年增长率/% 轿车拥有量/万辆年份 年份2006 2006 2007 2008 2009 20102007 2008 2009 201050 100 150 200250 300 121 146 217 276 22211925275 25 30 10 15 20A B D CE F 图3 同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.排量(L ) 小于1.6 1.6 1.8 大于1.8 数量(辆)29753115如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨?22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).请你回答:图2中△BDE 的面积等于____________.参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF 的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为 三边长的三角形的面积等于_______.五、解答题(本题共22分)23.(7分)在平面直角坐标系xOy 中,二次函数y =mx 2+(m ―3)x ―3(m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y =mx 2+(m ―3)x ―3(m >0)的图象于N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.BBCADOADCE O图2图1O yx3 5 -5 -3E ADF O B x y(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.25.(7分)如图,在平面直角坐标系xOy 中,我把由两条射线AE 、BF 和以AB 为直径的半圆所组成的图形叫作图形C (注:不含AB 线段).已知A (-1,0),B (1,0),AE ∥BF ,且半圆与y 轴的交点D 在射线AE 的反向延长线上.(1)求两条射线AE 、BF 所在直线的距离;(2)当一次函数y =x +b 的图象与图形C 恰好只有一个公共点时,写出b 的取值范围; 当一次函数y =x +b 的图象与图形C 恰好只有两个公共点时,写出b 的取值范围;(3)已知□AMPQ (四个顶点A 、M 、P 、Q 按顺时针方向排列)的各顶点都在图形C 上,且不都在两条射线上,求点M 的横坐标x 的取值范围.B BA D A D C C EFE G FA BC DE GF 图1图2图3一、选择题题号 1 2 3 4 5 6 7 8 答案 D C DB AB AB二、填空题题号 9 101112 答案 8()25-a a圆柱 015 1三、解答题解:()1012cos30272π2-⎛⎫-︒++- ⎪⎝⎭3223312=-⨯++23331=-++ 233=+.解:去括号,得4456x x ->-. 移项,得4546x x ->-. 合并,得2x ->-. 解得2x <.所以原不等式的解集是2x <. 解:()()()422a a b a b a b +-+-()22244a ab a b =+--244ab b =+. ∵2220a ab b ++=,∴0a b +=. ∴原式()40b a b =+=.证明:∵BE DF ,∥ ∴ABE D ∠=∠. 在ABE △和FDC △中,EFA B ED A B F DA F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴ABE FDC ≅△△. ∴AE FC =. 解:⑴ ∵点()1A n -,在一次函数2y x =-的图象上,∴()212n =-⨯-=.∴点A 的坐标为()12-,.∵点A 的反比例函数k y x =的图象上, ∴2k =-.∴反比例函数的解析式为2y x =-.⑵ 点P 的坐标为()20-,或()04,.解:设小王用自驾车方式上班平均每小时行驶x 千米.依题意,得18318297x x =⨯+. 解得27x =.经检验,27x =是原方程的解,且符合题意. 答:小王用自驾车方式上班平均每小时行驶27千米. 四、解答题解:∵90ACB DE BC ∠=︒,,⊥ ∴AC DE ∥.又∵CE AD ,∥∴四边形ACED 是平行四边形. ∴2DE AC ==.在Rt CDE △中,由勾股定理得2223CD CE DE =-=.∵D 是BC 的中点, 1O1-1xyAAC EBD∵D 是BC 的中点,DE BC ,⊥ ∴4EB EC ==.∴四边形ACEB 的周长10213AC CE EB BA =+++=+. ⑴ 证明:连结AE .∵AB 是O 的直径, ∴90AEB ∠=︒. ∴1290∠+∠=︒. ∵AB AC =,∴112CAB∠=∠. ∵12CBF CAB ∠=∠,∴1CBF ∠=∠. ∴290CBF ∠+∠=︒. 即90ABF ∠=︒. ∵AB 是O 的直径, ∴直线BF 是O 的切线. ⑵ 解:过点C 作CG AB ⊥于点G . ∵5sin 15CBF CBF ∠=∠=∠,,∴5sin 15∠=.∵905AEB AB ∠=︒=,, ∴sin 15BE AB =⋅∠=. ∵90AB AC AEB =∠=︒,, 12G A DCFB E O∴255sin 2cos 255∠=∠=,.在Rt CBG △中,可求得42GC GB ==,. ∴3AG =. ∵GC BF ∥, ∴AGC ABF △△.∴GC AG BF AB =. ∴203GC AB BF AG ⋅==. 解:⑴()146119%⨯+173.74= 174≈(万辆).所以2008年北京市私人轿车拥有量约是174万辆. ⑵ 如右图.⑶ 75276 2.7372.6150⨯⨯=(万吨). 估计2010年北京市仅排量为1.6L 的这类私人轿车的碳排放总量约为372.6万吨.解:BDE △的面积等于 1 . ⑴ 如图.以AD 、BE 、CF 的长度为三边长的一个三角形是CFP △.⑵ 以AD 、BE 、CF 的长度为三边长的三角形的面积等于34. 五、解答题解:⑴ ∵点A B 、是二次函数()()2330y mx m x m =+-->的图象与x 轴的交点, ∴令0y =,即()2330mx m x +--=.解得1231x x m =-=,.又∵点A 在点B 左侧且0m >, 174轿车拥有车量(万辆)北京市2006-2010年私人轿车拥有量统计图年份2762171461215010015020025030020062007200820092010APEFCDB⑵ 由⑴可知点B 的坐标为30m⎛⎫ ⎪⎝⎭,. ∵二次函数的图象与y 轴交于点C , ∴点C 的坐标为()03-,.∵45ABC ∠=︒,∴33m =. ∴1m =.⑶ 由⑵得,二次函数解析式为223y x x =--. 依题意并结合图象可知,一次函数的图象与二次函数的 图象交点的横坐标分别为2-和2,由此可得交点坐标为()25-,和()23-,.将交点坐标分别代入一次函数解析式y kx b =+中, 得252 3.k b k b -+=⎧⎨+=-⎩,解得21.k b =-⎧⎨=⎩,∴一次函数的解析式为21y x =-+.⑴ 证明:如图1.∵AF 平分BAD ∠, ∴BAF DAF ∠=∠.∵四边形ABCD 是平行四边形, ∴AD BC AB CD ,∥∥. ∴DAF CEF BAF F ∠=∠∠=∠,. ∴CEF F ∠=∠. ∴CE CF =.1OB CA yxPMNx yA CB O1DEFCBA图1A D⑵ BDC ∠=45︒.⑶ 解:分别连结GB 、GE 、GC (如图2). ∵120AB DC ABC ∠=︒,,∥ ∴120ECF ABC ∠=∠=︒ ∵FG CE ∥且FG CE =, ∴四边形CEGF 是平行四边形. 由⑴得CE CF =, ∴CEGF 是菱形.∴1602EG EC GCF GCE ECF =∠=∠=∠=︒,. ∴ECG △是等边三角形. ∴EG CG =, ① 60GEC EGC ∠=∠=︒. ∴GEC GCF ∠=∠.∴BEG DCG ∠=∠. ②由AD BC ∥及AF 平分BAD ∠可得BAE AEB ∠=∠. ∴AB BE =.在ABCD 中,AB DC =. ∴BE DC =. ③ 由①②③得BEG DCG ≅△△. ∴BG DE =,12∠=∠.∴132360BGD EGC ∠=∠+∠=∠+∠=∠=︒.∴180602BGDBDG ︒-∠∠==︒.解:⑴ 分别连结AD 、DB ,则点D 在直线AE 上,如图1. ∵点D 在以AB 为直径的半圆上, ∴90ADB ∠=︒.DAO B Fxy∴BD AD ⊥.在Rt DOB △中,由勾股定理得222BD OD OB =+=.∵AE BF ,∥∴两条射线AE 、BF 所在直线的距离为2.⑵ 当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,b 的取值是2b =或11b -<<; ⑶ 假设存在满足题意的AMPQ ,根据点M 的位置,分以下四种情况讨论:①当点M 在射线AE 上时,如图2. ∵A M P Q 、、、四点按顺时针方向排列, ∴直线PQ 必在直线AM 的上方.∴P Q 、两点都在AD 上,且不与点A D 、重 合.∴02PQ <<.∵AM PQ ∥且AM PQ =, ∴02AM <<. ∴21x -<<-.②当点M 在AD (不包括点D )上时,如图 3.∵A M P Q 、、、四点按顺针方向排列, ∴直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. ③当点M 在DB 上时,设DB 的中点为R ,则OR BF ∥. 当点M 在DR (不包括点R )上时,如图4.过点M 作OR 的垂线交DB 于点Q ,垂足为点S ,可得S 是MQ 的中点.M Q P y xFB O A ED 图2My xFB O A ED图3图4PQ S R MD EA OBF xy连结AS并延长交直线BF于点P.∵O为AB的中点,可证S为AP的中点.∴四边形AMPQ为满足题意的平行四边形.∴22x<≤.2)当点M在RB上时,如图5.直线PQ必在直线AM的下方.此时,不存在满足题意的平行四边形.④当点M的射线BF(不包括点B)上时,如图6.直线PQ必在直线AM的下方.此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值范围是21x-<<-或22x<≤.RP1P2P3图5DEAO BFxyMMyxFBOAED图6P3P2P1。
分式一、 选择题 A 组1、(2011年北京四中模拟26) 若分式31xx -有意义,则x 应满足 ( ) A .x =0 B .x ≠0 C .x =1 D .x ≠1答案:D3、(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)化简 m 2-1m ÷m+1m的结果是( )A .m -1B .mC .1mD .1m -1答案:A4、(2010-2011学年度河北省三河市九年级数学第一次教学质量检测试题)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x + 答案:D5、(2011年浙江杭州七模)在函数21-=x y 中,自变量x 的取值范围是( ) A .2-≠x B .2≠xC .x ≤2D .x ≥2答案:BB 组1、(2011浙江慈吉 模拟)已知分式xx -+21, 当x 取a 时, 该分式的值为0; 当x 取b 时, 分式无意义; 则ab 的值等于( ) A. 2- B. 21C. 1D. 2 答案:B2、(2011年三门峡实验中学3月模拟)要使式子a +2a有意义,a 的取值范围是( ) A 、a ≠0 B 、a >-2且a ≠0 C 、a >-2或a ≠0 D 、a ≥-2且a ≠0 答案:D3、(2011杭州上城区一模)下列判断中,你认为正确的是( )A .0的倒数是0 B.2π是分数 12答案:C4、(安徽芜湖2011模拟)化简29333a a a a a ⎛⎫++÷⎪--⎝⎭的结果为 ( ) A .aB .a -C .()23a +D .1答案: A5、(浙江杭州金山学校2011模拟)(原创)函数14y x =-中自变量x 的取值范围是( ▲ )A .x ≤3B .x =4C . x <3且x≠4D .x≤3且x ≠4 答案:A6、(2011深圳市全真中考模拟一)化简24()22a a a a a a---+ 的结果是 (A)一4 (B)4 (C)2a (13) 2a +4 答案:A7、(2011年北京四中33模)若分式1632--x x 的值为0,则x 的值为( ) A .4B. -4C. ±4D. 3答案D二、 填空题A 组1、(2011年北京四中三模)若x 为12-的倒数,则633622-++÷---x x x x x x 的值为 .答案:12、(2011年北京四中四模)化简112-+x x 得___ __. 答案:11-x 4.(2011年江苏连云港)若一个分式含有字母m 2,且当5m =时,它的值为2,则这个分式可以是 . (写出一个..即可) 答案250m(不唯一); B 组1、(2011浙江慈吉 模拟)化简: mm m -+-2242=______________. 答案:2--m2、(2011 天一实验学校 二模)在函数15y x =-中,自变量x 的取值范围是 . 答案: x ≠5__3、(2011北京四中模拟)化简:23224x x xx x x 骣÷ç-?÷ç÷ç桫++-答案:24x -4、(2011深圳市三模)函数函数12-+=x x y 中自变量x 的取值范围是 ;答案: 2-≥x 且1≠x ;5、(浙江杭州靖江2011模拟)函数y=)2(1--x x 的自变量x 的取值范围是_____________。
[初三数学]2011年模拟题综合型问题综合型问题一、选择题1. (2011年北京四中中考全真模拟15)2001年7月13日,北京市获得了第29届运动会的主办权,这一天是星期五,那么第29届奥运会在北京市举办的那一年的7月13日是星期( )A.1B. 3C. 5D. 日答案:D1、(2011年浙江杭州二模)如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是()A.6 B.8 C.9.6 D.10答案:C第12、(2011年浙江杭州七模)下列命题:①同位角相等;②如果09045<α<,那么α>αcos sin ;③若关于x 的方程223=+-x mx 的解是负数,则m 的取值范围为m <-4;④相等的圆周角所对的弧相等.其中假命题...有( ) A .1个 B .2个 C .3个 D .4个答案:C二、填空题1. (2011年北京四中中考全真模拟15)从甲站到乙站有两种走法。
从乙站到丙站有三种走法。
从乙站到丙站有______种走法。
A. 4B. 5C. 6D.7 答案:C2. (2011年北京四中中考全真模拟15)一个窗户被装饰布档住一部分,其中窗户的长与宽之间比为3:2装饰布由一个半圆和两个四分之一圆组成,圆的直径都是2n ,这个窗口未被遮挡部分的面积为__________。
答案:223216n n π-3. (2011年北京四中中考全真模拟16)如图所示,图中共有 条线段,共有 个长方形。
答案:18,9.4. (2011年北京四中中考全真模拟17)如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如右图所示,则打包带的长至少要_________ (单位:mm )(用含x 、y 、z 的代数式表示)答案:2x+4y+6z1、(2011年浙江杭州八模)已知正整数a 满足不等式组 232-≤+≥a x a x (x 为未知数)无解,则函数41)3(2---=x xa y 图象与x 轴的坐标为答案:11(,0)(,0)24-三、解答题1、(2011年江苏盐都中考模拟)(本题12分)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且∠AOC=60°,点B 的坐标是(0,83),点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA 方向移动,设t(0<t≤8)秒后,直线PQ 交OB 于点D.(1)求∠AOB 的度数及线段OA 的长 (2)求经过A 、B 、C 三点的抛物线的解析式; (3)当a=3,OD=334时,求t 的值及此时直线PQ 的解析式;(4)当a 为何值时,以O 、Q 、D 为顶点的三角形与△OAB 相似?当a 为何值时,以O 、Q 、D 为顶点的三角形与△OAB 不相似?请给出你的结论,并加以说明.解:(1)∠AOB=30°,OA=8;(2分) (2)38432+-=x y ;(2分)(3)当a=3时,CP=t, OQ=3t,OD=334,∴PB=8-t,BD=833203343=-由△OQD ∽△BPD 得ODBDOQ BP =,即334332038=-tt,∴t=21。
数学试卷(考试时间为120分钟,试卷满分为120分)班级 学号_________ 姓名 分数__________一、选择题(每小题4分,共32分,下面各题均有四个选项,其中只有一个..是符合 题意的)1.下列事件是必然事件的是( ).A.随意掷两个均匀的骰子,朝上面的点数之和是6B.掷一枚硬币,正面朝上C.3个人分成两组,一定有两个人分在一组D.打开电视,正在播放动画片2.抛物线2)1(2+-=x y 可以由抛物线2x y =平移而得到,下列平移正确的是( ). A .先向左平移1个单位,再向上平移2个单位 B .先向左平移1个单位,再向下平移2个单位 C .先向右平移1个单位,再向上平移2个单位 D .先向右平移1个单位,再向下平移2个单位3.已知一顶圆锥形纸帽底面圆的半径为10cm,母线长为50cm,则圆锥形纸帽的侧 面积为( ). A .2250cm π B .2500cm π C .2750cm π D .21000cm π 4.两圆半径分别为2和3,圆心坐标分别为(1,0)和(-4,0),则两圆的位置关系是( ). A .外离 B .外切 C .相交 D .内切 5.同时投掷两枚硬币,出现两枚都是正面的概率为( ). A .41 B .31 C .43 D .216.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴 相切与点Q,与y 轴交于M(0,2),N(0,8)两点,则点P 的 坐标是( ).A .(5,3)B .(3,5)C .(5,4)D .(4,5)7.抛物线12++=kx x y 与k x x y --=2相交,有一个交点在x 轴上,则k 的值为 ( ).A . 0B . 2C . 1-D .418.如图,在直角梯形ABCD 中,AD ∥BC ,90C ∠=,6cm CD =, AD =2cm ,动点P 、Q 同时从点B 出发,点P 沿BA 、AD 、DC 运动到点C 停止,点Q 沿BC 运动到C 点停止,两点运动时的速度都是1cm/s ,PQ A DCB而当点P 到达点A 时,点Q 正好到达点C .设P 点运动的时间为(s)t ,BPQ △的面积为y 2(cm ).下图中能正确表示整个运动中y 关于t 的函数关系的大致图象是 ( ).A .B .C .D .二、填空题(本题共18分,每题3分)9.正六边形边长为3,则其边心距是_______cm .10.函数)22(322≤≤--+=x x x y 最小值为 ,最大值为 . 11.如图,在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一 点,且︒=∠40EPF ,则图中阴影部分的面积是 . 12.已知二次函数c bx ax y ++=2满足(1)c b a <<; (2)0=++c b a ;(3)图象与x 轴有2个交点,且两交点间的距离小于2;则以下 结论正确的有 .①0<a ②0<+-c b a ③0>c ④02>-b a ⑤412<-ab三、解答题(每小题5分,本题共30分) 13. 计算:30)31()2(21250--+---π. 14.用配方法解方程:032212=--x x .15.已知,)3()1(122m x m x m y m m +-++=--当m 为何值时,是二次函数?16.如图,半径为6cm 的⊙O 中,圆心O 到弦AB 的距离OC 为3cm.试求: ⑴弦AB 的长;⑵弧AB 的长17.已知二次函数c bx ax y ++=2的图象的顶点位于x 轴下方,它到x 轴的距离为4, 下面是函数x 与y 的对应值表:(1)求出二次函数的解析式;(2)将表中空白处填写完整; (3)在右边的坐标系中画出c bx axy ++=2的图象;(4)根据图象回答:当x 为何值时,函数c bx ax y ++=2的值大于0. 18.如图,在△ABC 中,︒=∠90C ,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径 的⊙O 经过点D.(1)求证:BC 是⊙O 的切线; (2)若BD=5,DC=3,求AC 的长.x0 2 y3- 4- 3-四.应用题(19题6分,20题5分,21题4分)19.桐桐和大诚玩纸牌游戏.下面是同一副扑克中4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,桐桐先丛中抽出一张,大诚从剩余的3张牌中也抽出一张.桐桐说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用列表(或树状图)表示出两人抽牌可能出现的所有结果;(2)若按桐桐说的游戏规则进行游戏,这个游戏公平吗?请说明理由.20.某体育品商店在销售中发现:某种体育器材平均每天可售出20件,每件可获利40元;若售价减少1元,平均每天就可多售出2件;若想平均每天销售这种器材盈利1200元,那么每件器材应降价多少元?若想获利最大,应降价多少?21.用尺规作图找出该残片所在圆的圆心O的位置.(保留作图痕迹,不写作法)五.解答题(本题5分)22.已知如图,正方形AEDG的两个顶点A、D都在⊙O上,AB为⊙O的直径,射线ED 与⊙O的另一个交点为C,试判断线段AC与线段BC的关系.六.综合运用(23题、25题7分,24题8分)23.已知: 关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2-bx+kc(c ≠0)的图象与x 轴一个交点的横坐标为1. (1)若方程①的根为正整数,求整数k 的值; (2)求代数式akcabb kc +-22)(的值;(3)求证: 关于x 的一元二次方程ax 2-bx +c =0 ②必有两个不相等的实数根.24.已知:如图,在平面直角坐标系xoy 中,点A(2,0),点B 在第一象限且△OAB 为正三角 形, △OAB 的外接圆交y 轴的正半轴于点C,过点C 的圆的切线交x 轴于点D.(1)求B、C两点的坐标;(2)求直线CD的解析式;(3)设E、F分别是线段AB、AD上的两个动点,切EF平分四边形ABCD的周长.试探究:当点E运动到什么位置时,△AEF的面积最大?最大面积是多少?25.已知抛物线32-+=bx ax y 交x 轴于A 、B 两点,与y 轴于点C ,已知抛物线的 对称轴为1=x ,AB=4.(1)求二次函数32-+=bx ax y 的解析式;(2)在抛物线对称轴上是否存在一点P ,是点P 到B 、C 两点的距离之差最大?若存 在,求出P 点的坐标;若不存在,请说明理由;(3)平行与x 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆恰好与x 轴 相切,求此圆的半径。
命题与证明一、选择题1、(2011北京四中模拟7)有下面命题:(1)直角三角形的两个锐角互余;(2)钝角三角形的两个内角互补;(3)正方形的两条对角线相等;(4)菱形的两条对角线互相垂直。
其中,正确的命题有()A. 1个B. 2个C. 3个D. 4个答案:C2.(2011年浙江省杭州市高桥初中中考数学模拟试卷)已知下列命题:①同位角相等;②若a>b>0,则11a b<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A.15B.25C.35D.45答案:A3.(2011年浙江省杭州市城南初级中学中考数学模拟试题)有下列表述:①a一定不是负数;②无理数是无限小数;③平方根等于它本身的数是0或1;④对角线相等且互相垂直的四边形是正方形;⑤圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线;⑥一个圆锥的侧面积是一个面积为4π平方厘米的扇形,那么这个圆锥的母线长L和底面半径R之间的函数关系是正比例函数。
其中说法正确的个数为 ( )A. 2B. 3C. 4D. 5答案:A4. (2011年北京四中中考全真模拟16)下列命题中正确的是( )A、因为2的平方是4,所以4的平方根是2;B、因为-4的平方是16,所以16的负的平方根是-4;C、因为任何数的平方都是正数,所以任何数的平方根都是正数.D、任何数的算术平方根都是正数.答案:B5.(2011年江苏盐城)下列命题中,错误的是( )A.三角形两边之差小于第三边B.四边形的外角和是360︒C.正五边形既是轴对称图形,又是中心对称图形D.连接对角线互相垂直的四边形各边中点所得到的四边形是矩形答案C.6.(2011浙江杭州模拟14)下列命题中的真命题是( ).A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 两条对角线相等的梯形是等腰梯形D. 等腰梯形是中心对称图形答案:C7.(2011浙江杭州模拟16)下列命题正确的有 ( )个 ①400角为内角的两个等腰三角形必相似②若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为750 ③一组对边平行,另一组对边相等的四边形是平行四边形④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1⑤若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为等腰直角三角形。
中考数学全真模拟试题(2)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.第1卷l 至4页,第Ⅱ卷5至12页.满分120分.考试时间120分钟.第1卷(选择题 共42分)一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1.一3的绝对值是( )(A)3 (C)±3 (B) 3 (D)±132.2004年聊城市的国民生产总值为1012亿元,用科学记数法表示正确的是( ) (A)1012×108元 (B)1.012×1110元 (C)1.0×1110元. (D)1.012×1210元. 3.下列各式计算正确的是( ) (A)527()a a =.(B)22122xx-=(C)236326a a a = (D)826a a a ÷=。
4.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是( )(A)18 (B) 13 (C) 38 (D) 355.如图,将两根钢条'AA 、'BB 的中点O 连在一起,使'AA 、'BB 可以绕着点0自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB ≅△''A OB 的理由是( )(A)边角边 (B)角边角 (C)边边边 (D)角角边6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范围是( ) (A)r>2 (13)2<r<14 (C)l<r<8 (13)2<r<87.化简24()22a a a a a a---+的结果是( ) (A)一4 (B)4 (C)2a (13) 2a +48.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为( )(C)6. (D)9.9.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm 幻灯片到屏幕的距离是1.5m ,幻灯片上小树的高度是10cm ,则屏幕上小树的高度是( )(A)50cm . (B)500cm . (C)60 cm . (D)600cm .10.多边形的内角中,锐角的个数最多有( ) (A)1个. (B)2个. (C)3个. (D)4个.第5题图11.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动, 当线段AB 最短时,点B 的坐标为( ) (A)(0,0). (B)11(,)22-.(C) (D) 11(,)22-.12.等腰三角形一腰上的高与另一腰的夹角为30。
,则顶角的度数为( )(A)60︒. (B)120︒. (C)60︒或150︒. (D)60︒或120︒13.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为( ) (A)4. (B)6. (C)12. (D)1514.已知△ABC ,(1)如图l ,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=1902A ︒+∠; (2)如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90A ︒-∠;(3)如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=1902A ︒-∠。
图3图2图1EABCABCPP上述说法正确的个数是( )(A)0个 (B)1个 (C)2个 (D)3个第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用钢笔或园珠笔直接答在试卷上。
2.答卷前将密封线内的项目及座号填写清楚。
二、填空题(本大题共5小题.每小题3分,共15分)把答案填在题中横线上.15.关于x 的不等式3x 一2a ≤一2的解集如图所示,则a 的值是_______________。
(第15题图)16.若圆周角α所对弦长为sin α,则此圆的半径r 为___________。
17.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的 面积___________cm 2。
(不考虑接缝等因素,计算结果用π表示)第18题图CD18.如图,Rt △ABC 中,∠A =90︒,AB =4,AC =3,D 在BC 上运动(不与B 、C 重合),过D 点分别向AB 、Ac 作垂线,垂足分别为E 、F ,则矩形AEDF 的面积的最大值为___________。
19.判断一个整数能否被7整除,只需看去掉一节尾...(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的”倍的差能否被7整除来判断,则n =___________(n 是整数,且1≤n<7). 三、开动脑筋.你一定能做对20.(本小题满分6分)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l 95 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(本小题满分7分)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.A B22.(本小题满分8分)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?四、认真思考,你一定能成功!23.(本小题满分9分)如图l ,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)求证:OE=OF ;(2)如图2,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE=OF ”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图1C B24.(本小题满分10分)某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投人技改资金5万元. ①预计生产成本每件比2004年降低多少万元?②如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元(结果精确到0.01万元)?五、相信自己。
加油呀 25.(本小题满分10分)△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。
若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.图1CB图2CB图3CB26.(本小题满分13分)如图1,已知抛物线的顶点为A(O ,1),矩形CDEF 的顶点C 、F 在抛物线上,D 、E 在x 轴上,CF 交y 轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P 点为抛物线上不同于A 的一点,连结PB 并延长交抛物线于点Q ,过点P 、Q 分别作x 轴的垂线,垂足分别为S 、R .①求证:PB =PS ; ②判断△SBR 的形状;③试探索在线段SR 上是否存在点M ,使得以点P 、S 、M 为顶点的三角形和以点Q 、R 、M 为顶点的三角形相似,若存在,请找出M 点的位置;若不存在,请说明理由.中考数学模拟试题(2)参考答案及评分标准注:第三、四、五题给出了一种解法或两种解法.考生若用其它解法.应参照本评分标准给分二、填空题(每小题3分.共15分l1 5.一12; 16.12; 17. 300π; 18 .3; 19 .2。
三、开动脑筋,你一定能做对(共21分)20.解:由题中7周的数据.可知小亮家平均每周日常生活消费的费用为:17(230+195+180+250+270+455+170)=250(元) …………(4分)∴小亮家每年日常生活消费总赞用为:250×52=13000(元)答:小亮家平均每年的日常生活消费总费用约为13000元…………… (6分) 2l.解:作法:(1)作AB的垂直平分线CD交AB于点O;(2)分别以A、B为圆心,以AO(或BO)的长为半径画弧,分别交半圆干点M、N;(3)连结OM、ON即可.说明:本小题满分7分。
画图正确得4分;写出作法,每步各1分,共3分。
22.解:根据题意,可有三种购买方案;方案一:只买大包装,则需买包数为:48048 505=;由于不拆包零卖.所以需买10包.所付费用为30×10=300(元) … (1分)方案二:只买小包装.则需买包数为:48016 30=所以需买1 6包,所付费用为1 6×20=320(元) ……… (2分)方案三:既买大包装.又买小包装,并设买大包装x 包.小包装y 包.所需费用为W 元。
则50304803020x y W x +=⎧⎨=+⎩…………(4分)103203W x =-+…………(5分) ∵050480x <<,且x 为正整数, ∴x =9时,最小W =290(元).∴购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少.为290元。
………………………………………………………………(7分)答:购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少为290元。
……………………………………………………………… (8分) 四、认真思考.你一定能成功!(共19分)23(1)证明:∵四边形ABCD 是正方形.∴∠BOE=∠AOF =90︒.OB =OA ……………… (1分) 又∵AM ⊥BE ,∴∠MEA+∠MAE =90︒=∠AFO+∠MAE ∴∠MEA =∠AFO ………………(2分)∴Rt △BOE ≌ Rt △AOF ……………… (3分) ∴OE=OF ………………(4分)(2)OE =OF 成立 ……………… (5分) 证明:∵四边形ABCD 是正方形,∴∠BOE=∠AOF =90︒.OB =OA ……………… (6分) 又∵AM ⊥BE ,∴∠F+∠MBF =90︒=∠B+∠OBE 又∵∠MBF =∠OBE∴∠F =∠E ………………(7分)∴Rt △BOE ≌ Rt △AOF ……………… (8分) ∴OE=OF ………………(9分)24.(1)解:设其为一次函数,解析式为y kx b =+ 当 2.5x =时,7.2y =; 当x =3时,y =6.7.2 2.563k bk b =+⎧⎨=+⎩解得 2.4k =-,13.2b =∴一次函数解析式为 2.413.2y x =-+ 把4x =时, 4.5y =代人此函数解析式,左边≠右边.∴其不是一次函数.同理.其也不是二次函数. ………… (3分)(注:学生如用其它合理的方式排除以上两种函数,同样得3分)设其为反比例函数.解析式为k y x=。