2.3.2 矩阵乘法的简单性质
- 格式:doc
- 大小:99.30 KB
- 文档页数:4
矩阵运算乘法矩阵运算是数学中的重要概念,它在多个学科和领域中都有广泛的应用。
本文将介绍矩阵乘法的概念、性质以及实际应用,帮助读者更好地理解和应用相关知识。
首先,让我们来了解一下什么是矩阵乘法。
矩阵乘法是指将两个矩阵相乘得到一个新的矩阵的操作。
如果两个矩阵A和B的乘积为C,则C的每一个元素是通过A的行和B的列进行内积得到的。
具体计算方法是将A矩阵的第i行与B矩阵的第j列对应元素相乘,并将结果求和,得到新矩阵C中的元素cij。
既然我们已经了解了矩阵乘法的概念,接下来我们来探讨一些矩阵乘法的性质。
首先,矩阵乘法满足结合律,即对于任意矩阵A、B和C,满足(A*B)*C = A*(B*C)。
其次,对于矩阵乘法,一般情况下不满足交换律,即A*B和B*A的结果一般不相等。
最后,单位矩阵是矩阵乘法的单位元,即对于任意矩阵A,都满足A*I = I*A = A,其中I表示单位矩阵。
矩阵乘法不仅在数学中有重要作用,而且在实际应用中也扮演着重要角色。
首先,在计算机图形学中,矩阵乘法广泛应用于图形的变换,如平移、缩放和旋转等操作。
通过将点坐标表示为矩阵形式,可以通过矩阵乘法将图形进行各种变换,从而实现图形的实时渲染和动画效果。
其次,在经济学中,矩阵乘法被用于线性经济模型的求解。
通过将经济模型表示为矩阵形式,可以通过矩阵乘法计算出不同经济因素之间的关系,预测和分析经济现象,对经济政策进行评估和决策。
此外,在信号处理和通信领域,矩阵乘法用于信号的传输和处理。
通过将信号表示为矩阵形式,可以通过矩阵乘法进行信号的编码、解码和滤波等操作,提高信号传输的稳定性和性能。
总结起来,矩阵乘法是一项重要的数学运算,具有广泛的应用领域。
通过研究矩阵乘法的概念、性质和实际应用,我们可以更好地理解和运用相关知识,为现实生活和学科研究提供指导意义。
希望本文的介绍能够帮助读者更好地掌握和应用矩阵乘法,发掘其潜在的应用价值。
矩阵之间的乘法引言矩阵是线性代数中常见的数学工具,而矩阵乘法是矩阵运算中最基础且重要的操作之一。
本文将深入探讨矩阵之间的乘法,包括定义、性质、计算方法以及应用。
什么是矩阵乘法矩阵乘法指的是将两个矩阵相乘得到一个新的矩阵的操作。
如果矩阵A是一个m行n列的矩阵,矩阵B是一个n行p列的矩阵,那么它们的乘积AB是一个m行p列的矩阵。
矩阵乘法的性质矩阵乘法具有以下性质:1.结合律:对于任意的矩阵A、B和C,满足(A B)C = A(B C);2.分配律:对于任意的矩阵A、B和C,满足(A+B)C = A C + B*C;3.零乘性质:对于任意的矩阵A和0矩阵,满足A0 = 0A = 0。
这些性质使得矩阵乘法在计算中更加灵活和方便。
矩阵乘法的交换律与幂等性矩阵乘法不满足交换律,即对于任意的矩阵A和B,通常情况下A B ≠ B A。
这是因为矩阵乘法涉及到行乘以列的运算,行和列的顺序不同会导致结果不同。
另一方面,矩阵乘法满足幂等性,即一个矩阵与自身相乘等于自身,即A*A = A。
矩阵乘法的计算方法矩阵乘法的计算方法可以通过“行乘以列”的方式来实现。
具体步骤如下:1.确定乘法的两个矩阵A和B;2.确定A矩阵的行数m、列数n,以及B矩阵的行数n、列数p;3.创建一个新的矩阵C,其行数为m,列数为p;4.对于C矩阵的每个元素C[i][j],使用如下方法计算:–对于每个i = 1, 2, …, m,j = 1, 2, …, p,计算C[i][j]的值:•将A矩阵的第i行与B矩阵的第j列对应元素相乘并求和,得到C[i][j]的值。
通过这种方式,可以将矩阵乘法转化为简单的数学运算,实现高效的矩阵相乘。
矩阵乘法的应用矩阵乘法在许多数学和科学领域中都有广泛的应用。
以下是一些矩阵乘法的应用示例:线性变换矩阵乘法可以表示线性变换。
在三维空间中,矩阵乘法可以用来表示旋转、缩放和投影等操作。
矩阵乘法提供了一种便捷的方式来描述和计算复杂的几何变换。
精品精品资料精品精品资料选修4-2矩阵与变换 2.3.2 矩阵乘法的简单性质学习目标1、通过几何变换,使学生理解一般情况下,矩阵乘法不满足交换律。
2、会验证矩阵的乘法满足结合律。
3、从几何变换的角度了解矩阵乘法不满足消去律。
学习过程:一、预习:阅读教材,体会下列知识:1、两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律即(AB)C=A(BC),AB BA,由AB=AC不一定能推出B=C.2、理解矩阵的乘法运算与变换的复合之间的内在联系(1)两个二阶矩阵相乘的结果从几何的角度来看它表示的是原来两个矩阵对应的连续两次变换.(2)一般地两个变换之间是不能随意交换位置的,只有在特殊情况下才可以交换位置(3)矩阵AB对应的复合变换顺序是先进行矩阵B对应的变换再进行矩阵A对应的变换.如果连续对一个向量实施n次矩阵A对应的变换可以记为nA的形式.(4)在数学中,一一对应的平面几何变换都可以看是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变等变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵.练习1、对任意的二阶非零矩阵A、B、C,下列命题中:(1)AB=BA ; (2)AB≠0; (3)若AB=AC,则B=C;(4)A(BC)=(AB)C; (5)A2≠0; (6)当E为单位矩阵时恒有:AE=EA=A.,其中真命题的序号为2、已知正方形ABCD,A(0,0),B(1,0),C(1,1),D(0,1)变换T1对应矩阵为M=01-1,变换T2对应矩阵为N=10.5对应的变换,计算MN,NM,比较它们是否相同,并从几何变换的角度解释。
二、课堂训练:例1.已知梯形ABCD ,A (0,0),B (3,0),C (2,2),D (1,2),变换T 1对应的矩阵P =2001,变换T 2对应的矩阵Q =1002,计算PQ ,QP ,比较它们是否相同,并从几何变换的角度予以解释。
例2、利用矩阵变换的几何意义,请构造满足下列条件的矩阵,并给出几何解释:(1)构造两个矩阵M ,N ,它们不满足MN=NM ;(2)构造两个不同的矩阵A ,B ,使等式01010101AB成立;(3)构造两个不同的矩阵A ,B ,使等式00000101AB 成立.练习:1. 已知:A=1000,B =1001,C =1002,计算AB ,AC 。
矩阵运算中的矩阵乘法的性质及其运用矩阵乘法是一种重要的矩阵运算,广泛应用于数学、物理、工程、计算机等领域。
在矩阵乘法中,两个矩阵相乘可以得到一个新的矩阵,这个新矩阵的每个元素是原矩阵的各行与各列乘积之和。
矩阵乘法具有许多重要的性质,这些性质为我们在矩阵运算中的应用提供了方便。
首先,矩阵乘法是结合律的,也就是说,对于任意的矩阵A、B和C,都有(A*B)*C=A*(B*C)。
这个性质使我们可以在不改变结果的前提下改变矩阵乘法的顺序,从而减少计算量。
其次,矩阵乘法不一定是交换律的,也就是说,对于任意的矩阵A和B,不一定有A*B=B*A。
这是因为矩阵的乘法顺序的改变将导致不同的相乘方式,从而得到的结果也会不同。
因此,在实际应用中,我们必须特别注意矩阵相乘的顺序。
第三,矩阵乘法具有分配律,也就是说,对于任意的矩阵A、B和C,都有A*(B+C)=A*B+A*C和(B+C)*A=B*A+C*A。
这个性质使矩阵乘法更方便,使复杂的计算变得简单。
最后,矩阵乘法还可以用来解决线性方程组。
对于一个n阶的线性方程组Ax=b,其中A是一个nXn的系数矩阵,b是一个n维的列向量,x是一个n维的未知向量,我们可以使用矩阵乘法将其表示为Ax=b。
在实际应用中,矩阵乘法被广泛应用于机器学习、计算机图形学、数字信号处理、优化问题等领域。
例如,在机器学习中,我们可以使用矩阵乘法快速计算训练数据的内积,从而得到更好的分类器。
在计算机图形学中,我们可以使用矩阵乘法来对三维图形进行旋转、缩放和平移等变换。
在数字信号处理中,我们可以使用矩阵乘法来实现数字滤波器,从而去除信号中的噪声和干扰。
在优化问题中,我们可以将目标函数表示为矩阵乘积的形式,从而更容易地进行求解。
总之,矩阵乘法作为一种重要的矩阵运算,具有许多重要的性质和广泛的应用。
我们需要深入学习矩阵乘法的原理和性质,以便更好地应用于实际问题中。
矩阵的乘法公式数学是一门深奥且广泛应用的学科,其中矩阵是重要的一个分支。
在矩阵中,乘法公式是研究的核心之一,其应用范围广泛。
下面将从定义、性质和应用三个方面来介绍矩阵的乘法公式。
一、定义矩阵乘法是指对于两个矩阵A和B,如果A的列数等于B的行数,则可以把A与B相乘。
具体来说,对于A(m*n)和B(n*p),它们的乘积C=A*B(m*p),其元素定义为如下式子:$$C_{ij}=\sum_{k=1}^n A_{ik}B_{kj}$$这意味着C中的第(i,j)个元素等于A中第i行和B中第j列对应元素的乘积之和。
二、性质1. 矩阵乘法是结合律的。
即(A*B)*C = A*(B*C)2. 矩阵乘法不一定满足交换律。
即A*B 不一定等于 B*A3. 若A和B可逆,则AB也可逆,且(A*B)^(-1)=B^(-1)*A^(-1)。
4. 矩阵乘法是分配律的。
即对于任何矩阵A、B、C,有以下性质:A*(B+C) = A*B+A*C(B+C)*A = B*A+C*A三、应用矩阵的乘法公式在多个领域有着广泛的应用。
下面分别介绍其在数学、物理以及计算机科学领域中的应用。
1. 数学领域矩阵乘法可以用于线性方程组的求解。
对于给定的方程组A*x=b,其中A是系数矩阵,x是未知变量矩阵,b是常数向量矩阵。
如果A可逆,则可以通过矩阵乘法求解x=A^(-1)*b。
矩阵乘法还可以用于矩阵的转置与逆的求解。
对于给定的矩阵A,可以通过矩阵乘法求得其转置矩阵A^T以及其逆矩阵A^(-1)。
2. 物理领域矩阵乘法在物理学中也有着广泛的应用。
例如,在量子力学中,矩阵乘法可以用于描述量子态的演化过程,并且可以通过矩阵乘法计算出量子态的特征值和特征向量。
在相对论物理中,矩阵乘法可以用于表示时空的变换。
3. 计算机科学领域矩阵乘法在计算机科学中被广泛应用于图形学、计算机视觉以及机器学习等领域。
例如,在图形学中,矩阵乘法可以用于对三维图形进行变换,如旋转、缩放和平移等。
2.3.1 矩阵乘法的概念 2.3.2 矩阵乘法的简单性质1.熟练掌握两个矩阵的乘法法则,并能从变换的角度理解它们.2.会从几何变换的角度求MN 的乘积矩阵.3.通过具体的几何图形变换,理解矩阵乘法不满足交换律.[基础·初探]1.矩阵的乘法一般地,对于矩阵M =⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22,N =⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22,规定乘法法则如下: MN =⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22=⎣⎢⎡⎦⎥⎤a 11b 11+a 12b 21 a 11b 12+a 12b 22a 21b 11+a 22b 21 a 21b 12+a 22b 22. 2.矩阵乘法的几何意义(1)变换的复合:在数学中,一一对应的平面几何变换常可以看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变等变换通常叫做初等变换;对应的矩阵叫做初等变换矩阵.(2)矩阵乘法的几何意义:矩阵乘法MN 的几何意义为:对向量α=⎣⎢⎡⎦⎥⎤x y 连续实施的两次几何变换(先T N后T M )的复合变换.(3)当连续对向量实施n ·(n >1,且n ∈N *)次变换T M 时,对应地我们记M n =.3.矩阵乘法的运算性质(1)矩阵乘法不满足交换律对于二阶矩阵A、B来说,尽管AB、BA均有意义,但可能AB≠BA.(2)矩阵乘法满足结合律设A、B、C均为二阶矩阵,则一定有(AB)C=A(BC).(3)矩阵乘法不满足消去律设A、B、C为二阶矩阵,当AB=AC时,可能B≠C.[思考·探究]1.矩阵的乘法与实数的乘法有什么异同?【提示】(1)运算条件不同,任何两个实数均可作乘法,而两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相同时,才能作乘法.(2)从运算律上看,实数的乘法满足交换律、结合律及消去律,而矩阵的乘法只满足结合律.2.矩阵的乘法与变换的复合有什么关系?简单变换与复合变换有什么关系?【提示】矩阵的乘法对应着变换的复合,这样使得若干个简单变换可以复合成较为复杂的变换;反过来较为复杂的变换可以分解成若干个简单的变换.3.矩阵乘法MN与NM的几何意义一致吗?为什么?【提示】不一致;因为前一个对应着先T N后T M的两次几何变换,而后者对应着先T M后T N的两次几何变换.[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:矩阵的乘法运算(1)已知A=⎣⎢⎡⎦⎥⎤1000,B=⎣⎢⎡⎦⎥⎤0001,计算AB.(2)已知A=⎣⎢⎡⎦⎥⎤1002,B=⎣⎢⎡⎦⎥⎤0-110,计算AB,BA.(3)已知A=⎣⎢⎢⎡⎦⎥⎥⎤12121212,B=⎣⎢⎡⎦⎥⎤11-1-1,计算A2、B2.【精彩点拨】利用矩阵乘法法则计算,根据矩阵乘法的几何意义说明.【自主解答】(1)AB=⎣⎢⎡⎦⎥⎤1000⎣⎢⎡⎦⎥⎤0001=⎣⎢⎡⎦⎥⎤1×0+0×01×0+0×10×0+0×00×0+0×1=⎣⎢⎡⎦⎥⎤0000.(2)AB=⎣⎢⎡⎦⎥⎤1002⎣⎢⎡⎦⎥⎤0-110=⎣⎢⎡⎦⎥⎤1×0+0×11×(-1)+0×00×0+2×10×(-1)+2×0=⎣⎢⎡⎦⎥⎤0-120,BA=⎣⎢⎡⎦⎥⎤0-110⎣⎢⎡⎦⎥⎤1002=⎣⎢⎡⎦⎥⎤0×1+(-1)×00×0+(-1)×21×1+0×01×0+0×2=⎣⎢⎡⎦⎥⎤0-210.(3)A2=⎣⎢⎢⎡⎦⎥⎥⎤12121212⎣⎢⎢⎡⎦⎥⎥⎤12121212=⎣⎢⎢⎡⎦⎥⎥⎤12121212,B2=⎣⎢⎡⎦⎥⎤11-1-1⎣⎢⎡⎦⎥⎤11-1-1=⎣⎢⎡⎦⎥⎤0000.这些计算只需利用矩阵的乘法公式即可,但对揭示矩阵乘法的性质却有着重要的意义.(1)中尽管A、B均为非零矩阵,但它们的乘积却是零矩阵;(2)中AB≠BA;(3)中尽管B≠C,但有AB=AC,这与一般数乘有着本质的区别;(4)中A2=A,B2=0,这里0是一个二阶零矩阵.证明下列等式并从几何变换的角度给予解释. ⎣⎢⎡⎦⎥⎤1 301⎣⎢⎡⎦⎥⎤1 000=⎣⎢⎢⎡⎦⎥⎥⎤1 1301⎣⎢⎡⎦⎥⎤1 00 0 【导学号:30650025】【解】 ∵左=⎣⎢⎡⎦⎥⎤1×1+3×0 1×0+3×00×1+1×0 0×0+1×0=⎣⎢⎡⎦⎥⎤100 0, 右=⎣⎢⎢⎡⎦⎥⎥⎤1×1+13×0 1×0+13×0 0×1+1×0 0×0+1×0=⎣⎢⎡⎦⎥⎤1 00 0, ∴左=右. ⎣⎢⎡⎦⎥⎤1 000对应的变换将平面上的点垂直投影到x 轴,而x 轴上的点沿x 轴的切变变换是不动点.⎣⎢⎡⎦⎥⎤1 30 1,⎣⎢⎢⎡⎦⎥⎥⎤1 130 1均为沿x 轴的切变变换,自然有等式成立. 矩阵乘法的简单性质,变换T 1所对应的矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10012,变换T 2所对应的矩阵N =⎣⎢⎡⎦⎥⎤0 -11 0,计算MN 、NM ,比较它们是否相同,并从几何变换的角度予以解释.【精彩点拨】 利用具体的几何变换验证.【自主解答】 MN =⎣⎢⎢⎡⎦⎥⎥⎤1 00 12⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎢⎡⎦⎥⎥⎤0 -112 0, NM =⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎢⎡⎦⎥⎥⎤1 00 12=⎣⎢⎢⎡⎦⎥⎥⎤0 -121 0. 故MN ≠NM .从几何变换的角度来看,矩阵M 表示T 1为向x 轴压缩为一半的变换,矩阵N 表示T 2为逆时针旋转90°的变换.这样MN 表示矩阵ABCD 先经T 2,再经T 1的变换,变换结果如图(1)所示:而NM 表示矩形ABCD 先经T 1,再经T 2的变换,变换结果如图(2)所示.(2)从图(1)以及图(2)可知,MN 和NM 表示的不是同一个变换.一个旋转变换与一个伸压变换的乘积一般不满足交换律.但两个旋转变换、两个反射变换满足交换律.算式⎣⎢⎡⎦⎥⎤1 000⎣⎢⎡⎦⎥⎤1 002=⎣⎢⎡⎦⎥⎤1 000⎣⎢⎢⎡⎦⎥⎥⎤1 00 12表示AB =AC ,但A ≠0且有B ≠C ,请通过计算验证这个结果,并从几何上给予解释.【导学号:30650026】【解】 左边=⎣⎢⎡⎦⎥⎤1×1+0×0 1×0+0×20×1+0×0 0×0+0×2=⎣⎢⎡⎦⎥⎤1000 右边=⎣⎢⎢⎡⎦⎥⎥⎤1×1+0×0 1×0+0×120×1+0×0 0×0+0×12=⎣⎢⎡⎦⎥⎤1 000.。
矩阵的相乘有关知识点矩阵的相乘是线性代数中的一个重要概念,也是矩阵运算中最常用的操作之一。
它在各个领域都有广泛的应用,如计算机图形学、机器学习、信号处理等。
本文将从矩阵相乘的定义、性质以及应用等方面展开阐述。
我们来了解一下矩阵相乘的定义。
假设有两个矩阵A和B,A的维度为m×n,B的维度为n×p,那么它们的乘积C=A×B的维度为m×p。
矩阵C中的元素c_ij等于矩阵A的第i行与矩阵B的第j列对应元素的乘积之和,即c_ij=a_i1*b_1j+a_i2*b_2j+...+a_in*b_nj。
矩阵相乘的定义给出了相乘操作的具体计算方式,接下来我们来探讨一下矩阵相乘的性质。
首先,矩阵相乘不满足交换律,即A×B不一定等于B×A。
这是因为矩阵相乘的计算方式决定了乘法的顺序不能改变。
其次,矩阵相乘满足结合律,即(A×B)×C=A×(B×C),这意味着在连续相乘多个矩阵时,可以任意改变相乘的顺序。
最后,单位矩阵是矩阵相乘中的特殊元素,对于任意矩阵A,都有A×I=I×A=A,其中I是维度为n×n的单位矩阵。
矩阵相乘在实际应用中有着广泛的应用。
首先,矩阵相乘可以用于几何变换。
在计算机图形学中,我们可以用矩阵相乘来进行平移、旋转和缩放等操作,从而实现图形的变换和渲染。
其次,矩阵相乘在机器学习中也扮演着重要的角色。
在神经网络中,矩阵相乘用于计算输入和权重之间的线性变换,从而实现模型的训练和预测。
此外,矩阵相乘还可以用于信号处理中的滤波操作,通过将信号与滤波器的系数矩阵相乘,可以实现信号的去噪和增强等功能。
当然,矩阵相乘也存在一些限制和注意事项。
首先,矩阵相乘要求被乘矩阵的列数与乘矩阵的行数相等,否则无法进行相乘操作。
其次,矩阵相乘的计算量较大,特别是在矩阵维度较大时,会消耗大量的计算资源和时间。
矩阵乘法的定义及其性质矩阵乘法是矩阵运算中的一种重要形式,矩阵乘法能够将两个矩阵相乘得到一个新的矩阵,是矩阵运算中应用广泛的一种运算方式。
在矩阵乘法的运算中,向量、矩阵和多项式相乘都可以使用矩阵乘法来实现。
矩阵乘法的定义在矩阵乘法中,两个矩阵相乘的前提条件是第一个矩阵的列数等于第二个矩阵的行数,即A(m,n)与B(n,p)可以相乘。
将A和B 相乘,得到的矩阵C是一个m行p列的矩阵,其第i行第j列的元素可以表示为:C(i,j)=sum(A(i,k)*B(k,j))其中k的取值范围为1到n,sum表示对k的求和。
矩阵乘法的运算法则是“行乘列加”,即矩阵的每一行与另一个矩阵的每一列进行乘法运算,将结果相加得到新矩阵中的对应元素。
矩阵乘法的性质1. 不满足交换律矩阵乘法不满足交换律,即A*B与B*A是不相等的。
这一性质可以通过矩阵乘法的定义进行理解,因为AB的定义中,A的列数必须等于B的行数,而BA的定义中,B的列数也必须等于A 的行数,这两种情况下的矩阵乘法所得到的结果是不同的。
2. 满足结合律矩阵乘法满足结合律,即(A*B)*C=A*(B*C)。
这一性质可以通过对矩阵乘法的运算法则进行分析得到,因为矩阵乘法是按照行乘列加的方式运算的,所以多个矩阵连乘时,括号的位置不影响结果。
3. 矩阵乘法满足分配律矩阵乘法满足分配律,即A*(B+C)=A*B+A*C。
这一性质也可以通过矩阵乘法的定义得到,即将A的每一行与B+C的对应列相乘,然后将结果相加得到新矩阵中的对应元素,即A*B+A*C。
4. 矩阵乘法中的单位矩阵在矩阵乘法中,单位矩阵是指一个元素在对角线上为1,其余所有元素都为0的矩阵。
如果一个矩阵乘以一个单位矩阵,其结果矩阵仍然是该矩阵本身。
例如,矩阵A和其对应的单位矩阵I 相乘得到的结果矩阵是A本身,即A*I=A。
5. 矩阵乘法中的逆矩阵在矩阵乘法中,如果一个矩阵A乘以另一个矩阵B得到的结果矩阵是单位矩阵I,那么矩阵B就被称为矩阵A的逆矩阵,记作A^-1。
矩阵乘法运算规则简介矩阵乘法是线性代数中的一个重要运算,可以用于解决各种实际问题。
本文将介绍矩阵乘法的运算规则。
矩阵乘法的定义给定两个矩阵A和B,假设A的大小为m×n,B的大小为n×p,那么它们的乘积C的大小为m×p。
矩阵C的每个元素c[i][j]是矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
矩阵乘法的运算规则1. 维度要求:乘法要求前一个矩阵的列数等于后一个矩阵的行数。
即若矩阵A的大小为m×n,矩阵B的大小为n×p,则矩阵乘法可行。
2. 乘法顺序:矩阵乘法不满足交换律,即A×B和B×A的结果一般是不相同的。
乘法需要按照先后顺序进行。
3. 结果计算:矩阵乘法的结果C的第i行第j列元素c[i][j]的计算公式为:c[i][j] = a[i][1] × b[1][j] + a[i][2] × b[2][j] + ... + a[i][n] ×b[n][j],其中a和b分别是矩阵A和B的对应元素。
4. 结合性:矩阵乘法满足结合律,即(A×B)×C = A×(B×C),可以按任意顺序进行括号的添加。
5. 单位矩阵:单位矩阵是对角线上的元素为1,其余元素为0的方阵。
单位矩阵与任何矩阵相乘,结果均为原矩阵本身。
示例假设有两个矩阵A和B:A = [[1, 2, 3], [4, 5, 6]]B = [[7, 8], [9, 10], [11, 12]]根据矩阵乘法的规则,我们可以计算矩阵A与矩阵B的乘积C:C = A × BC = [[1×7+2×9+3×11, 1×8+2×10+3×12], [4×7+5×9+6×11,4×8+5×10+6×12]]C = [[58, 64], [139, 154]]结论矩阵乘法是一种重要的线性代数运算,它的运算规则包括维度要求、乘法顺序、结果计算、结合性和单位矩阵等。
选修4-2矩阵与变换 2.3.2 矩阵乘法的简单性质
编写人:编号:009
学习目标
1、通过几何变换,使学生理解一般情况下,矩阵乘法不满足交换律。
2、会验证矩阵的乘法满足结合律。
3、从几何变换的角度了解矩阵乘法不满足消去律。
学习过程:
一、预习:
阅读教材,体会下列知识:
1、两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律
即(AB)C=A(BC),
AB≠BA,
由AB=AC不一定能推出B=C.
2、理解矩阵的乘法运算与变换的复合之间的内在联系
(1)两个二阶矩阵相乘的结果从几何的角度来看它表示的是原来两个矩阵对应的连续两次变换.
(2)一般地两个变换之间是不能随意交换位置的,只有在特殊情况下才可以交换位置(3)矩阵AB对应的复合变换顺序是先进行矩阵B对应的变换再进行矩阵A对应的变换.
如果连续对一个向量实施n次矩阵A对应的变换可以记为n
A的形式.
(4)在数学中,一一对应的平面几何变换都可以看是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变等变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵.
练习
1、对任意的二阶非零矩阵A、B、C,下列命题中:(1)AB=BA ; (2)AB≠0; (3)若AB=AC,则B=C;(4)A(BC)=(AB)C; (5)A2≠0; (6)当E为单位矩阵时恒有:AE=EA=A.,其中真命题的序号为
2、已知正方形ABCD,A(0,0),B(1,0),C(1,1),D(0,1)变换T1对应矩阵
为M=
1
⎡
⎢
⎣
-1
⎤
⎥
⎦
,变换T2对应矩阵为N=
1
⎡
⎢
⎣
0.5
⎤
⎥
⎦
对应的变换,计算MN,NM,比较它
们是否相同,并从几何变换的角度解释。
二、课堂训练:
例1.已知梯形ABCD ,A (0,0),B (3,0),C (2,2),D (1,2),变换T 1对应的矩阵P =⎥⎦⎤⎢⎣⎡2001,变换T 2对应的矩阵Q =⎥⎦
⎤⎢⎣⎡1002,计算PQ ,QP ,比较它们是否相同,并从几何变换的角度予以解释。
例2、利用矩阵变换的几何意义,请构造满足下列条件的矩阵,并给出几何解释:
(1)构造两个矩阵M ,N ,它们不满足MN=NM ;
(2)构造两个不同的矩阵A ,B ,使等式01010101A B ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦
成立; (3)构造两个不同的矩阵A ,B ,使等式00000101A B ⎡⎤⎡⎤=⎢
⎥⎢⎥⎣⎦⎣⎦成立.
练习:
1. 已知:A=1
0⎡⎢⎣ 00⎤⎥⎦,B =10⎡⎢⎣ 01⎤⎥⎦,C =10⎡⎢⎣ 02⎤⎥⎦
,计算AB ,AC 。
2、已知正方形ABCD ,A (0,0),B (2,0),C (2,2),D (0,2),先将正方形绕原点顺时针旋转900,再将所得图形的纵坐标压缩为原来的一半,横坐标不变,试求:
(1)连续两次变换所对应的变换矩阵M ;
(2)点同A ,B ,C ,D 所对应的向量在变换矩阵M 作用下所得到的结果;
(3)在直角坐标系内画出两次变换后得到的图形,并验证(2)中的结果;
(4)若先将正方形的纵坐标压缩为原来的一半,横坐标不变,再将所得图形绕原点顺时针旋转900,所得图形会是什么样?试画出示意图。
3、设a ,b ∈R ,若矩阵A=⎥⎦
⎤⎢
⎣⎡-b a 10把直线l :2x+y-7=0变换为另一直线l ’:9x+y-91=0,试求a ,b 的值。
4. 已知△ABC ,A (0,0),B (2,0),C (1,2),对它先作M =⎥⎦
⎤⎢⎣⎡1002对应的变换,再作N =⎥⎦
⎤⎢
⎣⎡2001对应的变换,试研究变换作用后的结果,并用一个矩阵来表示这两次变换。
三、课后巩固:
1. 已知非零二阶矩阵A 、B 、C ,下列结论正确的是 ( )
A.AB=BA
B.(AB)C=A(BC)
C.若AC=BC 则A=B
D. 若CA=CB 则A=B 2. 0110N -⎛⎫= ⎪⎝⎭
,则N2=
3、1011⎛⎫ ⎪⎝⎭1002⎛⎫ ⎪⎝⎭1101⎛⎫ ⎪⎝⎭0111⎛⎫ ⎪⎝⎭
= 4、1203⎛⎫ ⎪⎝⎭2312⎛⎫ ⎪⎝⎭4624-⎛⎫ ⎪-⎝⎭
=
5、设1021A ⎛⎫= ⎪⎝⎭,0210B ⎛⎫= ⎪⎝⎭则向量11⎛⎫ ⎪-⎝⎭
经过先A再B的变换后的向量为
经过先B再A 的变换后的向量为 6. △ABC 的顶点A(0,0),B(2,0),C(0,1)。
如果将三角形先后经过1101⎛⎫
⎪⎝⎭和1011⎛⎫ ⎪⎝⎭两次变换变
成△A ‘B ’C ’,求△A ‘B ’C ’的面积。
7、已知ABC ∆中,A (0,0),B (2,0),C (1,2),对它先作M=⎥⎦
⎤⎢⎣⎡1002对应的变换,再作N=⎥⎦
⎤⎢⎣⎡2001对应的变换,试研究变换作用后的结果,并用一个矩阵来表示这两次变换.
8、利用矩阵变换的几何意义,请你构造满足下列条件的矩阵,并给出几何解释:
(1)构造两个不同的矩阵A 、B ,使AB=⎥⎦
⎤⎢⎣⎡0010成立; (2)构造一个矩阵M (M 为非零矩阵),使M⎥⎦
⎤⎢
⎣⎡=00002成立.。