高考物理动能与动能定理练习题.docx
- 格式:docx
- 大小:174.11 KB
- 文档页数:16
高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。
质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。
已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。
【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。
设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。
取向左为正方向。
根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。
1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。
高考物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
2024全国高考真题物理汇编动能和动能定理一、单选题 1.(2024江西高考真题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为1r 、2r ,则动能和周期的比值为( )A.k121k212,E r T E r T ==B.k111k222,E r T E r T ==C.k121k212,E r T E r T ==D.k111k222E r T E r T ==,2.(2024北京高考真题)水平传送带匀速运动,将一物体无初速度地放置在传送带上,最终物体随传送带一起匀速运动。
下列说法正确的是( ) A .刚开始物体相对传送带向前运动 B .物体匀速运动过程中,受到静摩擦力 C .物体加速运动过程中,摩擦力对物体做负功 D .传送带运动速度越大,物体加速运动的时间越长3.(2024安徽高考真题)某同学参加户外拓展活动,遵照安全规范,坐在滑板上,从高为h 的粗糙斜坡顶端由静止下滑,至底端时速度为v .已知人与滑板的总质量为m ,可视为质点.重力加速度大小为g ,不计空气阻力.则此过程中人与滑板克服摩擦力做的功为( ) A .mghB .212mvC .212mgh mv +D .212mgh mv -4.(2024测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上。
调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍。
忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的( ) A .0.25倍B .0.5倍C .2倍D .4倍5.(2024福建高考真题)先后两次从高为 1.4m OH =高处斜向上抛出质量为0.2kg m =同一物体落于12Q Q 、,测得128.4m,9.8m OQ OQ ==,两轨迹交于P 点,两条轨迹最高点等高且距水平地面高为3.2m ,下列说法正确的是( )A4 B .第一次过P 点比第二次机械能少1.3J C .落地瞬间,第一次,第二次动能之比为72:85D .第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大二、解答题 6.(2024全国高考真题)将重物从高层楼房的窗外运到地面时,为安全起见,要求下降过程中重物与楼墙保持一定的距离。
【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
物理动能与动能定理练习题20篇含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v xm s h ==⨯=⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1)Rg (2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.5.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型.AB 和BD 为两段水平直轨道,竖直圆轨道与水平直轨道相切于B 点,D 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在A 点的小车以额定功率启动,当小车运动到B 点时关闭发动机并不再开启,测得小车运动到最高点C 时对轨道的压力大小5.6N N F =,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量400g m =,额定功率20W P =,AB 长1m l =,BD 长0.75m s =,竖直圆轨道半径25cm R =,水平半圆轨道半径10cm r =.小车在两段水平直轨道所受的阻力大小均为4N f =,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取210m/s g =.求:(1)小车运动到C 点时的速度大小; (2)小车在BD 段运动的时间; (3)水平半圆轨道对小车的作用力大小;(4)要使小车能通过水平半圆轨道,发动机开启的最短时间. 【答案】(16m/s ;(2)0.3s ;(3)42N .;(4)0.35s . 【解析】 【详解】(1)由小车在C 点受力得:2N c v F mg m R+=解得:C v =(2)从C 点到B 点,由动能定理得:2211222B C mgR mv mv =-解得:4m/s B v =小车在BD 段运动的加速度大小为:210m/s fa m== 由运动学公式:212B s v t at =-解得:0.3s t =(3)从B 点到D 点,由运动学公式:D B v v at =-,解得:1m/s D v =小车在水平半圆轨道所需的向心力大小:2Dn v F m r=,代入数据可得:4N n F =()222n F F mg =+水平半圆轨道对小车的作用力大小为:F =.(4)设小车恰能到C 点时的速度为1v ,对应发动机开启的时间为1t ,则:21v mg m R=211122Pt fl mgR mv --=解得10.325s t =.在此情况下从C 点到D 点,由动能定理得:211222D C mgR Fs mv mv -=-解得2 2.5Dv=-即小车无法到达D点.设小车恰能到D点时对应发动机开启的时间为2t,则有:() 20Pt f l s-+=,解得20.35st=.6.如图所示,两个半圆形的光滑细管道(管道内径远小于半圆形半径)在竖直平面内交叠,组成“S”字形通道.大半圆BC的半径R=0.9m,小半圆CD的半径r=0.7m.在“S”字形通道底部B连结一水平粗糙的细直管AB.一质量m=0.18kg的小球(可视为质点)从A点以V0=12m/s的速度向右进入直管道,经t1=0.5s 到达B点,在刚到达半圆轨道B点时,对B 点的压力为N B=21.8N.(取重力加速度g=10m/s2)求:(1)小球在B点的速度V B及小球与AB轨道的动摩擦因数μ ?(2)小球到达“S”字形通道的顶点D后,又经水平粗糙的细直管DE,从E点水平抛出,其水平射程S=3.2m.小球在E点的速度V E为多少?(3)求小球在到达C点后的瞬间,小球受到轨道的弹力大小为多少?方向如何?【答案】(1)V B=10m/s ,μ=0.4(2)V E=S/ t=4m/s(3) N C=18.25N 方向向上【解析】【详解】(1)根据牛顿第二定律有N B-mg=mV B2/RV B=10m/sa=(V0-V B)/t=4m/s2μmg=m a a =mg μ=0.4(2)H=2R+2r=3.2m2HgV E=S/ t=4m/s(3)N C- mg=mV C2/r1 2m V B2=2mg R+12m V C2N C=18.25N 方向向上7.如图所示,将一根弹簧和一个小圆环穿在水平细杆上,弹簧左端固定,右端与质量为m 的小圆环相接触,BC 和CD 是由细杆弯成的1/4圆弧,BC 分别与杆AB 和弧CD 相切,两圆弧的半径均为R .O 点为弹簧自由端的位置.整个轨道竖直放置,除OB 段粗糙外,其余部分均光滑.当弹簧的压缩量为d 时释放,小圆环弹出后恰好能到达C 点,返回水平杆时刚好与弹簧接触,停在O 点,(已知弹簧弹性势能与压缩量的平方成正比,小球通过B 处和C 处没有能量损失),问:(1)当为弹簧的压缩量为d 时,弹簧具有的弹性势能P E 是多少?(2)若将小圆环放置在弹簧的压缩量为2d 时释放,求小圆环到达最高点D 时,轨道所受到的作用力.(3)为了使物块能停在OB 的中点,弹簧应具有多大的弹性势能?【答案】(1)P 2E mgR =(2)9mg ,方向竖直向上(3)''P 1=()2E n mgR + (n =0、1、2) 【解析】 【分析】 【详解】(1)设小圆环与OB 之间的摩擦力为f ,OB=L ;从释放到回到O 点,由能量关系可知,当弹簧的压缩量为d 时,弹簧具有的弹性势能P 2E fL =小圆环从释放能到达C 点到,由能量关系可知0P E fL mgR --=可得:P 2E mgR =(2)因弹簧弹性势能与压缩量的平方成正比,则弹簧的压缩量为2d 时弹性势能为E P ´=4E P =8mgR小圆环到达最高点D 时:'2P D 122E mv mg R fL =+⋅+解得D 10v gR =在最高点D 时由牛顿第二定律:2Dv N mg m R+=解得N =9mg ,方向竖直向下由牛顿第三定律可知在D 点时轨道受到的作用为9mg ,方向竖直向上;(3)为了使物块能停在OB 的中点,则要求滑块到达的最高点为D 点,然后返回,则''P 23E fL mgR mgR ≤+=为了使物块能停在OB 的中点,同时还应该满足:''P 1(21)()22L E n f n mgR =+⋅=+ 则只能取n =0、1、2;8.如图为一水平传送带装置的示意图.紧绷的传送带AB 始终保持 v 0=5m/s 的恒定速率运行,AB 间的距离L 为8m .将一质量m =1kg 的小物块轻轻放在传送带上距A 点2m 处的P 点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N .小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.求:(1)该圆轨道的半径r ;(2)要使小物块能第一次滑上圆形轨道达到M 点,M 点为圆轨道右半侧上的点,该点高出B 点0.25 m ,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围.【答案】(1)0.5r m =(2)77?.5,05?.5m x m x m ≤≤≤≤ 【解析】 【分析】 【详解】试题分析:(1)小物块在传送带上匀加速运动的加速度25/a g m s μ==小物块与传送带共速时,所用的时间01v t s a== 运动的位移02.52v x m a∆==<L -2=6m 故小物块与传送带达到相同速度后以05/v m s =的速度匀速运动到B ,然后冲上光滑圆弧轨道恰好到达N 点,故有:2Nv mg m r=由机械能守恒定律得22011(2)22N mv mg r mv =+,解得0.5r m = (2)设在距A 点x 1处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒得:1()mg L x mgh μ-= 代入数据解得17.5?x m = 设在距A 点x 2处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:2()mg L x mgR μ-=代入数据解得27?x m =则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围;同理,只要过最高点N 同样也能过圆心右侧的M 点,由(1)可知38 2.5 5.5?x m m m -== 则:0 5.5x m ≤≤.故小物块放在传送带上放在传送带上距A 点的距离范围:77?.505?.5m x m x m ≤≤≤≤和 考点:考查了相对运动,能量守恒定律的综合应用9.如图所示,ABC 为竖直面内一固定轨道,AB 段是半径为R 的14光滑圆弧,水平段与圆弧轨道相切于B ,水平段BC 长度为L ,C 端固定一竖直挡板.一质量为m 的小物块自A 端从静止开始沿圆轨道下滑,与挡板共发生了两次碰撞后停止在水平段B 、C 之间的某处,物块每次与挡板碰撞不损失机械能(即碰撞前、后速率相同).不计空气阻力,物块与水平段BC 间的动摩擦因数为μ,重力加速度为g .试求物块 (1)第一次与挡板碰撞时的速率; (2)在水平轨道上滑行的总路程;(3)最后一次滑到圆轨道底端B 处对圆轨道的压力.【答案】(1) 12()v g R L μ-RS μ=(3) 物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83L mg R μ骣琪-琪桫 【解析】 【详解】(1)对物块第一次从A 到C 过程,根据动能定理:2112mgR mgL mv -=μ ① 解得第一次碰撞挡板的速率12()v g R L μ-(2)设物块质量为m ,在水平轨道上滑行的总路程为S ,对物块从开始下滑到停止在水平轨道上的全过程,根据动能定理:mgR -μmg ·S =0③解得RS μ=④(3)设物块最后一次经过圆弧轨道底端B 时的速率为v 2,对圆轨道的压力为FN ,则:22N v F mg m R-= ⑤第一种可能情况:物块与挡板第二次碰撞后,向右运动还未到B 点时即停下,则:22122mgR mg L mv -⋅=μ⑥由⑤⑥解得43N L F mg R ⎛⎫=- ⎪⎝⎭μ ⑦第二种可能情况:物块与挡板第二次碰撞后,向右可再一次滑上光滑圆弧轨道,则:22142mgR mg L mv -⋅=μ ⑧由⑤⑧解得83N L F mg R μ⎛⎫=- ⎪⎝⎭⑨物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83Lmg R μ骣琪-琪桫10.在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ. B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【解析】 【详解】设在发生碰撞前的瞬间,木块A 的速度大小为v 0;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量守恒定律和动量守恒定律,得2220121112222mv mv mv =+⋅ 0122mv mv mv =+ ,式中,以碰撞前木块A 的速度方向为正,联立解得:13v v =-,2023v v = 设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得21112mgd mv μ=, 2221222m gd mv μ=⋅() .按题意有:21d d d =+ . 联立解得:0185v gd =μ11.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =12.如图所示,物块B 静止放置在水平面上,物块A 以一定的初速度v 0冲向B ,若在物块A 、B 正对的表面加上粘合剂,则物块A 、B 碰后一起沿水平面运动的最大距离为l ;若在物块A 、B 正对的表面加上弹性装置,则两物块将发生弹性正碰,碰后两物块间的最大距离为5l 。
动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0。
02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv=12m/s C 。
W=0 D 。
W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C. gh v 220+ D 。
gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2—7—3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________。
例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
高中物理【动能和动能定理】专题训练练习题课时作业(A) [A 组 基础达标练]1.如图所示,电梯质量为M ,在它的水平地板上放置一质量为m 的物体。
电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v 1增加到v 2时,上升高度为H ,重力加速度为g ,则在这个过程中,下列说法或表达式正确的是( )A .对物体,动能定理的表达式为W N =12m v 22,其中W N 为支持力做的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力做的功C .对物体,动能定理的表达式为W N -mgH =12m v 22-12m v 12 D .对电梯,其所受合力做的功为12M v 22-12M v 12-mgH 解析:物体受重力和支持力作用,根据动能定理得W合=W N -mgH =12m v 22-12m v 12,故选项C 正确,A 、B 错误;对电梯,合力做的功等于电梯动能的变化量,故选项D 错误。
答案:C2.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R 。
一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做的功为( )A .μmgR B.12mgR C .mgRD .(1-μ)mgR解析:BC 段物体所受摩擦力F f =μmg ,位移为R ,故BC 段摩擦力对物体做的功W =-F f R =-μmgR ,对全程由动能定理可知,mgR +W 1+W =0,解得W 1=μmgR -mgR ,故AB 段克服摩擦力做的功为W 克=-W 1=mgR -μmgR =(1-μ)mgR ,故A 、B 、C 错误,D 正确。
答案:D3.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下从平衡位置P 点很缓慢地移动到Q 点,如图所示,则力F 所做的功为( ) A .mgl cos θ B .Fl sin θ C .mgl (1-cos θ)D .Fl (1-sin θ)解析:小球的运动过程是缓慢的,因而小球任何时刻均可看作是平衡状态,力F 的大小在不断变化,F 做功是变力做功。
高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理mgR -W f =12mv 2W f =1.5J(2)由牛顿第二定律可知:2N v F mg m R-=解得:4.5N F N =(3)小球离开圆弧后做平抛运动根据动能定理可知:22111m m 22mgh v v =-解得:152m/s v =2.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;3.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m4.如图所示,半径为R的圆管BCD竖直放置,一可视为质点的质量为m的小球以某一初速度从A点水平抛出,恰好从B点沿切线方向进入圆管,到达圆管最高点D后水平射出.已知小球在D点对管下壁压力大小为12mg,且A、D两点在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:(1)小球在A 点初速度的大小; (2)小球在D 点角速度的大小;(3)小球在圆管内运动过程中克服阻力做的功.【答案】(3)14mgR【解析】 【分析】(1)根据几何关系求出平抛运动下降的高度,从而求出竖直方向上的分速度,根据运动的合成和分解求出初速度的大小.(2)根据向心力公式求出小球在D 点的速度,从而求解小球在D 点角速度. (3)对A 到D 全程运用动能定理,求出小球在圆管中运动时克服阻力做的功. 【详解】(1)小球从A 到B ,竖直方向: v y 2=2gR(1+cos 60°)解得v y在B 点:v 0=60y v tan(2)在D 点,由向心力公式得mg-12mg =2Dmv R解得v Dω=D v R (3)从A 到D 全过程由动能定理:-W 克=12mv D 2-12mv 02 解得W 克=14mgR. 【点睛】本题综合考查了平抛运动和圆周运动的基础知识,难度不大,关键搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源.5.如图,图象所反映的物理情景是:物体以大小不变的初速度v 0沿木板滑动,若木板倾角θ不同,物体沿木板上滑的距离S 也不同,便可得出图示的S -θ图象.问: (1)物体初速度v 0的大小.(2)木板是否粗糙?若粗糙,则动摩擦因数μ为多少? (3)物体运动中有否最大加速度以及它发生在什么地方?【答案】(1)017.3m /s v = (2)0.75μ= (3)最大加速度点坐标()53,12m sθ︒'==【解析】 【分析】 【详解】(1)当θ=90º时,物体做竖直上抛运动,根据速度位移公式可知:01210317.3m /s v gs ===(2)当θ=0º时,根据动能定理得,201mg 2s mv μ=,解得:203000.75221020v gs μ===⨯⨯(3)加速度cos sin 3cos sin cos sin 4mg mg a g g g mμθθμθθθθ+⎛⎫==+=+ ⎪⎝⎭得到,当θ=53º时,α有极大值2m 12.5m /s a = ,由动能定理得,20102mv mas '-= ,所以12m s '= 所以最大加速度点坐标()53,12m s θ︒'==6.质量为2kg 的物体,在竖直平面内高h = 1m 的光滑弧形轨道A 点,以v =4m/s 的初速度沿轨道滑下,并进入BC 轨道,如图所示。
高中物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。
高考物理复习专题五动能定理能量守恒定律一、单选题1.如图所示,在竖直平面内有一固定轨道,其中AB是长为R的粗糙水平直轨道,BCD是圆心为O,半径为R的3/4光滑圆弧轨道,两轨道相切于B点.在推力作用下,质量为m的小滑块从A 点由静止开始做匀加速直线运动,到达B点时即撤去推力,小滑块恰好能沿圆轨道经过最高点C。
重力加速度大小为g,取AB所在的水平面为零势能面。
则小滑块()A.在AB段运动的加速度为2gB.经B点时加速度为零C.在C点时合外力的瞬时功率为D.上滑时动能与重力势能相等的位置在直径DD′上方2.运输人员要把质量为,体积较小的木箱拉上汽车。
现将长为L的木板搭在汽车尾部与地面间,构成一固定斜面,然后把木箱沿斜面拉上汽车。
斜面与水平地面成30o角,拉力与斜面平行。
木箱与斜面间的动摩擦因数为,重力加速度为g。
则将木箱运上汽车,拉力至少做功()A.B.C.D.3.如图所示,轻质弹簧的一端固定在粗糙斜面的挡板O点,另一端固定一个小物块。
小物块从P1位置(此位置弹簧伸长量为零)由静止开始运动,运动到最低点P2位置,然后在弹力作用下上升运动到最高点P3位置(图中未标出)。
在此两过程中,下列判断正确的是()A.下滑和上滑过程弹簧和小物块系统机械能守恒B.下滑过程物块速度最大值位置比上滑过程速度最大位置高C.下滑过程弹簧和小物块组成系统机械减小量比上升过程小D.下滑过程克服弹簧弹力和摩擦力做功总值比上滑过程克服重力和摩擦力做功总值小4.如图所示,水平桌面上有一小车,装有砂的砂桶通过细绳给小车施加一水平拉力,小车从静止开始做直线运动。
保持小车的质量M不变,第一次实验中小车在质量为m1的砂和砂桶带动下由静止前进了一段距离s;第二次实验中小车在质量为m2的砂和砂桶带动下由静止前进了相同的距离s,其中。
两次实验中,绳对小车的拉力分别为T1和T2,小车,砂和砂桶系统的机械能变化量分别为和,若空气阻力和摩擦阻力的大小保持不变,不计绳,滑轮的质量,则下列分析正确的是()A.B.C.D.5.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置无初速释放,在小球下摆到最低点的过程中,下列说法正确的是( )A.绳对球的拉力不做功B.球克服绳拉力做的功等于球减少的机械能C.绳对车做的功等于球减少的动能D.球减少的重力势能等于球增加的动能6.如图所示,自动卸货车静止在水平地面上,车厢在液压机的作用下,θ角缓慢增大,在货物相对车厢仍然静止的过程中,下列说法正确的是()A.货物受到的支持力变小B.货物受到的摩擦力变小C.货物受到的支持力对货物做负功D.货物受到的摩擦力对货物做负功7.一质量为0.6kg的物体以20m/s的初速度竖直上抛,当物体上升到某一位置时,其动能减少了18J,机械能减少了3J。
考点规范练17动能和动能定理一、单项选择题1.下列有关动能的说法正确的是()A.物体只有做匀速运动时,动能才不变B.物体的动能变化时,速度不一定变化C.物体做平抛运动时,水平速度不变,动能不变D.物体做自由落体运动时,物体的动能增加2.一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则下列碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k正确的是()A.Δv=0B.Δv=12 m/sC.ΔE k=1.8 JD.ΔE k=10.8 J3.光滑斜面上有一个小球自高为h的A处由静止开始滚下,抵达光滑水平面上的B点时速度大小为v0。
光滑水平面上每隔相等的距离设置了一个与小球运动方向垂直的活动阻挡条,如图所示,小球越过n条活动阻挡条后停下来。
若让小球从h高处以初速度v0滚下,设小球每次越过活动阻挡条时损失的动能相等,则小球能越过的活动阻挡条的条数是()A.nB.2nC.3nD.4n4.(2021·湖北武汉月考)物块在水平面上以初速度v0直线滑行,前进x0后恰好停止运动,已知物块与水平面之间的动摩擦因数为μ,且μ的大小与物块滑行的距离x的关系为μ=kx(k为常数),重力加速度为g。
则() A.v0=√kgx02 B.v0=√2kgx02D.v0=2√kgx02C.v0=√kgx0225.(2021·广东深圳月考)如图所示,物块从固定斜面的最高点由静止滑下,冲上右侧光滑曲面,经过最低点连接处时无能量损失。
已知物块与斜面的动摩擦因数μ=0.25,斜面高度h=1.20 m,斜面倾角θ=37°,g取10 m/s2,sin 37°=0.6,物块在曲面上升的最大高度为()A.0.70 mB.0.80 mC.0.96 mD.1.20 m6.(2021·湖北学业水平选择性考试模拟演练)如图所示,两倾角均为θ的光滑斜面对接后固定在水平地面上,O点为斜面的最低点。
高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。
高考物理动能与动能定理练习题一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB 是在竖直平面内的1圆周, B 点离地面的高度h=0.8m,该处切4线是水平的,一质量为m=200g的小球(可视为质点)自 A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从 B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点 D 到C点的距离为x=4m,重力加速度为g=10m/ s2.求:(1)圆弧轨道的半径(2)小球滑到 B 点时对轨道的压力.【答案】(1)圆弧轨道的半径是 5m.(2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下.【解析】(1)小球由 B 到 D 做平抛运动,有: h= 1gt2 2x=v B t解得:v B xg1010m / s 420.82hA 到B 过程,由动能定理得:12-0 mgR=mv B2解得轨道半径R=5m(2)在 B 点,由向心力公式得:N mg m v B2R解得: N=6N根据牛顿第三定律,小球对轨道的压力N =N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。
游客乘坐的滑草车(两者的总质量为60kg),从倾角为53的光滑直轨道AC 上的 B 点由静止开始下滑,到达C 点后进入半径为R5m ,圆心角为53的圆弧形光滑轨道CD,过 D 点后滑入倾角为(可以在 0剟75 范围内调节)、动摩擦因数为3的足够长的草地轨道3DE 。
已知 D 点处有一小段光滑圆弧与其相连,不计滑草车在 D 处的能量损失,B 点到C 点的距离为L0=10m,g10m/s 。
求:(1)滑草车经过轨道 D 点时对轨道 D 点的压力大小;(2)滑草车第一次沿草地轨道DE 向上滑行的时间与的关系式;(3)取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan 的关系式。
t2【答案】 (1) 3000N3; (2);(3)见解析sin cos3【解析】【分析】【详解】(1)根据几何关系可知CD 间的高度差HCD R 1cos532m从 B 到D点,由动能定理得mg L0 sin53 H CD1mv D202解得v D10 2m/s对 D 点,设滑草车受到的支持力F D,由牛顿第二定律F D mg m v D2 R解得F D3000N由牛顿第三定律得,滑草车对轨道的压力为3000N 。
(2)滑草车在草地轨道DE 向上运动时,受到的合外力为F合 mgsin mg cos 由牛顿第二定律得,向上运动的加速度大小为F合g sin g cosam因此滑草车第一次在草地轨道DE 向上运动的时间为tv Dg sin g cos代入数据解得t23cos sin3(3)选取小车运动方向为正方向。
①当0 时,滑草车沿轨道DE 水平向右运动,对全程使用动能定理可得mg L0 sin R(1cos) +W f 1 =00代入数据解得Wf 16000J故当0 时,滑草车在斜面上克服摩擦力做的功为W克16000J②当030时,则g sin g cos滑草车在草地轨道DE 向上运动后最终会静止在DE 轨道上,向上运动的距离为x2v D 22( g sin g cos )摩擦力做功为Wf 2mg cos x2联立解得W f 26000(J) 3 tan1故当030时,滑草车在斜面上克服摩擦力做的功为W克26000(J)3 tan1③当3075 时g sin g cos滑草车在草地轨道DE 向上运动后仍会下滑,若干次来回运动后最终停在 D 处。
对全程使用动能定理可得mg L0 sin R(1cos) +W f 3 =00代入数据解得W f 36000J故当 3075时,滑草车在斜面上克服摩擦力做的功为W克36000J所以,当0 或3075 时,滑草车在斜面上克服摩擦力做的功为6000J;当0306000(J) 。
时,滑草车在斜面上克服摩擦力做的功为3 tan13.如图所示,在某竖直平面内,光滑曲面AB 与水平面 BC 平滑连接于 B 点, BC右端连接内壁光滑、半径 r=0.2m 的四分之一细圆管CD,管口 D 端正下方直立一根劲度系数为k=100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口 D 端平齐,一个质量为 1kg 的小球放在曲面 AB 上,现从距 BC的高度为 h=0.6m 处静止释放小球,它与BC间的动摩擦因数μ=0.5,小球进入管口 C 端时,它对上管壁有F N=2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p=0.5J。
取重力加速度g=10m/s2。
求:(1)小球在 C 处受到的向心力大小;(2)在压缩弹簧过程中小球的最大动能E km;(3)小球最终停止的位置。
【答案】 (1)35N; (2)6J; (3)距离 B 0.2m 或距离 C 端 0.3m【解析】【详解】(1)小球进入管口 C 端时它与圆管上管壁有大小为F 2.5mg 的相互作用力故小球受到的向心力为F向 2.5mg mg 3.5mg 3.5 110 35N(2)在 C 点,由F向= v c2r代入数据得1mv c2 3.5J2在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离 D 端的距离为x0则有kx0mg解得x 0mg 0.1mk设最大速度位置为零势能面,由机械能守恒定律有mg(r x 0 )1mv c2EkmE p2得Ekmmg (r x 0 )1mv c 2 E p 3 3.5 0.5 6J2(3)滑块从 A 点运动到 C 点过程,由动能定理得mg 3rmgs1 mv c 22解得 BC 间距离s 0.5m小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与BC 水平面相互作用的过程中,设物块在BC 上的运动路程为s ,由动能定理有mgs1mv c 22解得s0.7m故最终小滑动距离 B 为 0.7 0.5m0.2m 处停下 .【点睛】经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
4. 如图所示,小滑块(视为质点)的质量 m= 1kgAB 的倾角 ;固定在地面上的斜面=37 °、长 s=1m ,点 A 和斜面最低点 B 之间铺了一层均质特殊材料,其与滑块间的动摩擦 因数 μ可在 0≤μ≤1.5之间调节。
点 B 与水平光滑地面平滑相连,地面上有一根自然状态下 的轻弹簧一端固定在 O 点另一端恰好在 B 点。
认为滑块通过点B 前、后速度大小不变;最大静摩擦力等于滑动摩擦力。
取g=10m/s 2 , sin37 °=0.6, cos37 °=0.8,不计空气阻力。
(1)若设置 μ=0,将滑块从 A 点由静止释放,求滑块从点A 运动到点B 所用的时间。
(2)若滑块在 A 点以 v 0=lm/s 的初速度沿斜面下滑,最终停止于 B 点,求 μ的取值范围。
【答案】( 1)t31313 s;( 2)或316。
3324【解析】【分析】【详解】(1)设滑块从点 A 运动到点B的过程中,加速度大小为 a ,运动时间为t,则由牛顿第二定律和运动学公式得mg sin mas 1at2 2解得t 3 s3(2)滑块最终停在 B 点,有两种可能:①滑块恰好能从 A 下滑到B,设动摩擦因数为 1 ,由动能定律得:mg sin gs 1 mg cos gs01mv02 2解得13 116②滑块在斜面 AB 和水平地面间多次反复运动,最终停止于 B 点,当滑块恰好能返回A 点,由动能定理得2 mg cos g2s01mv02 2解得1 232此后,滑块沿斜面下滑,在光滑水平地面和斜面之间多次反复运动,最终停止于 B 点。
当滑块恰好能静止在斜面上,则有mg sin3mg cos解得3 34所以,当213AB 和水平地面间多次反复运动,3 ,即时,滑块在斜面324最终停止于 B 点。
1313综上所述,的取值范围是或3。
324165.如图所示,竖直平面内有一固定的光滑轨道ABCD,其中AB 是足够长的水平轨道, B 端与半径为 R 的光滑半圆轨道BCD 平滑相切连接,半圆的直径BD 竖直, C 点与圆心O 等高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速运动并与Q 发生对心碰撞,碰撞后瞬间小球 Q 对半圆轨道 B 点的压力大小为自身重力的 7 倍,碰撞后小球P 恰好到达 C 点.重力加速度为 g.(1)求碰撞前小球P 的速度大小;(2)求小球Q 离开半圆轨道后落回水平面上的位置与 B 点之间的距离;(3)若只调节光滑半圆轨道BCD半径大小,求小球Q 离开半圆轨道 D 点后落回水平面上的位置与 B 点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)( 2)( 3)【解析】【分析】【详解】设小球 Q 在 B 处的支持力为;碰后小球的速度为;小球 Q 到达 D 点的速度为(1)由牛顿第三定律得小球Q 在 B 点Q 的速度为.,小球P 的速度为;碰前小球P碰后小球Q 在B 点由牛顿第二定律得:碰后小球P 恰好到 C 点,由动能定理得: P、Q 对心碰撞,由动量守恒得:联立解得 :(2)小球 Q 从 B 到 D 的过程中,由动能定理得:解得,所以小球Q 能够到达 D 点由平抛运动规律有:联立解得(3)联立解得 :当时 x 有最大值所以【点睛】解决本题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确分析能量是如何转化,分段运用能量守恒定律列式是关键.6.如图所示,在方向竖直向上、大小为6A、 B E=1×10V/m 的匀强电场中,固定一个穿有两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m. A、 B 用一根绝缘轻杆相连, A 带的电荷量为7﹣q=+7 × 10C,B 不带电,质量分别为m A=0.01kg、m B=0.08kg.将两小球从圆环上的图示位置( A 与圆心 O 等高, B 在圆心 O 的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s 2.(1)通过计算判断,小球 A 能否到达圆环的最高点C?(2)求小球 A 的最大速度值.(3)求小球 A 从图示位置逆时针转动的过程中,其电势能变化的最大值.【答案】(1) A 不能到达圆环最高点(2)22m/s(3)0.1344J 3【解析】【分析】【详解】试题分析: A、B 在转动过程中,分别对A、 B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点;A、B 做圆周运动的半径和角速度均相同,对A、 B 分别由动能定理列方程联立求解最大速度;A、 B 从图示位置逆时针转动过程中,当两球速度为0 时,根据电势能的减少与电场力做功关系求解.(1)设 A、 B 在转动过程中,轻杆对 A、 B 做的功分别为 W T和W T,根据题意有: W T W T 0设 A、 B 到达圆环最高点的动能分别为对A 根据动能定理: qER﹣ m A gR+W T1=E KA对 B 根据动能定理:W T1m B gR E联立解得: E KA+E KB=﹣ 0.04J由此可知:A 在圆环最高点时,系统动能为负值,故 A 不能到达圆环最高点(2)设 B 转过α角时, A、 B 的速度大小分别为v 、 v ,A B因 A、 B 做圆周运动的半径和角速度均相同,故:v A=v B对 A 根据动能定理:qER sin m A gRsin W T 21m A v A2 2对 B 根据动能定理:W T 2m B gR 1cos 1m B v B2 2联立解得: v A283sin4cos4 9由此可得:当 tan 3 2 2m / s 时, A、 B 的最大速度均为v max43(3) A、 B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得: 3sin α+4cosα﹣ 4=0解得: sin 2425或sin α=0(舍去)所以 A 的电势能减少:E P qER sin 84J 0.1344 J 625点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.7.在粗糙的水平桌面上有两个静止的木块 A 和 B,两者相距为d.现给 A 一初速度,使A 与 B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ. B 的质量为 A 的 2 倍,重力加速度大小为g.求 A 的初速度的大小.E KA、 E KB【答案】18 gd5【解析】【详解】设在发生碰撞前的瞬间,木块 A 的速度大小为v0;在碰撞后的瞬间, A 和 B 的速度分别为v1和 v2.在碰撞过程中,由能量守恒定律和动量守恒定律,得1mv021mv1212mv22222mv0mv12mv2,式中,以碰撞前木块 A 的速度方向为正,联立解得:v1v0, v22v0 33设碰撞后 A 和 B 运动的距离分别为d1和 d2,由动能定理得mgd11mv12,2(2m) gd 212mv22.2按题意有: d d2d1.联立解得:v0=18gd58.如图所示, AB 为倾角37 的斜面轨道,BP为半径R=1m的竖直光滑圆弧轨道,O 为圆心,两轨道相切于 B 点, P、 O 两点在同一竖直线上,轻弹簧一端固定在 A 点,另一端在斜面上 C 点处,轨道的AC 部分光滑, CB部分粗糙, CB长 L= 1.25m,物块与斜面间的动摩擦因数为= 0.25,现有一质量 m=2kg 的物块在外力作用下将弹簧缓慢压缩到 D 点后释放 (不栓接 ),物块经过 B 点后到达 P 点,在 P 点物块对轨道的压力大小为其重力的 1.5倍, sin370.6,cos370.8 , g=10m/s 2. 求:(1)物块到达 P 点时的速度大小v P;(2)物块离开弹簧时的速度大小v C;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m.【答案】 (1) v P 5m/s(2) v C=9m/s (3)v m6m/s【解析】【详解】(1)在 P 点,根据牛顿第二定律:2v Pmg N P m解得 : v P 2.5gR5m/s(2)由几何关系可知BP 间的高度差h BP R(1 cos37 )物块 C 至 P 过程中,根据动能定理:mgL sin37mgh BP mgLcos37 = 1mv P21mv C2 22联立可得: v C=9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的 E 点,物块 C 至 E 过程中根据动能定理:mgL cos37mgLsin37 mgRsin 53 =01mv m22解得: v m6m/s9.如图,质量为m=1kg 的小滑块(视为质点)在半径为R=0.4m 的 1/4 圆弧 A 端由静止开始释放,它运动到 B 点时速度为v=2m/s.当滑块经过 B 后立即将圆弧轨道撤去.滑块在光滑水平面上运动一段距离后,通过换向轨道由C点过渡到倾角为θ=37、°长s=1m的斜面CD 上, CD 之间铺了一层匀质特殊材料,其与滑块间的动摩擦系数可在0≤μ≤之1.5间调节.斜面底部 D 点与光滑地面平滑相连,地面上一根轻弹簧一端固定在O 点,自然状态下另一端恰好在 D 点.认为滑块通过 C 和 D 前后速度大小不变,最大静摩擦力等于滑动摩擦力.取 g=10m/s 2, sin37 =0°.6, cos37 =0°.8,不计空气阻力.(1)求滑块对 B 点的压力大小以及在AB 上克服阻力所做的功;(2)若设置μ =0,求质点从 C 运动到 D 的时间;(3)若最终滑块停在 D 点,求μ的取值范围.【答案】(1) 20N, 2J;( 2)1s;( 3) 0.125 ≤μ<0.75 或μ =1.3【解析】【分析】(1)根据牛顿第二定律求出滑块在 B 点所受的支持力,从而得出滑块对 B 点的压力,根据动能定理求出 AB 端克服阻力做功的大小.(2)若μ =0,根据牛顿第二定律求出加速度,结合位移时间公式求出 C 到 D 的时间.(3)最终滑块停在 D 点有两种可能,一个是滑块恰好从 C 下滑到 D,另一种是在斜面CD 和水平面见多次反复运动,最终静止在 D 点,结合动能定理进行求解.【详解】(1)滑块在 B 点,受到重力和支持力,在 B 点,根据牛顿第二定律有:F- mg= m v2,R代入数据解得: F=20N,由牛顿第三定律得: F′=20N.从A B mgR- W=12到,由动能定理得:2mv ,代入数据得: W=2J.(2)在 CD间运动,有: mgsin θ =ma,加速度为: a=gsin θ=10×0.6m/s2=6m/s2,根据匀变速运动规律有:s= vt+ 1at22代入数据解得:t=1 s.3(3)最终滑块停在 D 点有两种可能:a、滑块恰好能从 C 下滑到 D.则有:11mv2,mgsin θ?s-μmg cos θ?s= 0-2代入数据得:μ1=1,b、滑块在斜面CD 和水平地面间多次反复运动,最终静止于 D 点.当滑块恰好能返回 C 有: - μ1m gcos θ ?2s= 0-1mv2,2代入数据得到:μ1=0.125,当滑块恰好能静止在斜面上,则有:mgsinθ=μ2mgcosθ,代入数据得到:μ=0.75.所以,当 0.125 ≤μ< 0.75,滑块在 CD 和水平地面间多次反复运动,最终静止于 D 点.综上所述,μ的取值范围是0.125 ≤μ< 0.75 或μ=1.【点睛】解决本题的关键理清滑块在整个过程中的运动规律,运用动力学知识和动能定理进行求解,涉及到时间问题时,优先考虑动力学知识求解.对于第三问,要考虑滑块停在D 点有两种可能.10.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。