专题复习《圆锥曲线填空选择题专练》
- 格式:doc
- 大小:443.00 KB
- 文档页数:7
圆锥曲线高考选择填空压轴题专练A 组一、选择题1.过抛物线C : 24y x =上一点()00,P x y 作两条直线分别与抛物线相交于A , B 两点,连接AB ,若直线AB 的斜率为1,且直线PA , PB 与坐标轴都不垂直,直线PA ,PB 的斜率倒数之和为3,则0y =( )A. 1B. 2C. 3D. 4 【答案】D【解析】设直线,PA PB 的斜率分别为12,k k ,因为点()00,P x y 在抛物线24y x =上,所以200,4y P y ⎛⎫⎪⎝⎭,故直线PA 的方程为20014y y y k x ⎛⎫-=- ⎪⎝⎭ ,代入抛物线方程得220011440y y y y k k -+-= ,其解为0y 和014y k - ,则()201021144,4y k A y k k ⎛⎫- ⎪- ⎪⎝⎭ ,同理可得()202022244,4y k B y k k ⎛⎫- ⎪- ⎪⎝⎭,则由题意,得()()001222010222124414444y y k k y k y k k k ⎛⎫--- ⎪⎝⎭=--- ,化简,得01211214y k k ⎛⎫=+-=⎪⎝⎭, 故选D. 2.已知双曲线221221(0,0)x y C a b a b-=>>:,抛物线224C y x =:, 1C 与2C 有公共的焦点F , 1C 与2C 在第一象限的公共点为M ,直线MF 的倾斜角为θ,且12cos 32aaθ-=-,则关于双曲线的离心率的说法正确的是()A. 仅有两个不同的离心率12,e e 且()()121,2,4,6e e ∈∈B. 仅有两个不同的离心率12,e e 且()()122,3,4,6e e ∈∈ C. 仅有一个离心率e 且()2,3e ∈ D. 仅有一个离心率e 且()3,4e ∈ 【答案】C 【解析】24y x = 的焦点为()1,0 , ∴ 双曲线交点为()1,0,即1c = ,设M 横坐标为x ,则0000011,1,121p a x ex a x x a x a a++=-+=-=- ,001111112cos 1132111a x aa a x a aθ+----===++-+- , 可化为2520a a -+= , ()22112510,2510g e e e a a ⎛⎫⨯-⨯+==-+= ⎪⎝⎭,()()()()200,10,20,30,1,2510g g g g e e e >∴-+= 只有一个根在()2,3 内,故选C.3.已知点1F 、2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过点1F 且垂直于x 轴的直线与椭圆交于A 、B 两点,若2ABF 为锐角三角形,则该椭圆的离心率的取值范围是( )A. ()1 B.⎫⎪⎪⎝⎭C.⎛⎝⎭D. )1,1【答案】D【解析】由于2ABF 为锐角三角形,则2212145,tan 12b AF F AF F ac∠<∠=<, 22b ac < , 2222,210a c ac e e -+-,1e <或1e >,又01e <<,11e << ,选D .4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为A.B. C. D. 2【答案】A【解析】由()2,0F c 到渐近线by x a=的距离为d b == ,即有2AF b = ,则23BF b = ,在2AF O ∆ 中, 22,,,bOA a OF c tan F OA a==∠=224tan 1bb a AOB a b a ⨯∠==⎛⎫- ⎪⎝⎭,化简可得222a b = ,即有222232c a b a =+= ,即有62c e a == ,故选A. 5.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( )A. 2y x =+或2y x =--B. 2y x =+C. 22y x =+或22y x =-+D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .6.设A 是双曲线22221(0,0)x y a b a b-=>>的右顶点, (),0F c 是右焦点,若抛物线224a y x c=-的准线l 上存在一点P ,使30APF ∠=,则双曲线的离心率的范围是( )A. [)2,+∞B. (]1,2C. (]1,3D. [)3,+∞ 【答案】A【解析】抛物线的准线方程为2a x c =,正好是双曲的右准线.由于AF= c a -,所以AF弦,圆心)2a c O c a ⎛⎫+- ⎪ ⎪⎝⎭,半径R c a =-圆上任取一点P, 30APF ∠=,现在转化为圆与准线相交问题.所以()22a c a c a c+-≤-,解得2e ≥.填A. 7.中心为原点O 的椭圆焦点在x 轴上, A 为该椭圆右顶点, P 为椭圆上一点,090OPA ∠=,则该椭圆的离心率e 的取值范围是 ( )A. 1,12⎡⎫⎪⎢⎣⎭B. ,12⎛⎫⎪ ⎪⎝⎭C. 1,23⎡⎫⎪⎢⎪⎣⎭D. 0,2⎛ ⎝⎭【答案】B【解析】设椭圆标准方程为22221(0)x y a b a b+=>>,设P(x,y),点P 在以OA 为直径的圆上。
圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b -=与椭圆22221x y m b+=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( )B. C.D. 29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(030.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M ,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF ∠的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.的离心率2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为( )ABCD44F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2| )A B C .4 D .846.已知F 1、F 2是双曲线 a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A . 147A 、F ,点B (0,b )则该双曲线离心率e 的值为( )A B C D 48.直线l 是双曲线O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .D . 49的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则与a b -的大小关系为A BCD .不确定.50.点P 为双曲线1C :和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( )ABCD .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P ,则曲线r 的离心率等于A B 2 C D 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= .61.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为l ,设抛物线上任意一点P 到直线l 的距离为m ,则||m PC +的最小值为 .62.设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则AFB △的面积为 . 63.已知直线1l :4360x y -+=和直线2:0l x =,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 .三、解答题:64.已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12F F ,,点P 在椭圆C 上,且12PF PF ⊥,14||3PF =,214||3PF =.(Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过点M (21)-,,交椭圆C 于A B ,两点,且点M 恰是线段AB 的中点,求直线l 的方程. 65.已知抛物线2:2(0)C y px p =>过点(12)A -,.(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与L 的距离等?若存在,求直线l 的方程;若不存在,请说明理由. 66.已知抛物线22(0)x py p =>.(Ⅰ)已知P 点为抛物线上的动点,点P 在x 轴上的射影是点M ,点A 的坐标是(42)-,,且||||PA PM +的最小值是4.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y 轴的交点为点E ,过点E 作抛物线的切线,求此切线方程; (Ⅱ)设过抛物线焦点F 的动直线l 交抛物线于A B ,两点,连接AO BO ,并延长分别交抛物线的准线于C D ,两点,求证:以CD 为直径的圆过焦点F .67.如图所示,已知椭圆2222:1(0)x y C a b a b+=>>,12A A ,分别为椭圆C 的左、右顶点.(Ⅰ)设12F F ,分别为椭圆C 的左、右焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,1||PF 取得最小值与最大值;(Ⅱ)若椭圆C 上的点到焦点距离的最大值为3,最小值为1,求椭圆C 的标准方程;(Ⅲ)若直线l :y kx m =+与(Ⅱ)中所述椭圆C 相交于A B ,两点(A B ,不是左、右顶点),且满足22AA BA ⊥,证明:直线l 过定点,并求出该定点的坐标.68.已知椭圆2222:1(0)x y C a b a b+=>>的离心率2e =12的交点F 恰好是该椭圆的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆222:3O x y +=的切线l 与椭圆相交于A B ,两点,那么以AB 为直径的圆是否经过定点?如果时,求出定点的坐标;如果不是,请说明理由.。
圆锥曲线专题练习一、选择题1.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( )A .2B .3C .2D .35.抛物线x y 102=的焦点到准线的距离是 ( )A .25 B .5 C .215 D .10 6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A .(7,B .(14,C .(7,±D .(7,-± 7.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,08.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 9.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=Q PF ,则双曲线的离心率e 等于( )A .12-B .2C .12+D .22+10.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( ) A .7 B .47 C .27 D .257 11.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程()A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92=12.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 13.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A .1(,44±B .1(,)84±C .1(,44D .1(,)8414.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为A .20B .22C .28D .2415.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫ ⎝⎛1,21 C .()2,1 D .()2,216.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x 17.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--)18.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( ) A .23 B .2 C .25D .3 二. 填空题19.若椭圆221x my +=,则它的长半轴长为_______________. 20.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。
高三专题复习圆锥曲线部分-----选择题、填空题1.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅= 的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .1(0,]2 C .(0,)2 D .[22.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 ( )A .B .C .(25),D .(23.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b 2,4b 2],则这一椭圆离心率e 的取值范围是 ( )A .]23,35[B .]22,33[C .]22,35[D .]23,33[ 4.已知抛物线)0(22>=p px y 焦点F 恰好是椭圆 12222=+by a x 的右焦点,且两条曲线交点的连线过点F ,则该椭圆的离心率为( )A 1 B .1) C D 5.如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为(A )3 (B )5 (C )25 (D )31+6.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )A .0⎛ ⎝⎦B .0⎛ ⎝⎦C .1⎫⎪⎪⎣⎭D .1⎫⎪⎪⎣⎭7.过双曲线22221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC = ,则双曲线的离心率是 ( )A 8.以椭圆22221(0)x y a b a b+=>>的右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于 ( ) A.23 C.49 8.已知双曲线22122:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点,它的准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离心率为( )A . 2B . 3C .233D .2 29.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为 ( ) A . 1312522=-y x B .1351222=-y x C .1512322=-y x D .1125322=-y x 10.已知F 为双曲线22a x -22by =1(a ,b >0)的右焦点,点P 为双曲线右支上一点,以线段PF 为直径的圆与圆x 2+y 2=a 2的位置关系是( ) A.相交 B.相切 C.相离 D.不确定11.若直线4=+ny mx 和⊙O :422=+y x 没有交点,则过点(,)m n 的直线与椭圆14922=+y x 的交点个数 ( ) A .至多一个 B .2个 C .1个 D .0个12.已知12F F ,为双曲线22221(00)a b x y a b a b≠-=>>且,的两个焦点,P 为双曲线右支上异于顶点的任意一点,O 为坐标原点.下面四个命题( )A.12PF F △的内切圆的圆心必在直线x a =上;B.12PF F △的内切圆的圆心必在直线x b =上;C.12PF F △的内切圆的圆心必在直线OP 上; D.12PF F △的内切圆必通过点0a (),.13.如果1F 为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当11PF F A ⊥,//PO AB (O 为椭圆的中心)时,椭圆的离心率为 .14.若双曲线22a x -22by =1的渐近线与方程为3)2(22=+-y x 的圆相切,则此双曲线的离心率为 . 15.双曲线221 916x y -=的两个焦点为12F F 、,点P 在该双曲线上,若120PF PF ⋅= ,则点P 到x 轴的距离为 .16.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF 21tan 21=∠F PF ,则椭圆的离心率为 ______________ .17.在平面直角坐标系中,椭圆2222x y a b +=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫ ⎪⎝⎭作圆的两切线互相垂直,则离心率e = .18.已知F 1、F 2是椭圆2222)10(a y a x -+=1(5<a <10)的两个焦点,B 是短轴的一个端点,则△F 1BF 2的面积的最大值是。
圆锥曲线选填练习一.选择题(共8小题)1.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则离心率为()A.B.2﹣C.﹣2D.﹣2.已知椭圆x2+y2=a2(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a的取值范围是()A.B.或C.或D.3.如图所示,A,B,C是双曲线=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是()A.B.C.D.34.已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为()A.B.C.D.5.若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()A.B.C.D.6.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.7.设F是双曲线的右焦点,双曲线两条渐近线分别为l1,l2,过F作直线l1的垂线,分别交l1,l2于A、B两点,且向量与同向.若|OA|,|AB|,|OB|成等差数列,则双曲线离心率e的大小为()A.B.C.D.28.已知F1、F2是双曲线(a>0,b>0)的左、右焦点,若在双曲线上的点P满足∠F1PF2=60°,且|OP|=a(O为坐标原点),则该双曲线的离心率是()A.2B.C.D.二.填空题(共7小题)9.已知Q为椭圆C:上一动点,且Q在y轴的右侧,点M(2,0),线段QM的垂直平分线交y轴于点N,则当四边形OQMN的面积取最小值时,点Q的横坐标为.10.已知点F(1,0)是抛物线C:y2=mx的焦点,经过点A(﹣1,0)的直线l 与抛物线C交于两点M,N,若∠MFN是锐角,且直线l与双曲线4x2+ny2=1只有一个公共点,则双曲线离心率的取值范围是.11.过双曲线的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为.12.设直线l过点P(0,3),和椭圆交于A、B两点(A在B上方),试求的取值范围.13.直线l过椭圆的左焦点F,且与椭圆相交于P、Q两点,M为PQ 的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为.14.椭圆Γ:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.15.椭圆+=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆交于点A,B,△FAB的周长的最大值是12,则该椭圆的离心率是.参考答案与试题解析一.选择题(共8小题)1.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则离心率为()A.B.2﹣C.﹣2D.﹣【分析】设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,再由椭圆的定义和周长的求法,可得m,再由勾股定理,可得a,c的方程,求得,开方得答案.【解答】解:如图,设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2﹣2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4(﹣1)2a2,∴c2=(9﹣6)a2,则e2==9﹣6=,∴e=.故选:D.【点评】本题考查椭圆的定义、方程和性质,主要考查离心率的求法,同时考查勾股定理的运用,灵活运用椭圆的定义是解题的关键,是中档题.2.已知椭圆x2+y2=a2(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a的取值范围是()A.B.或C.或D.【分析】因为椭圆与线段无公共点,所以线段AB在椭圆的内部或在椭圆的外部,即由“A,B两点同在椭圆内或椭圆外”求解.【解答】解:根据题意有:A,B两点同在椭圆内或椭圆外∴或∴或故选:B.【点评】本题主要通过直线与椭圆的位置关系,来考查点与椭圆的位置关系.当点(x0,y0)在椭圆内,则有,点(x0,y0)在椭圆外,则有3.如图所示,A,B,C是双曲线=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是()A.B.C.D.3【分析】运用直角三角形斜边上中线等于斜边的一半,求得A的坐标,由对称得B的坐标,由于BF⊥AC且|BF|=|CF|,求得C的坐标,代入双曲线方程,结合a,b,c的关系和离心率公式,化简整理成离心率e的方程,代入选项即可得到答案.【解答】解:由题意可得在直角三角形ABF中,OF为斜边AB上的中线,即有|AB|=2|OA|=2|OF|=2c,设A(m,n),则m2+n2=c2,又﹣=1,解得m=,n=,即有A(,),B(﹣,﹣),又F(c,0),由于BF⊥AC且|BF|=|CF|,可设C(x,y),即有•=﹣1,又(c+)2+()2=(x﹣c)2+y2,可得x=,y=﹣,将C(,﹣)代入双曲线方程,可得﹣=1,化简可得(b2﹣a2)=a3,由b2=c2﹣a2,e=,可得(2e2﹣1)(e2﹣2)2=1,对照选项,代入检验可得e=成立.另解:设双曲线的另一个焦点为E,令|BF|=|CF|=|AE|=m,|AF|=n,由双曲线的定义有,|CE|﹣|CF|=|AE|﹣|AF|=2a,在直角三角形EAC中,m2+(m+n)2=(m+2a)2,代入2a=m﹣n,化简可得m=3n,又m﹣n=2a得n=a,m=3a,在直角三角形EAF中,m2+n2=(2c)2,即为9a2+a2=4c2,可得e==.故选:A.【点评】本题考查双曲线的方程和性质,主要考查双曲线的a,b,c的关系和离心率的求法,注意运用点在双曲线上满足方程,同时注意选择题的解法:代入检验,属于难题.4.已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为()A.B.C.D.【分析】双曲线,右焦点F(5.0),A1(﹣3,0),A2(3,0),设P(x,y),M(a,m),N(a,n),由P,A1,M三点共线,知,故m=,由P,A2,N三点共线,知,故n=,由,和,能求出a的值.【解答】解:∵双曲线,右焦点F(5,0),A1(﹣3,0),A2(3,0),设P(x,y),M(a,m),N(a,n),∵P,A1,M三点共线,∴m=,∵P,A2,N三点共线,∴,∴n=,∵,∴,∴,,,∴=(a﹣5)2+=(a﹣5)2+,∵,∴(a﹣5)2+=0,∴25a2﹣90a+81=0,∴a=.故选:B.【点评】本题考查双曲线的性质和应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.解题时要认真审题,注意向量知识的合理运用.5.若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()A.B.C.D.【分析】因为双曲线即关于两条坐标轴对称,又关于原点对称,所以任意一个焦点到两条渐近线的距离都相等,所以不妨利用点到直线的距离公式求(c,0)到y=x的距离,再令该距离等于焦距的,就可得到含b,c的齐次式,再把b用a,c表示,利用e=即可求出离心率.【解答】解:双曲线的焦点坐标为(c,0)(﹣c,0),渐近线方程为y=±x根据双曲线的对称性,任意一个焦点到两条渐近线的距离都相等,求(c,0)到y=x的距离,d===b,又∵焦点到一条渐近线的距离等于焦距的,∴b=×2c,两边平方,得4b2=c2,即4(c2﹣a2)=c2,∴3c2=4a2,,即e2=,e=故选:B.【点评】本题主要考查点到直线的距离公式的应用,以和双曲线离心率的求法,求离心率关键是找到a,c的齐次式.6.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.【分析】y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22)A,B的中点坐标是(,)因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,由此能求得m.【解答】解:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22),A,B的中点坐标是(,),因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,,x12+x22═+m,x2+x1=﹣,因为,所以x12+x22=(x1+x2)2﹣2x1x2=,代入得,求得m=.故选:B.【点评】本题主要考查直线与圆锥曲线的综合应用能力,具体涉和到轨迹方程的求法和直线与椭圆的相关知识,解题时要注意合理地进行等价转化.7.设F是双曲线的右焦点,双曲线两条渐近线分别为l1,l2,过F作直线l1的垂线,分别交l1,l2于A、B两点,且向量与同向.若|OA|,|AB|,|OB|成等差数列,则双曲线离心率e的大小为()A.B.C.D.2【分析】由勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.【解答】解:不妨设OA的倾斜角为锐角∵向量与同向,∴渐近线l1的倾斜角为(0,),∴渐近线l1斜率为:k=<1,∴==e2﹣1<1,∴1<e2<2∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)2|AB|,∴|AB|=2(|OB|﹣|OA|),∴|OB|﹣|OA|=|AB|,∵|OA|,|AB|,|OB|成等差数列∴|OA|+|OB|=2|AB|,∴|OA|=|AB|∴在直角△OAB中,tan∠AOB=,由对称性可知:OA的斜率为k=tan(﹣∠AOB),∴=,∴2k2+3k﹣2=0,∴k=(k=﹣2舍去);∴=,∴==e2﹣1=,∴e2=,∴e=.故选:A.【点评】本题考查了双曲线的简单性质以和等差数列的性质,确定|OA|=|AB|,联想到对应的是渐近线的夹角的正切值,是解题的关键.8.已知F1、F2是双曲线(a>0,b>0)的左、右焦点,若在双曲线上的点P满足∠F1PF2=60°,且|OP|=a(O为坐标原点),则该双曲线的离心率是()A.2B.C.D.【分析】假设|F1P|=x,分别根据中线定理和余弦定理建立等式求得c2+5a2=14a2﹣2c2,可得a和c的关系,即可求双曲线的离心率.【解答】解:不妨设P在左支上,|F1P|=x,则|F2P|=2a+x∵OP 为三角形F 1F 2P 的中线,∴根据三角形中线定理可知x 2+(2a +x )2=2(c 2+7a 2)整理得x (x +2a )=c 2+5a 2由余弦定理可知x 2+(2a +x )2﹣x (2a +x )=4c 2 整理得x (x +2a )=14a 2﹣2c 2 进而可知c 2+5a 2=14a 2﹣2c 2 ∴3a 2=c 2 ∴故选:C .【点评】本题考查了双曲线的定义、标准方程,考查余弦定理的运用,考查学生的计算能力,属于中档题.二.填空题(共7小题) 9.已知Q 为椭圆C :上一动点,且Q 在y 轴的右侧,点M (2,0),线段QM 的垂直平分线交y 轴于点N ,则当四边形OQMN 的面积取最小值时,点Q 的横坐标为.【分析】设Q (x 0,y 0),(y 0≠0,x 0>0),求出直线ND 的方程,再求出N 的坐标,根据四边形OQMN =S △OQM +S △OMN =2|y 0|+,利用基本不等式即可求出.【解答】解:设直线MQ 的中点为D ,由题意知ND ⊥MQ ,直线ND 的斜率存在,设Q (x 0,y 0),(y 0≠0,x 0>0), ∴点D 的坐标为(,),且直线MQ 的斜率k MQ =,∴k ND =﹣=,∴直线ND 的方程为y ﹣=(x ﹣),令x=0,可得y=,∴N (0,),由+y 02=1可得x 02=3﹣3y 02,∴N (0,),∴S 四边形OQMN =S△OQM +S△OMN =×2×|y 0|+×2×||=|y 0|+||=2|y 0|+,即y 0=±,x 0=等号成立,故Q 的横坐标为, 故答案为:【点评】本题考查直线与椭圆的位置关系,考查基本不等式的性质的应用,考查转化思想,属于中档题.10.已知点F (1,0)是抛物线C :y 2=mx 的焦点,经过点A (﹣1,0)的直线l 与抛物线C 交于两点M ,N ,若∠MFN 是锐角,且直线l 与双曲线4x 2+ny 2=1只有一个公共点,则双曲线离心率的取值范围是(,).【分析】设经过点A(﹣1,0)的直线l的方程为y=k(x+1),设M(x1,y1),N (x2,y2),由,根据根与系数的关系以和>0,即可求出k2的范围,再根据直线l与双曲线4x2+ny2=1只有一个公共点则直线l与双曲线的渐近线平行,求出b2=﹣=,根据离心率公式结合k2的范围即可求出双曲线离心率的取值范围.【解答】解:点F(1,0)是抛物线C:y2=mx的焦点,则=1,即m=4,∴抛物线C:y2=4x,设经过点A(﹣1,0)的直线l的方程为y=k(x+1),设M(x1,y1),N(x2,y2),由,消y可得k2x+(2k2﹣4)x+k2=0,∴,解得﹣1<k<1且k≠0∴x1+x2=﹣2+,x1x2=1,∴y1y2=4,∵F(1,0),∴=(1﹣x1,﹣y1),=(1﹣x2,﹣y2),∴=(1﹣x1)•(1﹣x2)+y1y2=1+x1x2﹣(x1+x2)+4=8﹣,∵∠MFN是锐角,∴=8﹣>0,解得k2>,∴<k2<1,∵双曲线4x2+ny2=1的渐近线方程为y=±2x,∵直线l与双曲线4x2+ny2=1只有一个公共点,∴|k|=2,∴﹣=,∵双曲线4x2+ny2=1,即+=1,∴a2=,b2=﹣=∴e2==1+=1+k2,∵<e2<2,∴<e<,故答案为:(,).【点评】本题考查了直线和抛物线的位置关系以和直线和双曲线的位置关系,考查了向量的运算和离心率的求法,考查了运算能力和转化能力,属于难题11.过双曲线的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为.【分析】先设双曲线的右焦点为F',则F'的坐标为(c,0)因为抛物线为y2=4cx,所以F'为抛物线的焦点O为FF'的中点,E为FP的中点所以OE为△PFF'的中位线,得到PF=2b,再设P(x,y)过点F作x轴的垂线,由勾股定理得出关于a,c的关系式,最后即可求得离心率.【解答】解:设双曲线的右焦点为F',则F'的坐标为(c,0)因为抛物线为y2=4cx,所以F'为抛物线的焦点O为FF'的中点,E为FP的中点所以OE为△PFF'的中位线,那么OE∥PF'因为OE=a 那么PF'=2a又PF'⊥PF,FF'=2c 所以PF=2b设P(x,y)x+c=2a x=2a﹣c过点F作x轴的垂线,点P到该垂线的距离为2a由勾股定理y2+4a2=4b24c(2a﹣c)+4a2=4(c2﹣a2)得e=.故答案为:.【点评】本小题主要考查双曲线的标准方程,以和双曲线的简单性质的应用,等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.12.设直线l过点P(0,3),和椭圆交于A、B两点(A在B上方),试求的取值范围.【分析】当直线l的斜率不存在时,A点坐标为(0,2),B点坐标为(0,﹣2),这时=.当直线l斜率为k时,直线l方程为y=kx+3,设A点坐标为(x1,y1),B点坐标为(x2,y2),则向量AP=(﹣x1,3﹣y1),向量PB=(x2,y2﹣3),所以=,因为直线y=kx+3与椭圆有两个交点,且它们的横坐标不同,把y=kx+3代入后的一元二次方程(9k2+4)x2+54k+45=0的判别式(54k)2﹣4(9k2+4)×45>0,所以k>3或k<﹣.由此入手能够求出的范围.【解答】解:当直线l的斜率不存在时,A点坐标为(0,2),B点坐标为(0,﹣2),这时=.当直线l斜率为k时,直线l方程为y=kx+3,设A点坐标为(x1,y1),B点坐标为(x2,y2),则向量AP=(﹣x1,3﹣y1),向量PB=(x2,y2﹣3),所以=,因为直线y=kx+3与椭圆有两个交点,且它们的横坐标不同,把y=kx+3代入后的一元二次方程(9k2+4)x2+54k+45=0的判别式(54k)2﹣4(9k2+4)×45>0,所以k>或k<﹣,设=λ,则x1=λx2,因为x1+x2=﹣,x1x2=,所以(1+λ)x2═﹣,(1)λx22=,(2)显然λ不等于1,解得0<λ<1.综上所述的范围是[).故答案为:[).【点评】本题考查直线与圆锥曲线的综合问题,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.13.直线l过椭圆的左焦点F,且与椭圆相交于P、Q两点,M为PQ 的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为.【分析】由椭圆的方程求出椭圆的左焦点,由题意可知直线l的斜率存在且不等于0,写出直线l的方程,和椭圆方程联立后利用根与系数关系得到PQ中点M的横坐标,再由△FMO是以OF为底边的等腰三角形得到M的横坐标,两数相等求出k的值,则直线l的方程可求.【解答】解:由,得a2=2,b2=1,所以c2=a2﹣b2=2﹣1=1.则c=1,则左焦点F(﹣1,0).由题意可知,直线l的斜率存在且不等于0,则直线l的方程为y=kx+k.设l与椭圆相交于P(x1,y1)、Q(x2,y2),联立,得:(2k2+1)x2+4k2x+2k2﹣2=0.所以.则PQ的中点M的横坐标为.因为△FMO是以OF为底边的等腰三角形,所以.解得:.所以直线l的方程为.故答案为.【点评】本题考查了直线与圆锥曲线的关系,考查了设而不求的方法,解答此题的关键是由△FMO是以OF为底边的等腰三角形得到M点的横坐标,此题是中档题.14.椭圆Γ:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.【分析】由直线可知斜率为,可得直线的倾斜角α=60°.又直线与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,可得,进而.设|MF2|=m,|MF1|=n,利用勾股定理、椭圆的定义和其边角关系可得,解出a,c即可.【解答】解:如图所示,由直线可知倾斜角α与斜率有关系=tanα,∴α=60°.又椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,∴,∴.设|MF2|=m,|MF1|=n,则,解得.∴该椭圆的离心率e=.故答案为.【点评】本题综合考查了直线的斜率与倾斜角的关系、勾股定理、含30°角的直角三角形的边角关系、椭圆的定义、离心率等基础知识,考查了推理能力和计算能力即数形结合的思想方法.15.椭圆+=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆交于点A,B,△FAB的周长的最大值是12,则该椭圆的离心率是.【分析】先画出图象,结合图象以和椭圆的定义求出△FAB的周长的表达式,进而求出何时周长最大,即可求出椭圆的离心率.【解答】解:设椭圆的右焦点E.如图:由椭圆的定义得:△FAB的周长为:AB+AF+BF=AB+(2a﹣AE)+(2a﹣BE)=4a+AB ﹣AE﹣BE;∵AE+BE≥AB;∴AB﹣AE﹣BE≤0,当AB过点E时取等号;∴△FAB的周长:AB+AF+BF=4a+AB﹣AE﹣BE≤4a;∴△FAB的周长的最大值是4a=12⇒a=3;∴e===.故答案:.【点评】本题主要考察椭圆的简单性质.在解决涉和到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.。
圆锥曲线高考选择填空压轴题专练A 组一、选择题1.过抛物线C : 24y x =上一点()00,P x y 作两条直线分别与抛物线相交于A , B 两点,连接AB ,若直线AB 的斜率为1,且直线PA , PB 与坐标轴都不垂直,直线PA , PB 的斜率倒数之和为3,则0y =( ) A. 1 B. 2 C. 3 D. 4 【答案】D【解析】设直线,PA PB 的斜率分别为12,k k ,因为点()00,P x y 在抛物线24y x = 上,所以200,4y P y ⎛⎫ ⎪⎝⎭ ,故直线PA 的方程为20014y y y k x ⎛⎫-=- ⎪⎝⎭ ,代入抛物线方程得220011440y y y y k k -+-= ,其解为0y 和014y k - ,则()201021144,4y k A y k k ⎛⎫- ⎪- ⎪⎝⎭ ,同理可得()202022244,4y k B y k k ⎛⎫- ⎪- ⎪⎝⎭,则由题意,得()()001222010222124414444y y k k y k y k k k ⎛⎫--- ⎪⎝⎭=--- ,化简,得01211214y k k ⎛⎫=+-= ⎪⎝⎭, 故选D.2.已知双曲线221221(0,0)x y C a b a b-=>>:,抛物线224C y x =:, 1C 与2C 有公共的焦点F ,1C 与2C 在第一象限的公共点为M ,直线MF 的倾斜角为θ,且12cos 32aaθ-=-,则关于双曲线的离心率的说法正确的是()A. 仅有两个不同的离心率12,e e 且()()121,2,4,6e e ∈∈B. 仅有两个不同的离心率12,e e 且()()122,3,4,6e e ∈∈ C. 仅有一个离心率e 且()2,3e ∈ D. 仅有一个离心率e 且()3,4e ∈【答案】C 【解析】24y x = 的焦点为()1,0 , ∴ 双曲线交点为()1,0,即1c = ,设M 横坐标为0x ,则0000011,1,121p a x ex a x x a x a a ++=-+=-=- , 001111112cos 1132111a x a a a x a aθ+----===++-+- , 可化为2520a a -+= , ()22112510,2510g e e e a a ⎛⎫⨯-⨯+==-+= ⎪⎝⎭,()()()()200,10,20,30,1,2510g g g g e e e >∴-+= 只有一个根在()2,3 内,故选C.3.已知点1F 、2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过点1F 且垂直于x轴的直线与椭圆交于A 、B 两点,若2ABF 为锐角三角形,则该椭圆的离心率的取值范围是( )A. ()1 B.⎫⎪⎪⎝⎭C.⎛⎝⎭D. )1,1【答案】D【解析】由于2ABF 为锐角三角形,则2212145,tan 12b AF F AF F ac∠<∠=<, 22b ac < , 2222,210a c ac e e -+-,1e < 或1e >,又01e <<,11e << ,选D .4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为A.B. C. D. 2【答案】A【解析】由()2,0F c 到渐近线by x a =的距离为d b == ,即有2AF b = ,则23BF b = ,在2AF O ∆ 中, 22,,,bOA a OF c tan F OA a==∠=224tan 1bb a AOB a b a ⨯∠==⎛⎫- ⎪⎝⎭,化简可得222a b = ,即有222232c a b a =+= ,即有62c e a ==,故选A. 5.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( ) A. 2y x =+或2y x =-- B. 2y x =+ C. 22y x =+或22y x =-+ D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .6.设A 是双曲线22221(0,0)x y a b a b -=>>的右顶点, (),0F c 是右焦点,若抛物线224a y x c=-的准线l 上存在一点P ,使30APF ∠=,则双曲线的离心率的范围是( ) A. [)2,+∞ B. (]1,2 C. (]1,3 D. [)3,+∞ 【答案】A【解析】抛物线的准线方程为2axc=,正好是双曲的右准线.由于AF= c a-,所以AF弦,圆心)2a cO c a⎛⎫+-⎪⎪⎝⎭,半径R c a=-圆上任取一点P, 30APF∠=,现在转化为圆与准线相交问题.所以()22a c ac ac+-≤-,解得2e≥.填A.7.中心为原点O的椭圆焦点在x轴上,A为该椭圆右顶点,P为椭圆上一点,090OPA∠=,则该椭圆的离心率e的取值范围是()A.1,12⎡⎫⎪⎢⎣⎭B.⎫⎪⎪⎝⎭C.12⎡⎢⎣⎭D.⎛⎝⎭【答案】B【解析】设椭圆标准方程为22221(0)x ya ba b+=>>,设P(x,y),点P在以OA为直径的圆上。
圆锥曲线测试题姓名 得分 一、选择题(20小题,每题5分)1.已知双曲线)0,0(12222>>=-b a by a x 的离心率为2,一个焦点与抛物线x y 162=的焦点相同,则双曲线的渐近线方程为 ( )A .x y 23±= B .x y 23±= C .x y 33±= D .x y 3±=2.若双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线22y x =+相切,则此双曲线的离心率等于A . 2B .3 CD .93.已知抛物线y 2=4x 的准线与双曲线x 2a2-y 2=1 (a>0)交于A 、B 两点,点F 为抛物线的焦点,若△FAB 为直角三角形,则双曲线的离心率是( )A . 3B . 6C .2D .34.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是A .28y x =-B .28y x =C .24y x =- D .24y x = 5. 已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A(B(C ) 2 (D ) 36. 已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45 B .35 C .35-D .45-7. 设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .18. 双曲线8222=-y x 的实轴长是(A )2 (B ) 22 (C ) 4 (D )429. 已知F 是抛物线y2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为(A )34 (B )1 (C )54 (D )7410. 双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25B .45CD11.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x =B .22145x y -= C .22125x y -=D.2212x =12. 已知双曲线C :22221x y a b -=(0,0a b >>)则C 的渐近线方程为( )A .14y x =±B .13y x =±C .12y x =±D .y x =±13. 抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12B.2C .1 D14. 若双曲线22221x y a b-=则其渐近线方程为( )A .y =±2xB .y=C .12y x =±D.2y x =±15.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y +=16. 设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =17. 已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( ) A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等18. 从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是 ( ) AB .12CD19. 设抛物线C:y 2=4x 的焦点为F,直线L 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则L 的方程为( )A .y=x-1或y=-x+1B .y=(X-1)或y=-(x-1)C .y=(x-1)或y=-(x-1)D .y=(x-1)或y=-(x-1)20. O 为坐标原点,F为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )A .2B.C.D .4二、填空题(10小题。
2009届高考数学复习 圆锥曲线选择填空专练1.准线方程为x=1的抛物线的标准方程是A. 22y x =-B. 24y x =-C. 22y x =-D. 24y x =2 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .43.已知焦点在x 轴上的椭圆的离心率为21,它的长轴长等于圆0152:22=--+x y x C 的半径,则椭圆的标准方程是A .13422=+y x B .1121622=+y x C .1422=+y x D .141622=+y x 4.椭圆)0(12222>>=+b a by a x 的两个焦点是F 1、F 2,以| F 1F 2 |为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率为A .)13(21-B .)32(4-C .13-D .)32(41+5.已知A 、B 为坐标平面上的两个定点,且|AB|=2,动点P 到A 、B 两点距离之和为常数2,则点P 的轨迹是 DA.椭圆B.双曲线C.抛物线D. 线段6.若R ∈k ,则“3>k ”是“方程13322=+--k y k x 表示双曲线”的 (A )充分不必要条件. (B )必要不充分条件.(C )充要条件. (D )既不充分也不必要条件7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716 B .1516 C .78D .0 8.某椭圆短轴端点是双曲线122=-x y 的顶点,且该椭圆的离心率与此双曲线的离心率乘积为1,则该椭圆方程 A .1422=+x y B .1422=+y x C .1222=+x y D .1222=+y x 9. P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为A. 6B.7C.8D.910. 设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2=,且1=⋅AB OQ ,则P 点的轨迹方程是A.()0,0132322>>=+y x y x B. ()0,0123322>>=-y x y x C. ()0,0132322>>=-y x y x D. ()0,0123322>>=+y x y x11. 已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞12.点P(-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上,过点P 且方向向量为(2,5)a =-的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为1312二.填空题(本大题共4小题,每小题4分,共16分)13. 如果正△ABC 中,D AB E AC ∈∈,,向量12DE BC =,那么以B ,C 为焦点且过点D ,E 的双曲线的离心率是 .14.以曲线y x 82=上的任意一点为圆心作圆与直线x+2=0相切,则这些圆必过一定点,则这一定点的坐标是_________.15.设双曲线22221(0,0)x y a b a b-=>>的离心率e ∈,则两条渐近线夹角的取值范围是 .16.(理科做)有一系列椭圆,满足条件:①中心在原点;②以直线2x =为准线;③离心率*1()2nn e n N ⎛⎫=∈ ⎪⎝⎭,则所有这些椭圆的长轴长之和为 .(文科做)若椭圆22189x y k +=+的离心率为12,则k 的值为 .(圆锥曲线2)1.抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A .43 B .75 C .85D .3 2. 椭圆2221(1)x y a a+=>的一个焦点为F ,点P 在椭圆上,且||||OP OF =(O 为坐标原点),则△OPF 的面积S 等于A .12 B .75 C .85D .以上都不对 3.椭圆122=+by ax 与直线x y -=1交于A 、B 两点,过原点与线段AB 中点的直线的斜率为23,则b a 的值为AA.23 B.332 C. 239 D. 2732 4.若动点M(x,y)到点F(4,0)的距离等于它到直线x+4=0距离,则M 点的轨迹是 A.x+4=0 B.x-4=0 C. 28y x = D.216y x =5.直线l 过点且与双曲线222x y -=仅有一个公共点,这样的直线有 A.1 条 B.2条 C.3条 D.4条6. 过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是327.椭圆221259x y +=上的一点M 到左焦点1F 的距离为2,N 是M 1F 的中点,则|ON|等于 A. 4 B. 2 C.32D. 8 8. 已知(5x a =, (,5x b =,曲线1a b ⋅=一点M 到F (7,0)的距离为11,N是MF 的中点,O 为坐标原点,则|ON|的值为A .211 B .221 C .21 D .221或21 9.抛物线22x y =离点A (0,a )最近的点恰好是顶点,这个结论成立的充要条件是 A.0a ≤ B. 12a ≤C. 1a ≤D. 2a ≤ 10.已知12,F F 为椭圆E 的两个左右焦点,抛物线C 以1F 为顶点,2F 为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆离心率e 满足12PF e PF =,则e 的值为A.B.2C.D.2-11.已知双曲线)0(222>=-a a y x 的左、右顶点分别为A 、B ,双曲线在第一象限的图像上有一点P ,γβα=∠=∠=∠APB PBA PAB ,,,则A 、0tan tan tan =++γβαB 、0tan tan tan =-+γβαC 、0tan 2tan tan =++γβαD 、0tan 2tan tan =-+γβα12. 已知点P 是椭圆221(0,0)168x y x y +=≠≠上的动点,12,F F 为椭圆的两个焦点,O 是坐标原点,若M 是12F PF ∠的角平分线上一点,且10FM MP =,则OM 的取值范围是A.[0,3]B.C.D.[0,4]二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上。
一、选择题1.设椭圆()222210,0x y m n m n +=>>的焦点与抛物线28x y =的焦点相同,离心率为12,则m n -=( )A .4B .4-C .8D .8-2.已知双曲线()2222:10,0x y C a b a b-=>>的离心率2e =,则双曲线C 的渐近线方程为( )A .2y x =±B .12y x =± C .y x =± D .y =3.已知1F 、2F 是椭圆C :()222210x y a b a b +=>>的两个焦点,P 为椭圆C 上一点,且12·0PF PF =,若12PF F △的面积为9,则b 的值为( ) A .1B .2C .3D .44.如图,过抛物线()220y px p =>的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若点F 是AC 的中点,且4AF =,则线段AB 的长为( )A .5B .6C .163D .2035.设双曲线()2222:10,0x y C a b a b -=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为( )A .2B C .D .46.关于x ,y 的方程()2220x ay a a +=≠,表示的图形不可能是( )A .B .C .D .7.若点A 的坐标为()3,2,F 是抛物线22y x =的焦点,点M 在抛物线上移动时,使MF MA +取得最小值的M 的坐标为( )A .()0,0B .1,12⎛⎫⎪⎝⎭C .(D .()2,28.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =( ) A .4B .6C .8D .109.已知直线210x y -+=与双曲线()222210,0x y a b a b -=>>交于A ,B 两点,且线段AB 的中点M 的横坐标为1,则该双曲线的离心率为( )AB C D 10.已知双曲线()2222:10,0x y C a b a b -=>>的右焦点为F ,左顶点为A .以F 为圆心,FA 为半径的圆交C 的右支于P ,Q 两点,APQ △的一个内角为60︒,则C 的离心率为( )A B C .43 D .53 11.在平面直角坐标系xOy 中,点P 为椭圆()2222:10y x C a b a b +=>>的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若ππ,64α⎛⎫∈ ⎪⎝⎭,则椭圆C 的离心率的取值范围为( )A .⎛ ⎝⎦B .⎛ ⎝⎦C .⎣⎦ D .⎣⎦12.已知椭圆()222210x y a b a b +=>>,点A ,B 是长轴的两个端点,若椭圆上存在点P ,使得120APB ∠=︒,则该椭圆的离心率的最小值为( )A B C D .34二、填空题13.过点()6,3M -且和双曲线2222x y -=有相同的渐近线的双曲线方程为__________.14.一个椭圆中心在原点,焦点1F ,2F 在x 轴上,(P 是椭圆上一点,且1PF ,12F F ,2PF 成等差数列,则椭圆方程为__________.15.已知椭圆2221x y a +=的左、右焦点为1F 、2F ,点1F 关于直线y x =-的对称点P 仍在椭圆上,则12PF F △的周长为__________.16.已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,过点F 'l 与抛物线C 交于点M (M 在x 轴的上方),过M 作MN l ⊥于点N ,连接NF 交抛物线C 于点Q ,则NQ QF=_______.参考答案: 1.【答案】A【解析】抛物线28x y =的焦点为()0,2,∴椭圆的焦点在y 轴上,∴2c =, 由离心率12e =,可得4a =,∴2223b a c =-=,故234m n -=-.故选A . 2.【答案】D【解析】双曲线()2222:10,0x y C a b a b -=>>的离心率2ce a ==,224c a =,2222213b b a a =+⇒=,3ba=,故渐近线方程为3by x x a=±=±,故答案为D .3.【答案】C 【解析】1F 、2F 是椭圆()2222:10x y C a b a b+=>>的两个焦点,P 为椭圆C 上一点,12·0PF PF =可得12PF PF ⊥, 122PF PF a ∴+=,222124PF PF c +=,12192PF PF =, ()2221212424PF PF c PF PF a ∴+=+=,()2223644a c b ∴=-=,3b ∴=,故选C .方法二:利用椭圆性质可得12222πtan tan924PF F S b b b θ====△,3b ∴=. 4.【答案】C【解析】设A 、B 在准线上的射影分别为为M 、N ,准线与横轴交于点H ,则FH p =,由于点F 是AC 的中点,4AF =,∴42AM p ==,∴2p =, 设BF BN x ==,则BN BC FH CF =,即424x x -=,解得43x =, 416433AB AF BF ∴=+=+=,故答案为C . 5.【答案】B【解析】∵双曲线()2222:10,0x y C a b a b -=>>的两条渐近线互相垂直,∴渐近线方程为y x =±,∴a b =. ∵顶点到一条渐近线的距离为1,∴212a =,∴2ab ==, ∴双曲线C 的方程为22122x y -=,焦点坐标为()2,0-,()2,0,∴双曲线的一个焦点到一条渐近线的距离为d=B.6.【答案】D【解析】因为()2220x ay a a+=≠,所以222+1x ya a=,所以当20a a>>时,表示A;当2a a<时,表示B;当20a a>>时,表示C;故选D.7.【答案】D【解析】如图,已知24y x=,可知焦点()1,0F,准线:1x=-,过点A作准线的垂线,与抛物线交于点M,作根据抛物线的定义,可知BM MF=,MF MA MB MA+=+取最小值,已知()3,2A,可知M的纵坐标为2,代入22y x=中,得M的横坐标为2,即()2,2M,故选D.8.【答案】B【解析】抛物线2:8C y x=的焦点()2,0F,M是C上一点FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为1,则M的纵坐标为±26FN FM===,故选B.9.【答案】B【解析】因为直线210x y-+=与双曲线()222210,0x ya ba b-=>>交于A,B两点,且线段AB的中点M的横坐标为1,所以1OMk=,设()11,A x y,()22,B x y,则有122x x+=,122y y+=,121212y yx x-=-,12121OMy ykx x+==+,22112222222211x ya bx ya b⎧⎪⎪⎨-=-=⎪⎪⎩,两式相减可化为,121222121211y y y ya b x x x x-+-⋅⋅=-+,可得2212ba=,a∴,c=,双曲线的离心率为ca==,故选B.10.【答案】C【解析】如图,设左焦点为1F ,设圆与x 轴的另一个交点为B ,∵APQ △的一个内角为60︒,∴30PAF ∠=︒,1603PBF PF AF a c PF a c ∠=︒⇒==+⇒=+, 在1PFF △中,由余弦定理可得,22243403403c ac a e e e ⇒-=⇒-=⇒=--, 故答案为C . 11.【答案】A【解析】因为OPMN 是平行四边形,因此MN OP ∥且MN OP =, 故2N ay =,代入椭圆方程可得N x =tan ON k α=.因ππ,64α⎛⎫∈ ⎪⎝⎭1<<1<<,所以a ,即()2223a a c <-,解得0c a <<,故选A . 12.【答案】C【解析】设M 为椭圆短轴一端点,则由题意得120AMB APB ∠≥∠=︒,即60AMO ∠≥︒, 因为tan a OMA b ∠=,所以tan60ab≥︒,a ∴≥,()2223a a c ≥-, 2223a c ∴≤,223e ≥,e C .13.【答案】221189x y -=【解析】设双曲线方程为222x y λ-=,双曲线过点()6,3M -, 则222362918x y λ=-=-⨯=,故双曲线方程为22218x y -=,即221189x y -=.14.【答案】22186x y +=【解析】∵个椭圆中心在原点,焦点1F ,2F 在x 轴上,∴设椭圆方程为()222210x y a b a b +=>>,∵(P 是椭圆上一点,且1PF ,12F F ,2PF 成等差数列, ∴2243124a b a c+==⎧⎪⎨⎪⎩,且222a b c =+,解得a =,b =,c =∴椭圆方程为22186x y +=,故答案为22186x y +=.15.【答案】2【解析】设()1,0F c -,()()2,00F c c >,1F 关于直线y x =-的对称点P 坐标为()0,c ,点P 在椭圆上,则2201c a+=, 则1c b ==,2222a b c =+=,则a故12PF F △的周长为1212222PF PF F F a c ++=+=. 16.【答案】2【解析】由抛物线定义可得MF MN ='l 倾斜角为π3,MN l ⊥, 所以π3NMF ∠=,即三角形MNF 为正三角形,因此NF 倾斜角为2π3,由22 2y pxp y x =⎫=-⎪⎧⎪⎨⎪⎩⎭, 解得6p x =或32p x =(舍),即6Q p x =,62226P P NQ P P QF ⎛⎫-- ⎪⎝⎭==-.。
第四十二讲 圆锥曲线高考选择填空压轴题专练A 组一、选择题1.过抛物线C : 24y x =上一点()00,P x y 作两条直线分别与抛物线相交于A , B 两点,连接AB ,若直线AB 的斜率为1,且直线PA , PB 与坐标轴都不垂直,直线PA , PB 的斜率倒数之和为3,则0y =( )A. 1B. 2C. 3D. 4 【答案】D【解析】设直线,PA PB 的斜率分别为12,k k ,因为点()00,P x y 在抛物线24y x = 上,所以200,4y P y ⎛⎫ ⎪⎝⎭,故直线PA 的方程为20014y y y k x ⎛⎫-=- ⎪⎝⎭ ,代入抛物线方程得220011440y y y y k k -+-= ,其解为0y 和014y k - ,则()201021144,4y k A y k k ⎛⎫- ⎪- ⎪⎝⎭ ,同理可得()202022244,4y k B y k k ⎛⎫- ⎪- ⎪⎝⎭ ,则由题意,得()()001222010222124414444y y k k y k y k k k ⎛⎫--- ⎪⎝⎭=---,化简,得01211214y k k ⎛⎫=+-= ⎪⎝⎭, 故选D.2.已知双曲线221221(0,0)x y C a b a b -=>>:,抛物线224C y x =:, 1C 与2C 有公共的焦点F , 1C 与2C 在第一象限的公共点为M ,直线MF 的倾斜角为θ,且12cos 32aaθ-=-,则关于双曲线的离心率的说法正确的是()A. 仅有两个不同的离心率12,e e 且()()121,2,4,6e e ∈∈B. 仅有两个不同的离心率12,e e 且()()122,3,4,6e e ∈∈ C. 仅有一个离心率e 且()2,3e ∈ D. 仅有一个离心率e 且()3,4e ∈【答案】C 【解析】24y x = 的焦点为()1,0 , ∴ 双曲线交点为()1,0,即1c = ,设M 横坐标为0x ,则0000011,1,121p a x ex a x x a x a a ++=-+=-=- , 001111112cos 1132111a x a a a x aaθ+----===++-+- , 可化为2520a a -+= , ()22112510,2510g e e e a a ⎛⎫⨯-⨯+==-+= ⎪⎝⎭,()()()()200,10,20,30,1,2510g g g g e e e >∴-+= 只有一个根在()2,3 内,故选C. 3.已知点1F 、2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过点1F 且垂直于x 轴的直线与椭圆交于A 、B 两点,若2ABF 为锐角三角形,则该椭圆的离心率的取值范围是( )A. ()21 B. 51⎫-⎪⎪⎝⎭ C. 51⎛- ⎝⎭ D. )21,1【答案】D【解析】由于2ABF 为锐角三角形,则2212145,tan 12b AF F AF F ac∠<∠=<, 22b ac < , 2222,210a c ac e e -+-, 21e <- 或21e >,又01e <<211e << ,选D . 4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为 6532 【答案】A【解析】由()2,0F c 到渐近线by x a=的距离为22d b a b==+ ,即有2AF b = ,则23BF b = ,在2AF O ∆ 中, 22,,,b OA a OF c tan F OA a==∠=224tan 1bb a AOB a b a ⨯∠==⎛⎫- ⎪⎝⎭,化简可得222a b = ,即有222232c a b a =+= ,即有6c e a == ,故选A.5.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( ) A. 2y x =+或2y x =-- B. 2y x =+ C. 22y x =+或22y x =-+ D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MAMF MP AMP MAF ===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .6.设A 是双曲线22221(0,0)x y a b a b -=>>的右顶点, (),0F c 是右焦点,若抛物线224a y x c=-的准线l 上存在一点P ,使30APF ∠=,则双曲线的离心率的范围是( ) A. [)2,+∞ B. (]1,2 C. (]1,3 D. [)3,+∞ 【答案】A【解析】抛物线的准线方程为2a x c =,正好是双曲的右准线.由于AF= c a -,所以AF 弦,圆心)32a c O c a ⎛⎫+- ⎪ ⎪⎝⎭,半径R c a =-圆上任取一点P, 30APF ∠=,现在转化为圆与准线相交问题.所以()22a c a c a c+-≤-,解得2e ≥.填A. 7.中心为原点O 的椭圆焦点在x 轴上, A 为该椭圆右顶点, P 为椭圆上一点, 090OPA ∠=,则该椭圆的离心率e 的取值范围是 ( ) A. 1,12⎡⎫⎪⎢⎣⎭B. 2,12⎛⎫⎪ ⎪⎝⎭ C. 16,23⎡⎫⎪⎢⎪⎣⎭ D. 20,2⎛⎫⎪ ⎪⎝⎭【答案】B【解析】设椭圆标准方程为22221(0)x y a b a b+=>>,设P(x,y),点P 在以OA 为直径的圆上。
.难题 本高二数学昵称:饶珂 学校:装 订 线题型:填空题考察围:圆锥曲线综合试题:在平面直角坐标系中,定义点之间的“直角距离”为。
若到点的“直角距离”相等,其中实数满足,则所有满足条件的点的轨迹的长度之和为答案:备注:题型:填空题考察围:圆锥曲线综合试题:如图,双曲线(>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得△,点落在OA上,则四边形OABC的面积是 .答案:2备注:题型:填空题考察围:圆锥曲线综合试题:设抛物线的焦点为,已知为抛物线上的两个动点,且满足,过弦的中点作抛物线准线的垂线,垂足为,则的最大值为.答案:备注:题型:填空题考察围:圆锥曲线综合试题:已知是椭圆和双曲线的公共顶点。
是双曲线上的动点,是椭圆上的动点(、都异于、),且满足,其中,设直线、、、的斜率分别记为, ,则答案:-5备注:题型:解答题考察围:圆锥曲线综合试题:设:的准线与轴交于点,焦点为;椭圆以为焦点,离心率.设是的一个交点.(1)当时,求椭圆的方程.(2)在(1)的条件下,直线过的右焦点,与交于两点,且等于的周长,求的方程.(3)求所有正实数,使得的边长是连续正整数.答案:(1)的方程为.(2)的方程为或.(3)备注:题型:解答题考察围:圆锥曲线综合试题:如图,椭圆的中心为原点,长轴在轴上,离心率,又椭圆上的任一点到椭圆的两焦点的距离之和为.(1)求椭圆的标准方程;(2)若平行于轴的直线与椭圆相交于不同的两点、,过、两点作圆心为的圆,使椭圆上的其余点均在圆外.求的面积的最大值.答案:(1);(2).备注:题型:填空题考察围:双曲线的定义试题:以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦,为坐标原点,若则动点的轨迹为圆;③,则双曲线与的离心率相同;④已知两定点和一动点,若,则点的轨迹关于原点对称.其中真命题的序号为(写出所有真命题的序号).答案:②③④备注:题型:填空题考察围:双曲线的定义试题:已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值围是。
圆锥曲线填空选择题专项练习1.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A,B 两点,|AB|=12, P 为C 的准线上一点,则ABP ∆的面积为( )A.18B.24C.36D.482.双曲线x y 222-=8的实轴长是( )(A )2(B) (C) 43.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4, 且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A.B.C.D. 5.设圆锥曲线I’的两个焦点分别为F 1,F 2,若曲线I’上存在点P 满足1PF :12F F :2PF = 4:3:2,则曲线I’的离心率等于( ) A. 1322或 B. 223或 C. 122或 D. 2332或 6.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B ) 24y x =- (C) 28y x = (D) 24y x = 7.设双曲线的渐近线方程为则的值为( ) A .4 B .3 C .2 D .18.已知 F 是抛物线2y x = 的焦点,A .B 是该抛物线上的两点,|AF|+|BF|=3,则线段AB 的中点到y 轴的距离为( )(A) 34 (B)1 (C) 54 (D) 749.双曲线上一点P 到双曲线右焦点的距离是4,那么点P 到左准线的距离是 .10.已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C , 点M 的坐标为(2,0),AM 为∠F 1AF 2的平分线.则|AF 2| = .2221(0)9x y a a -=>320,x y ±=a 2216436x y -=11.设是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线上一点, 12PF F ∆是底角为的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 4512.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B()C 4 ()D 813.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点 到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为( )(A) 2x y =(B) 2x y = (C)28x y = (D)216x y = 14.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 15.已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=( )(A )14 (B )35 (C )34 (D )4516.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
圆锥曲线专题练习一、选择题1.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .72.若椭圆的对称轴为坐标轴,长轴长及短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y xB .1162522=+y xC .1162522=+y x 或1251622=+y x D .以上都不对 3.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( )A .2B .3C .2D .34.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .215 D .10 5.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A .(7,B .(14,C .(7,±D .(7,-± 6.如果222=+ky x表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0二. 填空题 7.双曲线的渐近线方程为20x y±=,焦距为10,这双曲线的方程为_______________。
8.设AB 是椭圆22221x y a b+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ⋅=____________。
三.解答题9.已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。
10、已知动点P 及平面上两定点(A B 连线的斜率的积为定值12-. (Ⅰ)试求动点P 的轨迹方程C.(Ⅱ)设直线1:+=kx y l 及曲线C 交于M 、N 两点,当|MN |=324时,求直线l 的方程.参考答案1.D 点P 到椭圆的两个焦点的距离之和为210,1037a=-= 2.C 2222218,9,26,3,9,1a b a b c c c a b a b +=+====-=-=得5,4a b ==,2212516x y ∴+=或1251622=+y x3.C 2222222,2,2,a c c c a e e c a =====4.B 210,5p p ==,而焦点到准线的距离是p5.C 点P 到其焦点的距离等于点P 到其准线2x =-的距离,得7,P p x y ==±6.D 焦点在y 轴上,则2221,20122y x k kk+=>⇒<< 7.221205x y -=± 设双曲线的方程为224,(0)x y λλ-=≠,焦距2210,25c c == 当0λ>时,221,25,2044x y λλλλλ-=+==; 当0λ<时,221,()25,2044y x λλλλλ-=-+-==--- 8. 22b a- 设1122(,),(,)A x y B x y ,则中点1212(,)22x x y y M ++,得2121,AB y y k x x -=- 22222222,b x a y a b +=得2222222121()()0,b x x a y y -+-=即2222122221y y b x x a-=-- 9.解:设抛物线的方程为22y px =,则22,21y px y x ⎧=⎨=+⎩消去y 得则24120,2,6p p p =--==-或 10、(Ⅰ)解:设点(,)P x y12=-, 整理得.1222=+y x由于x ≠得的曲线C的方程为221(2x y x +=≠ (Ⅱ)由.04)21(:.1,122222=++⎪⎩⎪⎨⎧+==+kx x k y kx y y x 得消去解得x 1=0, x 2=212,(214x x k k +-分别为M ,N 的横坐标)由,234|214|1||1||22212=++=-+=k k k x x k MN .1:±=k 解得 所以直线l 的方程x -y +1=0或x +y -1=0。
第 1 页 共 2 页高考数学:圆锥曲线基础试题一、选择题:1.(2013安徽 )椭圆1422=+y x 的离心率为( )(A )23 (B )43 (C )22 (D )32 2.(2013上海 )设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4 B .5 C .8 D .103.(2013广东)若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m=( ) A .3 B .23 C .38 D .324.(2013全国Ⅱ卷 、理)已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )(A )2 3 (B )6 (C )4 3 (D )12 5.(2013北京 )如图,直线022:=+-y x l 过椭圆的左焦点 F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .5526.(2013春招北京 、理)已知椭圆的焦点是F 1、F 2、P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 7.(2013福建 、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )(A )32 (B )33 (C )22 (D )238.(2013重庆 )已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )(A )23 (B )62 (C )72 (D )24二、填空题:9.(2013全国Ⅰ卷 )在ABC △中,90A ∠= ,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 10.(2013上海理)已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .11.(2013江苏)在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A CB += .12.(2013春招北京、内蒙、安徽 、理)椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.一、选择题:1.(2013全国卷Ⅱ ,2013春招北京 、理)双曲线22149x y -=的渐近线方程是( ) (A )23y x =± (B )49y x =± (C )32y x =± (D )94y x =±2.(2013全国Ⅰ卷 、理)双曲线221mx y +=的虚轴长是实轴长的2倍,则m =( )A .14-B .4-C .4D .143.(2013春招北京、安徽 、理)双曲线12222=-ay b x 的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2B .3C .2D .234.(2013全国Ⅰ 、理)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )(A )112422=-y x (B )141222=-y x (C )161022=-y x (C )110622=-y x 5.(2013辽宁 ) 已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1 B .2 C .3 D .46.(2013全国卷III 、理)已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅= 则点M 到x 轴的距离为( )A .43B .53C .233D .37.(2013福建 、理)双曲线22221x y a b-=(a >0,b >0)的两个焦点为12,F F ,若P 为其上的一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A.(1,3) B.(1,3] C.(3,)+∞ D.[3,)+∞8.(2013安徽理)如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为( ) (A )3 (B )5 (C )25(D )31+二、填空题:。
圆锥曲线填空选择题专练基础过关:1.(15北京理科)已知双曲线()22210x y a a-=>0y +=,则a =.3.(15北京文科)已知()2,0是双曲线2221y x b-=(0b >)的一个焦点,则b = .5.(15年广东理科)已知双曲线:12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线的方程为A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x 6.(15年广东文科)已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则( )A .9B .4C .3D .2 22.(15年陕西文科)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .C .(0,1)-D .24.(15年天津理科)已知双曲线()222210,0x y a b a b-=>>的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -=能力提升1:设P 为椭圆22221x y a b+=上一点,12,F F 为焦点,122175,15,PFF PF F ∠=∠=o o 则椭圆的离心率为ABCD.2:椭圆221259x y +=上一点M 到焦点F 1的距离为2 ,N 是MF 1的中点,则ON 等于A 2 B. 4 C 8 D323设椭圆2212516x y +=的两焦点为12,F F ,M 为椭圆上一点,P 为的内心,连MP 并延长交椭圆长轴于N ,则MP NP的值为A34 B 43 C 35 D. 534已知双曲线22221x y a b-=(a >0,b >0)的焦点分别为12,F F ,点P 在双曲线的右支上,且PF 1=4PF 2,则双曲线的离心率最大值为535已知双曲线22221x y a b -=(a >0,b >0)的焦点分别为12,F F ,P 为双曲线左支上任意一点,若221PF PF 的最小值为8a ,则双曲线离心率的取值范围是A (1,+∞) B(]0,3 C. (]1,3 D (]1,26已知椭圆22221x y a b +=(a >b >0)的离心率为35,若就这个椭圆按逆时针方向旋转2π,所得新椭圆的一条准线方程是163,则原椭圆方程是 2212516x y +=6设12,F F 是椭圆C :22194x y +=的焦点,在曲线C 上满足120PF PF ⋅=u u u v u u u u v 的点P 的个数为 A 0 B 2 C 3 D. 47已知椭圆C :22194x y +=,F 为其右焦点,过F 作椭圆的弦AB ,设AF =mBF=n ,则11m n+= A23 B 43 C 32 D 348已知椭圆22221x y a b+=(a >b >0)的焦点分别为12,F F ,P 为椭圆上任一点,且12PF PF ⋅u u u v u u u u v 的最大值的取值范围是22,3cc ⎡⎤⎣⎦,其中,则椭圆的离心率的取值范围是A11,42⎡⎤⎢⎥⎣⎦ B.1,22⎡⎢⎣⎦ C 2⎤⎥⎣⎦D 1,12⎡⎫⎪⎢⎣⎭ 9设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点P i (i=1,2,3,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,则d 的取值范围是11,00,1010⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦10设抛物线24y x =的焦点弦被焦点分成m 和n 两部分,则11m n+= A12C 2D 4 11.设双曲线22221x y a b-= (a >0,b >0)的右准线与两渐近线交于A ,B 两点,F 为右焦点,若以AB 为直径的圆过点F ,则双曲线的离心率为AB 2C D.12双曲线方程为2214x y -= ,过点P (-3,1)作直线l ,使其被双曲线截得的弦长恰好被P 点平分,则l 的方程为 3X+4Y-5=013过抛物线22y px =(p >0)的焦点作倾斜角为45°的直线与抛物线交于A 、B 两点,A 在X 轴上方,则AF BF=14.双曲线221x y n-=的两焦点为12,F F ,P 在双曲线上,且满足12PF PF +=,则△12PF F 的面积是A. 1 B12C 2 D 415 已知F 为双曲线22221x y a b-=(a >0,b >0)的一个焦点 ,A 点坐标为(0,b ),线段AF 交双曲线于点M ,且2FM MA =u u u u v u u u v,则双曲线的离心率为ABC D16椭圆mx 2+ny 2=1与直线X+Y=1交于 M 、N 两点,MN 的中点为P ,且OP ,则mn的值为BCD17.已知双曲线中心在原点,且一个焦点为F (,0),直线y=x-1与其相交于MN 两点,MN 中点的横坐标为-23,则此双曲线方程为22125x y -= 18 A 、B 是双曲线22145x y -=右支上的两点,若弦AB 的中点到Y 轴的距离是4 ,则AB 的最大值为819 已知双曲线C:x 2-212y =的焦点12,F F ,点M 在双曲线上,且12MF MF ⋅uuuu v uuuu v =0,则M 到X 轴的距离为320已知椭圆221169x y +=的左右焦点分别为12,F F ,点P 在椭圆上,若P 、F 1,F 2是一个直角三角形的三个顶点,则点P 到X 轴的距离为9421双曲线221916x y -=的两个焦点12,F F ,点P 在双曲线上,若12PF PF ⊥,则点P 到X 轴的距离为16522.过抛物线y=ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点若PF 与FQ 的长为p 、q ,则11p q+等于A 2a B12a C. 4a D 4a23长度为A 的线段AB 的两个端点A 、B 都在抛物线y 2=2Px (p >0,a >2p)上滑动,则线段AB 中点M 到Y 轴的最短距离为1()2a p - 24 AB 是抛物线y 2=2x 的一条焦点弦,4AB =,则AB 的中点的横坐标为A 2 B12 C. 32 D 5225设椭圆22221x y a b+=(a >b >0)的焦点分别为12,F F ,若在其右准线上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是A0,2⎛ ⎝⎦ B 0,3⎛ ⎝⎦ C ,12⎫⎪⎪⎣⎭D ,13⎫⎪⎪⎣⎭ 26设P 为双曲线221916x y -=的右支上一点,M ,N 分别是圆(x+5)2 + y 2=4和(x-5)2+ y 2=4上的点,则PM PN-的最大值为A 6B 7C 8 D. 927把椭圆2212516x y +=的长轴AB 分成8等分,过每个分点作X 轴的垂线,交椭圆的上半部分于P i (i=1,2,…,7)等七个点,F 是椭圆的一个焦点,则1PF +2PF +…7PF =28直线l 是双曲线22221x y a b-=(a >0,b >0)的右准线,以坐标原点O 为圆心且过双曲线的焦点的圆被直线l 分成2:1的两端圆弧,则双曲线的离心率为AB C2D 29 设双曲线22221x y a b-=(a >0,b >0)的右准线与渐近线交与A 、B 两点,右焦点为F ,且AF ⊥FB ,那么双曲线两渐近线的夹角为A 90°B 60°C 45°D 30°。
圆锥曲线选择填空练习一、选择题1 .已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等2 .从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( ) A .24B .12C .22D .323.已知F 是抛物线x 2=4y 的焦点,直线y=kx ﹣1与该抛物线交于第一象限内的两点A ,B ,若|AF|=4|FB|,则k 的值是( ) A . B .C .D .4.已知点A (5,0),抛物线C :y 2=4x 的焦点为F ,点P 在抛物线C 上,若点F 恰好在PA 的垂直平分线上,则PA 的长度为( ) A .2 B .C .3D .45 .设抛物线C:y 2=4x 的焦点为F,直线L 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则L 的方程为( )A .y=x-1或y=-x+1B .y=(X-1)或y=-(x-1)C .y=(x-1)或y=-(x-1)D .y=(x-1)或y=-(x-1)6 . O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( ) A .2B .22C .23D .47 .设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F P 是C 上的点21212,30PF F F PF F ⊥∠=︒,则C 的离心率为( )A .B .C .D .8.已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C的方程为( )A .2212x y +=B .22132x y += C .22143x y += D .22154x y +=9.已知抛物线C 的顶点在坐标原点,准线方程为x=﹣1,直线l 与抛物线C 相交于A ,B 两点.若线段AB 的中点为(2,1),则直线l 的方程为( ) A .y=2x ﹣3 B .y=2x ﹣1 C .y=x ﹣3 D .y=x ﹣110.若直线经过抛物线y 2=4x 的焦点且与抛物线相交于M 、N 两点,且线段MN 中点的横坐标为3,则线段MN 的长为( ) A . B .8 C . D .1611.点P 是抛物线y 2=4x 上一点,记P 到抛物线准线的距离为d 1,到直线x ﹣2y+10=0的距离为d 2,则d 1+d 2的最小值为( ) A .+1 B . C .5 D .不存在12.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,连接了,AF BF ,若AB =10,BF =8,cos ÐABF =45,则C 的离心率为( )A .35B .57C .45D .6713.设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是 ( )A .23(2] B .232) C .23)+∞ D .23[)+∞14.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =( )A .12B .22C .2D .215.双曲线221y x m-=的离心率大于2的充分必要条件是( )A .12m >B .1m ≥C .1m >D .2m >16.记椭圆221441x ny n +=+围成的区域(含边界)为()1,2,n n Ω=,当点(),x y 分别在12,,ΩΩ上时,x y +的最大值分别是12,,M M ,则lim n n M →∞=( )A .0B .41 C .2 D .2217.已知点A(2,0),抛物线C:x 2=4y 的焦点为F,射线FA 与抛物线C 相交于点M,与其准线相交于点N,则|FM|:|MN|=( )A .2:B .1:2C .1:D .1:318.抛物线)0(21:21>=p x p y C 的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( ) A .163 B .83 C .332 D .33419.如图F 1.F 2是椭圆C1:x 24+y 2=1与双曲线C2有公共焦点,A .B 分别是C 1.C 2在第二.四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .2 B .3 C .32 D .6220.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .1(0,]2C .2(0,)2D .2[,1)221.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+22.已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( )A.24 B.36 C.48 D.9623.斜率为1的直线经过抛物线y 2=4x 的焦点,且与抛物线相交于A ,B 两点,则|AB|=( ) A .8 B .6C .12D .724.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[﹣,]B .[﹣2,2]C .[﹣1,1]D .[﹣4,4]25.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y ﹣4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( ) A .B .C .D .26.若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为( )(A)2 (B)3 (C)4 227.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) A 6B 3C 2D .33二、填空题1.设F 1,F 2是双曲线C,22221a x y b-= (a>0,b>0)的两个焦点.若在C 上存在一点P.使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为___________.2.过抛物线y 2=8x 的焦点作直线交抛物线于A (x 1,x 2)、B (x 2,y 2)两点,若|AB|=16,则x 1+x 2= .3.已知点P (m ,n )是抛物线x 2=16y 上的一点,抛物线的焦点为F ,若|PF|=5,则|mn|= .4.抛物线y 2=4x ,直线l 过焦点F ,与其交于A ,B 两点,且,则△AOB (O 为坐标原点)面积为 .5.已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点()5,0A 在线段PQ 上,则PQF ∆的周长为____________.6.设AB 是椭圆Γ的长轴,点C 在Γ上,且π4CBA ∠=.若4AB =,2BC =,则Γ的两个焦点之间的距离为_______.7.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y=x 对称.直线4x ﹣3y ﹣2=0与圆C 相交于A 、B 两点,且|AB|=6,则圆C 的方程为 .8.已知抛物线y 2=2px (p >0)焦点F 恰好是双曲线的右焦点,且两条曲线交点的连线过点F ,则该双曲线的离心率为 .9.椭圆)0(1:2222>>=+Γb a b y a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线与椭圆Γ的一个交点M满足12212F MF F MF ∠=∠,则该椭圆的离心率等于__________10.已知双曲线22112x y n n-=-3。
..圆锥曲线练习一、选择题(本大题共13小题,共65.0分)1.若曲线表示椭圆,则k的取值范围是()A.k>1B.k<-1C.-1<k<1D.-1<k<0或0<k<12.方程表示椭圆的必要不充分条件是()A.m∈(-1,2)B.m∈(-4,2)C.m∈(-4,-1)∪(-1,2)D.m∈(-1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3B.1C.3D.64.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B. C. D.5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( )A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6.“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件7.方程+=10,化简的结果是()A.+=1B.+=1C.+=1D.+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A. B. C. D.9.若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是()A.y2=-16xB.y2=-32xC.y2=16xD.y2=32x10.抛物线y=ax2(a<0)的准线方程是()A.y =-B.y =-C.y =D.y =11.设抛物线y2=4x上一点P到直线x=-3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812.已知点P是抛物线x =y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为()A.2B.C.-1D.+113.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=()A.2B.-1C.2或-1D.1±二、填空题(本大题共2小题,共10.0分)14.在平面直角坐标系x O y中,已知△ABC顶点A(-4,0)和C(4,0),顶点B 在椭圆上,则= ______ .15.已知椭圆,焦点在y轴上,若焦距等于4,则实数k=____________.三、解答题(本大题共6小题,共72.0分)16.已知三点P (,-)、A(-2,0)、B(2,0).求以A、B为焦点且过点P的椭圆的标准方程.17.已知椭圆+=1(a>b>0)的离心率为,短轴长为4.椭圆与直线y=x+2相交于A、B两点.(1)求椭圆的方程;(2)求弦长|AB|高中数学试卷第2页,共10页..18.设焦点在y轴上的双曲线渐近线方程为y=±x,且焦距为4,已知点A(1,)(1)求双曲线的标准方程;(2)已知点A(1,),过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程.19.已知抛物线的标准方程是y2=6x,(1)求它的焦点坐标和准线方程,(2)直线L过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为A、B,求AB 的长度.20.已知椭圆的离心率,直线y=bx+2与圆x2+y2=2相切.(1)求椭圆的方程;(2)已知定点E(1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使得以CD为直径的圆过定点E?若存在,求出k的值;若不存在,请说明理由.21.已知椭圆C:4x2+y2=1及直线L:y=x+m.(1)当直线L和椭圆C有公共点时,求实数m的取值范围;(2)当直线L被椭圆C截得的弦最长时,求直线L所在的直线方程.答案和解析【答案】1.D2.B3.A4.B5.B6.C7.C8.D9.C10.B11.A12.C13.A14.15.816.解:(1)2a =PA+PB=2,所以a =,又c=2,所以b2=a2-c2=6则以A、B为焦点且过点P的椭圆的标准方程为:+=1.17.解:(1)∵椭圆+=1(a>b>0)的离心率为,短轴长为4,∴,解得a=4,b=2,∴椭圆方程为=1.(2)联立,得5x2+16x=0,解得,,∴A(0,2),B(-,-),∴|AB|==.18.解:(1)设双曲线的标准方程为(a>0,b>0),则∵双曲线渐近线方程为y=±x,且焦距为4,∴,c=2∵c2=a2+b2∴a=1,b =∴双曲线的标准方程为;(2)设M(x1,y1),N(x2,y2),代入双曲线方程可得,两式相减,结合点A(1,)为线段MN 的中点,可得∴=∴直线L 方程为,即4x-6y-1=0.高中数学试卷第4页,共10页..19.解:(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,∴=∴焦点为F(,0),准线方程:x=-,(2)∵直线L过已知抛物线的焦点且倾斜角为45°,∴直线L的方程为y=x-,代入抛物线y2=6x化简得x2-9x+=0,设A(x1,y1),B(x2,y2),则x1+x2=9,所以|AB|=x1+x2+p=9+3=12.故所求的弦长为12.20.解:(1)因为直线l:y=bx+2与圆x2+y2=2相切,∴,∴b=1,∵椭圆的离心率,∴,∴a2=3,∴所求椭圆的方程是.(2)直线y=kx+2代入椭圆方程,消去y可得:(1+3k2)x2+12kx+9=0∴△=36k2-36>0,∴k>1或k<-1,设C(x1,y1),D(x2,y2),则有,,若以CD为直径的圆过点E,则EC⊥ED,∵,,∴(x1-1)(x2-1)+y1y2=0∴(1+k2)x1x2+(2k-1)(x1+x2)+5=0∴,解得,所以存在实数使得以CD为直径的圆过定点E.21.解:(1)由方程组,消去y,整理得5x2+2mx+m2-1=0.(2分)∴△=4m2-20(m2-1)=20-16m2(4分)因为直线和椭圆有公共点的条件是△≥0,即20-16m2≥0,解之得-.(5分)(2)设直线L和椭圆C相交于两点A(x1,y1),B(x2,y2),由韦达定理得,(8分)∴弦长|AB|===,-,∴当m=0时,|AB|取得最大值,此时直线L方程为y=x.(10分)【解析】1. 解:∵曲线表示椭圆,∴,解得-1<k<1,且k≠0.故选:D.曲线表示椭圆,可得,解出即可得出.本题考查了椭圆的标准方程及其性质、不等式的解法,考查了推理能力与计算能力,属于基础题.2. 解:方程表示椭圆的充要分条件是,即m∈(-4,-1)∪(-1,2).由题意可得,所求的m的范围包含集合(-4,-1)∪(-1,2),故选:B.由条件根据椭圆的标准方程,求得方程表示椭圆的充要条件所对应的m的范围,则由题意可得所求的m的范围包含所求得的m范围,结合所给的选项,得出结论.本题主要考查椭圆的标准方程,充分条件、必要条件,要条件的定义,属于基础题.3. 解:①椭圆+=1,中a2=2,b2=k,则c =,∴2c =2=2,解得k=1.高中数学试卷第6页,共10页..②椭圆+=1,中a2=k,b2=2,则c=,∴2c=2=2,解得k=3.综上所述,k的值是1或3.故选:A.利用椭圆的简单性质直接求解.本题考查椭圆的简单性质,考查对椭圆的标准方程中各字母的几何意义,属于简单题.4. 解:设椭圆方程为=1(a>b>0),由题意可得c=1,a=2,b=,即有椭圆方程为+=1.故选:B.设椭圆方程为=1(a>b>0),由题意可得c=1,a=2,再由a,b,c的关系,可得b,进而得到椭圆方程.本题考查椭圆的方程的求法,注意运用待定系数法,考查椭圆的焦点的运用,属于基础题.5. 解:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆∵当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分条件故选B.6. 解:a>0,b>0,方程ax2+by2=1不一定表示椭圆,如a=b=1;反之,若方程ax2+by2=1表示椭圆,则a>0,b>0.∴“a>0,b>0”是“方程ax2+by2=1表示椭圆”的必要分充分条件.故选:C.直接利用必要条件、充分条件及充分必要条件的判断方法结合椭圆标准方程得答案.本题考查必要条件、充分条件及充分必要条件的判断方法,考查了椭圆的标准方程,是基础题.7. 解:由+=10,可得点(x,y)到M(0,-3)、N(0,3)的距离之和正好等于10,再结合椭圆的定义可得点(x,y)的轨迹是以M、N为焦点的椭圆,且2a=10、c=3,∴a=5,b=4,故要求的椭圆的方程为+=1,故选:C.有条件利用椭圆的定义、标准方程,以及简单性质,求得椭圆的标准方程.本题主要考查椭圆的定义、标准方程,以及简单性质的应用,属于中档题.8. 解:椭圆的左焦点为F(-,0),右焦点为(,0),∵P 为椭圆上一点,其横坐标为,∴P 到右焦点的距离为∵椭圆的长轴长为4∴P到左焦点的距离|PF|=4-=故选D.确定椭圆的焦点坐标,利用椭圆的定义,即可求得P到左焦点的距离.本题考查椭圆的标准方程与几何性质,考查椭圆的定义,属于中档题.9. 解:∵点P到点(4,0)的距离比它到直线x+5=0的距离少1,∴将直线x+5=0右移1个单位,得直线x+4=0,即x=-4,可得点P到直线x=-4的距离等于它到点(4,0)的距离.根据抛物线的定义,可得点P的轨迹是以点(4,0)为焦点,以直线x=-4为准线的抛物线.设抛物线方程为y2=2px,可得=4,得2p=16,∴抛物线的标准方程为y2=16x,即为P点的轨迹方程.故选:C根据题意,点P到直线x=-4的距离等于它到点(4,0)的距离.由抛物线的定义与标准方程,不难得到P点的轨迹方程.本题给出动点P到定直线的距离比到定点的距离大1,求点P的轨迹方程,着重考查了抛物线的定义与标准方程和动点轨迹求法等知识,属于基础题.10. 解:抛物线y=ax2(a<0)可化为,准线方程为.故选B.抛物线y=ax2(a<0)化为标准方程,即可求出抛物线的准线方程.本题考查抛物线的性质,考查学生的计算能力,抛物线方程化为标准方程是关键.11. 解:抛物线y2=4x的准线为x=-1,∵点P到直线x=-3的距离为5,∴点p到准线x=-1的距离是5-2=3,根据抛物线的定义可知,点P到该抛物线焦点的距离是3,故选A.先根据抛物线的方程求得抛物线的准线方程,根据点P到直线x=-3的距离求得点到准线的距离,进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,从而求得答案.本题主要考查了抛物线的定义.充分利用了抛物线上的点到准线的距离与点到焦点的距高中数学试卷第8页,共10页..离相等这一特性.12. 解:抛物线x=y2,可得:y2=4x,抛物线的焦点坐标(1,0).依题点P到点A(0,2)的距离与点P到y轴的距离之和的最小值,就是P到(0,2)与P到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P到点A(0,2)的距离与P到该抛物线焦点坐标的距离之和减1,可得:-1=.故选:C.先求出抛物线的焦点坐标,再由抛物线的定义转化求解即可.本小题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.13. 解:联立直线y=kx-2与抛物线y2=8x,消去y,可得k2x2-(4k+8)x+4=0,(k≠0),判别式(4k+8)2-16k2>0,解得k>-1.设A(x1,y1),B(x2,y2),则x1+x2=,由AB中点的横坐标为2,即有=4,解得k=2或-1(舍去),故选:A.联立直线y=kx-2与抛物线y2=8x,消去y,可得x的方程,由判别式大于0,运用韦达定理和中点坐标公式,计算即可求得k=2.本题考查抛物线的方程的运用,联立直线和抛物线方程,消去未知数,运用韦达定理和中点坐标公式,注意判别式大于0,属于中档题.14. 解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为先利用椭圆的定义求得a+c,进而由正弦定理把原式转换成边的问题,进而求得答案.本题主要考查了椭圆的定义和正弦定理的应用.考查了学生对椭圆的定义的灵活运用.15. 解:将椭圆的方程转化为标准形式为,显然k-2>10-k,即k>6,,解得k=8故答案为:8.16.利用椭圆定义,求出2a,得出a,可求得椭圆的标准方程.本题考查了椭圆方程的求法,是基础题,解题时要注意椭圆的简单性质的合理运用.17.(1)由椭圆的离心率为,短轴长为4,列出方程组,能求出椭圆方程.(2)联立,得5x2+16x=0,由此能求出弦长|AB|.本题考查椭圆方程的求法,考查弦长的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.18.(1)设出双曲线的标准方程,利用双曲线渐近线方程为y=±x,且焦距为4,求出几何量,即可求双曲线的标准方程;(2)利用点差法,求出直线的斜率,即可求直线L方程.本题考查双曲线的标准方程,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.19.(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,即可求出抛物线的焦点坐标和准线方程,(2)先根据题意给出直线l的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可.本题考查了直线与抛物线的位置关系中的弦长问题,因为是过焦点的弦长问题,所以利用了焦半径公式.属于基础题.20.(1)利用直线l:y=bx+2与圆x2+y2=2相切,求出b,利用椭圆的离心率求出a,得到椭圆方程.(2)直线y=kx+2代入椭圆方程,消去y可得:(1+3k2)x2+12kx+9=0,设C(x1,y1),D(x2,y2),则利用韦达定理结合EC⊥ED,求解k ,说明存在实数使得以CD为直径的圆过定点E.本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的应用,考查存在性问题的处理方法,设而不求的应用,考查计算能力.21.(1)由方程组,得5x2+2mx+m2-1=0,由此利用根的判别式能求出实数m的取值范围.(2)设直线L和椭圆C相交于两点A(x1,y1),B(x2,y2),由韦达定理求出弦长|AB|=,由此能求出当m=0时,|AB|取得最大值,此时直线L方程为y=x.本题考查实数的取值范围的求法,考查直线方程的求法,解题时要认真审题,注意根的判别式、韦达定理、弦长公式的合理运用.高中数学试卷第10页,共10页。
圆锥曲线填空选择题专练
基础过关:
1.(15北京理科)已知双曲线()22
210x y a a
-=>
0y +=,则a =
.
3.(15北京文科)已知()2,0是双曲线2
2
21y x b
-=(0b >)的一个焦点,则b = .
5.(15年广东理科)已知双曲线C :12222=-b y a x 的离心率5
4
e =,且其右焦点()25,0F ,则双曲线C
的方程为
A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14
32
2=-y x 6.(15年广东文科)已知椭圆22
2
125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( )
A .9
B .4
C .3
D .2 22.(15年陕西文科)已知抛物线
22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )
A .(1,0)-
B .(1,0)
C .(0,1)-
D .(0,1)
~
24.(15
年天津理科)已知双曲线()22
2210,0x y a b a b
-=>>
的一条渐近线过点( ,且双曲线
的一个焦点在抛物线
2y = 的准线上,则双曲线的方程为
(A )
2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22
143x y -=
能力提升
1:设P 为椭圆22
221x y a b
+=上一点,12,F F 为焦点,122175,15,PFF PF F ∠=∠=则椭圆的离心
率为
A
B
C
D.
2:椭圆
22
1259
x y +=上一点M 到焦点F 1的距离为2 ,N 是MF 1的中点,则ON 等于
A 2 B. 4 C 8 D
32
3设椭圆
22
12516
x y +=的两焦点为12,F F ,M 为椭圆上一点,P 为的内心,连MP 并延长交椭圆长轴于N ,则
MP NP
的值为
A
34 B 43 C 35 D. 53
4已知双曲线22
221x y a b
-=(a >0,b >0)的焦点分别为12,F F ,点P 在双曲线的右支上,且PF 1=4PF 2,则
双曲线的离心率最大值为
5
3
^
5已知双曲线22
221x y a b -=(a >0,b >0)的焦点分别为12,F F ,P 为双曲线左支上任意一点,若
2
21
PF PF 的最小值为8a ,则双曲线离心率的取值范围是
A (1,+∞) B
(]0,3 C. (]1,3 D (]1,2
6已知椭圆22221x y a b +=(a >b >0)的离心率为35,若就这个椭圆按逆时针方向旋转
2
π
,所得新椭圆的
一条准线方程是
16
3
,则原椭圆方程是
22
12516
x y += 6设12,F F 是椭圆C :22
194
x y +=的焦点,在曲线C 上满足120PF PF ⋅=的点P 的个数为 A 0 B 2 C 3 D. 4
7已知椭圆C :22194
x y +=,F 为其右焦点,过F 作椭圆的弦AB ,设AF =m
BF
=n ,则
11m n
+= A
23 B 43 C 32 D 34
8已知椭圆22
221x y a b
+=(a >b >0)的焦点分别为12,F F ,P 为椭圆上任一点,且12PF PF ⋅的最大值的
取值范围是22,3c c ⎡⎤⎣⎦,其中,则椭圆的离心率的取值范围是
~
A
11,42⎡⎤⎢⎥⎣⎦ B.1,22⎡⎢⎣⎦ C 2⎤⎥⎣⎦
D 1,12⎡⎫
⎪⎢⎣⎭
9设F 是椭圆22
176
x y +=的右焦点,且椭圆上至少有21个不同的点P i (i=1,2,3,…),使
1
FP ,
2
FP ,
3
FP ,…组成公差为d 的等差数列,则d 的取值范围是
11,00,1010⎡⎫⎛⎤
-⋃⎪ ⎢⎥⎣⎭⎝⎦
10设抛物线
24y x =的焦点弦被焦点分成m 和n 两部分,则
11
m n
+= A
1
2
C 2
D 4
11.设双曲线22
221x y a b
-= (a >0,b >0)的右准线与两渐近线交于A ,B 两点,F 为右焦点,若以AB 为
直径的圆过点F ,则双曲线的离心率为
A
B 2
C D.
12双曲线方程为2
214
x y -= ,过点P (-3,1)作直线l ,使其被双曲线截得的弦长恰好被P 点平分,则l 的方程为 3X+4Y-5=0
13过抛物线
22y px =(p >0)的焦点作倾斜角为45°的直线与抛物线交于A 、B 两点,A 在X 轴
上方,则
AF BF
=
14.双曲线2
21x y n
-=的两焦点为12,F F ,P 在双曲线上,且满足12PF PF +=,则
△12PF F 的面积是 【
A. 1 B
12
C 2 D 4
15 已知F 为双曲线22
221x y a b
-=(a >0,b >0)的一个焦点 ,A 点坐标为(0,b ),线段AF 交双曲线
于点M ,且
2FM MA =,则双曲线的离心率为
A
B
13 C 10 D
16椭圆mx 2+ny 2=1与直线X+Y=1交于 M 、N 两点,MN 的中点为P ,且OP 的斜率为
2
,则
m
n
的值为
A
2
B
C
D
17.已知双曲线中心在原点,且一个焦点为F
(,0),直线y=x-1与其相交于MN 两点,MN 中点的横
坐标为-
2
3
,则此双曲线方程为
22
125
x y -= 18 A 、B 是双曲线
22
145
x y -=右支上的两点,若弦AB 的中点到Y 轴的距离是4 ,则AB 的最大值为
8
19 已知双曲线C:x 2
-2
12
y =的焦点12,F F ,点M 在双曲线上,且12MF MF ⋅ 》
=0,则M 到X 轴的距离为
20已知椭圆
22
1169
x y +=的左右焦点分别为12,F F ,点P 在椭圆上,若P 、F 1,F 2是一个直角三角形的三个顶点,则点P 到X 轴的距离为
94
21双曲线
22
1916
x y -=的两个焦点12,F F ,点P 在双曲线上,若12PF PF ⊥,则点P 到X 轴的距离为
165
22.过抛物线y=ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点若PF 与FQ 的长为
p 、q ,则
11p q
+等于
A 2a B
12a C. 4a D 4a
23长度为A 的线段AB 的两个端点A 、B 都在抛物线y 2=2Px (p >0,a >2p)上滑动,则线段AB 中点M 到Y
轴的最短距离为
1
()2
a p - 24 AB 是抛物线y 2=2x 的一条焦点弦,
4AB =,则AB 的中点的横坐标为
A 2 B
12 C. 32 D 52
25设椭圆22
221x y a b
+=(a >b >0)的焦点分别为12,F F ,若在其右准线上存在点P ,使线段PF 1的中垂
线过点F 2,则椭圆的离心率的取值范围是
A
0,2⎛ ⎝⎦ B ⎛ ⎝⎦ C ,12⎫⎪⎪⎣⎭
D ⎫⎪
⎪⎣⎭ —
26设P 为双曲线
22
1916
x y -=的右支上一点,M ,N 分别是圆(x+5)2 + y 2=4和(x-5)2+ y 2=4上的点,则
PM PN
-的最大值为
A 6
B 7
C 8 D. 9
27把椭圆22
12516
x y +=的长轴AB 分成8等分,过每个分点作X 轴的垂线,交椭圆的上半部分于P i (i=1,2,…,7)等七个点,F 是椭圆的一个焦点,则
1
PF +
2
PF +…
7
PF =
28直线l 是双曲线22
221x y a b
-=(a >0,b >0)的右准线,以坐标原点O 为圆心且过双曲线的焦点的圆被
直线l 分成2:1的两端圆弧,则双曲线的离心率为
A
B C
D 29 设双曲线22
221x y a b
-=(a >0,b >0)的右准线与渐近线交与A 、B 两点,右焦点为F ,且AF ⊥FB ,
那么双曲线两渐近线的夹角为
A 90°
B 60°
C 45°
D 30°。