1.3.1函数的基本性质
- 格式:ppt
- 大小:1.71 MB
- 文档页数:34
1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。
三人行学堂学科老师个性化教案教师 陈永福学生姓名上课日期 上课时段 年 月 日 到 学科数学年级高一(上) 必修一类型新课讲解□ 复习课讲解□教学目标教学内容 单调性与最大(小)值学习问题解决1、函数单调性的证明及判断方法2、由函数的单调性求参数的取值范围3、由函数的单调性解不等式4、求函数的最大(小)值知识清单1、增函数与减函数的定义 条件 一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的 两个自变量的值x 1,x 2,当x 1 <x 2时结论 那么就说函数f(x)在区间D 上是 函数 那么就说函数f(x)在区间D 上是函数图示2、如果函数)(x f y =在区间D 上是 函数或 函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的 。
3、函数的最大(小)值一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足 (1)对于任意的I x ∈,都有 (1)对于任意的I x ∈,都有 (2)存在I x ∈0,使得 (2)存在I x ∈0,使得 那么就称M 是函数)(x f y =的最大值 那么就称M 是函数)(x f y =的最小值方法探究一、函数单调性的证明及判断方法 方法点拨1、函数单调性的证明:现阶段只能用定义证明,其步骤为(1)取值:设x 1,x 2为该区间内任意两个自变量的值,且x 1 <x 2;(2)作差变形:作差f(x 1)-f(x 2),并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形;(3)定号:确定差值的符号,当符号不确定时,可考虑分类讨论; (4)作结论:根据定义作出结论;其中最关键的步骤为作差变形,在变形时一般尽量化成几个最简因式的乘积或几个完全平方式,直到符号判断水到渠成。
2、函数单调性的判断方法(1)图像法:先作出函数图象,利用图象直观判断函数单调性;(2)直接法:就是对于我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接判断它们单调性。
人教A版高中数学必修1 教材分析【1.3.1】函数的基本性质——单调性与最值【本教材内容的地位和作用】函数思想是贯穿高中数学的一根主线,函数的基本性质又是函数一章的重点内容。
一方面,它是对以前所学具体函数的一次总结,又是函数知识的一次拓展,对后续学习指、对数函数、三角函数、导数有重要的指导作用。
另一方面,函数的单调性是初等数学与高等数学(导数)衔接的枢纽,特别在应用意识日益加深的今天,函数的单调性在解决实际问题中有着相当重要的作用。
因此,函数单调性的教学,在教材体系中有着不可替代的位置,又有着重要的现实意义。
函数的单调性是函数的重要性质之一,它是研究函数值与自变量变化的一种关系,既要求学生结合函数的图象(直观性)来研究函数单调性,也要求学生利用函数单调性和最大(小)值的定义(严谨性)来研究函数单调性和最大(小)值。
因此本节课的教学重点是函数的单调性与最大(小)值的概念及其几何意义;判断、证明函数单调性;求函数的最大(小)值,利用单调性和最大(小)值来解决实际问题,培养学生的函数思想,数形结合思想以及应用数学意识。
【本教材内容的内部知识结构】知识点:1、单调性的概念2、增函数、减函数的定义内部知识结构:1、函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:2、增函数:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function).减函数:如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间D上是减函数(decreasing function).单调性证明方法解析:利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(即指出函数f(x)在给定的区间D上的单调性).【教材内容要点】*教学重点:掌握运用定义或图象进行函数的单调性的证明和判别,结合函数图形熟记几种常见函数的基本性质*教学难点:函数概念的理解。
课程篇一、问题的提出从2020年9月起,广东省高中数学启用人教版2019年审核通过的《普通高中教科书·数学》A版(简称新教材)。
此前,学生使用的是人教版2004年初审核通过的《普通高中课程标准实验教科书·数学》A版(简称旧教材)。
新课标指出,数学在形成人的理性思维、科学精神和促进智力发展的过程中发挥着不可替代的作用。
数学素养是现代社会每个人应具备的基本素养。
数学教材作为高中重要的课程资源之一,是课程理念的重要载体。
那么,新教材有何特色?体现怎样的教学理念?面临困惑,只有深入分析教材,才能对教材有深刻的理解。
二、新旧教材函数内容设计分析比较函数在高中数学中的地位举足轻重,它蕴含丰富的数学思想、方法,是学生解决数学问题的基本工具。
下文比较人教A版新旧版本“函数”部分内容。
1.函数整体编排分析比较旧教材函数内容在必修系列中共设置四章14节。
在数学1学习集合、函数概念和基本性质,形成研究函数的通法,再研究基本初等函数;感悟函数与方程之间的联系;在数学4学习三角函数。
新教材的设计有较大不同。
第一册核心为函数知识,共设置五章24节。
首先,新教材的内容处理既“瞻前”又“顾后”。
它设置两章高中数学学习的预备知识,为学生做好学习心理、学习方式及方法、技能上的准备,完成初高中数学学习的过渡和衔接,关注学生的学习体验和认知水平,体现“以生为本”的理念。
其次,新教材的编排是运用集合与对应学习函数概念,研究函数的性质;学习幂函数后学习指数函数和对数函数,建立函数模型解决实际问题,再学习三角函数。
较之,新教材突出主题教学,引导学生从整体把握知识,形成知识的结构框架和研究的通法。
此外,新教材在基本初等函数的学习顺序中,把幂函数置前。
编者的意图是:一是立足学生的知识背景。
因为幂函数中有学生熟悉的函数,如y=1x、y=x、y=x2等;二是形成方法的类比。
显然,新教材在旧教材的编排逻辑上,精选数学内容,优化课程结构,突出主题教学,注重知识的整体性、连贯性和系统性。
函数的基本性质(第一课时)说课稿数学1101班---------王浩一.教材分析:1.教材地位和作用:人教版《普通高中课程标准实验教科书》必修一第1.3.1“函数的基本性质”第一课时主要是研究函数的单调性.(1)从单调性知识本身来讲,让我们学会用数学语言来刻画函数图像的变换趋势。
(2)从函数角度讲是以后学习函数的基础。
(3)从学科角度讲是解决其他数学问题的工具,是学习其他数学知识的重要基础,是培养学生逻辑推理能力和数形结合的重要素材2.教学重点:函数单调性概念、判断及证明3.教学难点:归纳并抽象函数单调性的定义;根据定义证明函数的单调性.二. 教学目标的确定:1.知识与技能理解函数单调性的概念,初步掌握判别函数单调性的方法.2.过程与方法通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性解决简单的问题.3.情感态度体验数学的科学价值和应用价值,养成善于观察、勇于探索的良好习惯和严谨的科学态度.三.教法学法:1.教法与教法分析教学方法:启发引导---自主探究-- 合作讨论式在这样的教学方法下,教师真正成为课堂教学的引导者、组织者,是学生学习的合作者。
2.学法与学法分析学习方法:独立思考-自主探索-合作交流-阅读自学在教师的逐步引导下,学生的学习方式逐步从单纯的模仿与机械的记忆转变到独立思考,自主探究、合作学习,培养了学生自主学习能力和团队合作精神。
3.学情分析:学生已有的认知基础是,初中初步认识到一次函数、二次函数、反比例函数的图象及性质;进入高中以后,又进一步学习了函数的概念,认识到函数是两个数集之间的一种对应.尤其值得注意的是,学生有利用函数性质进行两个数大小比较的经验.四.教学过程:流程:复习导入定义形成定义运用自主探究小结作业布置教学环节教学过程设计意图温故知新情景引入1.观察一次函数f(x)=x和二次函数f(x)=x2的图象,说说随着x的增大,图象的升降情况.教师引导学生对这两个学过的函数观察图形特征,让学生针对以下问题合作讨论得出一些结论问题1.函数f(x)=x,在整个定义域内f(x)当x增大时函数值怎么变化?问题2.函数2xy=,在),0[+∞上y随x的增大而____,在)0,(-∞上y随x的增大而_______..情景引入1使学生从图象直观感知函数单调性,完成对函数单调性的再一次认识.归纳探索、概念形通过对以上问题的分析,从正、反两方面领会函数单调性.师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当1x<2x时,都有)(1xf<)(2xf.仿照单调增函数定义,由学生说出单调减函数的定义.教师介绍单调性和单调区间的定义.函数单调性定义产生是本节课的难点,通过问题的分解,引导学生步步深入,直至找到最准确的数学语言来描述定义.同时仿照单调增函数的定成义得到单调减函数的定义,掌握证法、适当拓展运用一.回到问题情境1的图形,提出问题:你能找函数图像中的单调区间吗?运用二.让学生举出所学过的函数为例并对其单调性和单调区间进行讨论.该步骤采用学生编题学生答题的方式,教师做指导,课堂气氛非常活跃.运用三. 范例: 判断函数上是增函数还是减函数?并证明你的结论。
高中数学必修一集合与函数基本性质知识点分析(讲义)一、集合一)集合的有关概念1. 关于集合的元素的特征(1)元素的确定性:(2)元素的互异性:(3)元素的无序性: 2. 元素与集合的关系;属于a ∈A ,不属于a ∉A二)集合的表示方法:列举法;描述法;图示法;符号简记法。
三)集合的基本关系:1、集合与集合之间的“包含”关系;2、集合与集合之间的 “相等”关系;A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB BA B A3、真子集的概念4、空集的概念:不含有任何元素的集合称为空集,记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
5、结论:1)、○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ 2)、点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 一般地,含n(n ≠0)个元素的集合{}n a a a ,,21 的所有子集的个数是n2,所有真子集的个数是n 2-1,非空真子集的个数为2-n四)集合的基本运算:1. 并集:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B的并集记作:A ∪B ;A ∪B={x|x ∈A ,或x ∈B} Venn 图表示:2. 交集:一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。
记作:A ∩B ;A ∩B={x|∈A ,且x ∈B} 交集的Venn 图表示3. 补集:全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集, 记作:C U A ;C U A={x|x ∈U 且x ∈A} 说明:补集的概念必须要有全集的限制补集的Venn 图表示4. 集合基本运算的一些结论:交集:A ∩B ⊆A , A ∩B ⊆B , A ∩A=A , A ∩∅=∅, A ∩B=B ∩A 并集:A ⊆A ∪B , B ⊆A ∪B , A ∪A=A , A ∪∅=A, A ∪B=B ∪A补集(C U A )∪A=U , (C U A )∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立 若A ∪B=B ,则A ⊆B ,反之也成立 若x ∈(A ∩B ),则x ∈A 且x ∈B 若x ∈(A ∪B ),则x ∈A ,或x ∈B 6.摩根反演律:(A ∩B )∪C = (A ∪C )∩(A ∪C )(A ∪B )∩C = (A ∩C )∪(A ∩C )〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.yxo 列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →. ②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.【1.3.3】周期性(1)定义:如果存在使得对于函数定义域内的任意x ,都有f (x+T )= f (x )的非零常数T ,则称f (x )为周期函数; (2)性质:①f (x+T )= f (x )常常写作),2()2(Tx f T x f -=+若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)是周期函数,且周期为||ωT 。
人教版高中数学必修一------- 各章节知识点与重难点第一章集合与函数概念1.1集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、“届丁”的概念我们通常用大写的拉丁字母A,B,C, ......... 表示集合,用小写拉丁字母a,b,c, ......... 表示元素如:如果a是集合A的元素,就说a届丁集合A记作a€ A,如果a不届丁集合A记作a A3、常用数集及其记法非负整数集(即自然数集)记作:N ;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x£ R| x-3>2}或{x| x-3>2}(3)图示法(Venn图)1.1.2集合问的基本关系【知识要点】1、“包含”关系一一子集一般地,对丁两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A B2、“相等”关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等丁集合B,即:A=B A B且B A3、真子集如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)4、空集不含任何元素的集合叫做空集,记为①规定:空集是任何集合的子集,空集是任何非空集合的真子集.1.1.3集合的基本运算【知识要点】1、交集的定义一般地,由所有届丁A且届丁B的元素所组成的集合,叫做A,B的交集.记作A A B(读作A 交B”),即An B={x| x€ A,且x€ B}.2、并集的定义一般地,由所有届丁集合A或届丁集合B的元素所组成的集合,叫做A,B的并集。
§1.3函数的基本性质1.3.1单调性与最大(小)值第1课时函数的单调性学习目标1.了解函数的单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一增函数与减函数的定义设函数f(x)的定义域为I:(1)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.思考(1)所有的函数在定义域上都具有单调性吗?(2)在增函数和减函数定义中,能否把“任意x1,x2∈D”改为“存在x1,x2∈D”?答案(1)不是.(2)不能.知识点二函数的单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.特别提醒:(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D⊆定义域I.(3)遵循最简原则,单调区间应尽可能大.1.如果f(x)在区间[a,b]和(b,c]上都是增函数,则f(x)在区间[a,c]上是增函数.(×)2.函数f(x)为R上的减函数,则f(-3)>f(3).(√)3.若函数y=f(x)在定义域上有f(1)<f(2),则函数y=f(x)是增函数.(×)4.若函数y=f(x)在区间D上是增函数,则函数y=-f(x)在区间D上是减函数.(√)题型一利用图象判断函数单调性例1(1)如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?考点 求函数的单调区间 题点 求函数的单调区间解 y =f (x )的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中y =f (x )在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数. (2)函数y =1x -1的单调递减区间是________.答案 (-∞,1),(1,+∞)解析 y =1x -1的图象可由y =1x 的图象向右平移一个单位得到,如图,∴单调减区间是(-∞,1),(1,+∞).反思感悟 函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D 上函数要么是增函数,要么是减函数,不能二者兼有.跟踪训练1(1)函数y=f(x),x∈[-4,4]的图象如图所示,则函数f(x)的所有单调递减区间为()A.[-4,-2]B.[1,4]C.[-4,-2]和[1,4]D.[-4,-2]∪[1,4]答案 C(2)函数y=|x2-2x-3|的图象如图所示,试写出它的单调区间,并指出单调性.考点求函数的单调区间题点求函数的单调区间解y=|x2-2x-3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调递减区间是(-∞,-1],[1,3];单调递增区间是[-1,1],[3,+∞).题型二函数单调性的证明例2求证:函数f(x)=x+1x在[1,+∞)上是增函数.考点 函数的单调性的判定与证明 题点 定义法证明具体函数的单调性证明 设x 1,x 2是[1,+∞)上的任意实数,且1≤x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-⎝⎛⎭⎫x 2+1x 2 =(x 1-x 2)+⎝⎛⎭⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2 =(x 1-x 2)⎝⎛⎭⎫1-1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1x 2-1x 1x 2. ∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)⎝⎛⎭⎫x 1x 2-1x 1x 2<0,即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )=x +1x在区间[1,+∞)上是增函数.反思感悟 定义法证明或判断函数单调性的四个步骤跟踪训练2 利用定义判断f (x )=2xx +3在区间(0,+∞)上的单调性.解 任取x 1,x 2∈(0,+∞)且x 1<x 2,则 f (x 2)-f (x 1)=2x 2x 2+3-2x 1x 1+3=2[x 2(x 1+3)-x 1(x 2+3)](x 1+3)(x 2+3)=6(x 2-x 1)(x 1+3)(x 2+3).因为x 1<x 2,且x 1,x 2∈(0,+∞), 所以x 2-x 1>0,x 1+3>0,x 2+3>0, 所以f (x 2)-f (x 1)>0,所以f (x )=2xx +3在区间(0,+∞)上是增函数.题型三 函数单调性的应用例3 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围. 解 f (x )=x 2+2(a -1)x +2的开口方向向上,对称轴为x =1-a , ∵f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数, ∴4≤1-a , ∴a ≤-3,∴a 的取值范围是(-∞,-3]. 延伸探究1.若f (x )=x 2+2(a -1)x +2的单调减区间为(-∞,4],则a 的值是什么? 解 ∵f (x )=x 2+2(a -1)x +2的单调减区间为(-∞,1-a ], ∴1-a =4, ∴a =-3.2.若f (x )=x 2+2(a -1)x +2在区间[2,4]上单调,则a 的取值范围是什么? 解 ∵f (x )=x 2+2(a -1)x +2在区间[2,4]上单调, ∴二次函数的对称轴x =1-a 一定不在区间(2,4)内, ∴1-a ≤2或1-a ≥4, 即a ≥-1或a ≤-3,∴a 的取值范围为(-∞,-3]∪[-1,+∞).3.若y =f (x )是定义在(-1,1)上的减函数,且f (1-a )<f (2a -1),求a 的取值范围. 解 f (1-a )<f (2a -1)等价于 ⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23,即所求a 的取值范围是⎩⎨⎧⎭⎬⎫a |0<a <23.反思感悟 函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.1.函数y =f (x )在区间[-2,2]上的图象如图所示,则此函数的增区间是( )A.[-2,0]B.[0,1]C.[-2,1]D.[-1,1]考点 求函数的单调区间 题点 求函数的单调区间 答案 C2.函数y =6x 的减区间是( )A.[0,+∞)B.(-∞,0]C.(-∞,0),(0,+∞)D.(-∞,0)∪(0,+∞)答案 C3.函数y=x2-6x的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[3,+∞)D.(-∞,3]答案 D解析y=x2-6x的开口方向向上,对称轴为x=3.所以其单调递减区间是(-∞,3].4.下列说法中正确的是()A.定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),使得当x1<x2时有f(x1)<f(x2),则f(x)在(a,b)上为增函数B.定义在(a,b)上的函数f(x),若有无穷多对x1,x2∈(a,b),使得当x1<x2时有f(x1)<f(x2),则f(x)在(a,b)上为增函数C.若f(x)在区间A上为减函数,在区间B上也为减函数,则f(x)在A∪B上也为减函数D.若f(x)在区间I上为增函数且f(x1)<f(x2)(x1,x2∈I),则x1<x2答案 D5.若函数y=f(x)在R上单调递减,且f(2m)>f(1+m),则实数m的取值范围是__________. 答案(-∞,1)解析由2m<1+m得m<1.1.证明函数的单调性时要注意以下几点(1)用定义证明函数单调性时,易忽视x1,x2的任意性.(2)要证明f(x)在[a,b]上不是单调函数,只要举出一个反例即可.2.判断函数的单调性可用定义法、直接法、图象法,而函数单调性的证明现在只能用定义证明.3.已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识:如f(x)在D上递增,则f(x1)<f(x2)⇔x1<x2.二是数形结合意识:如处理一(二)次函数及反比例函数中的含参数的范围问题.一、选择题1.如图是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是()A.函数在区间[-5,-3]上单调递增B.函数在区间[1,4]上单调递增C.函数在区间[-3,1]∪[4,5]上单调递减D.函数在区间[-5,5]上没有单调性答案 C解析单调区间不能用“∪”连接.2.下列函数中,在区间(0,2)上为增函数的是()A.y =3-xB.y =x 2+1C.y =1xD.y =-|x +1|答案 B解析 y =x 2+1在(0,2)上是增函数. 3.函数y =|x +2|在区间[-3,0]上( )A.递减B.递增C.先减后增D.先增后减答案 C解析 因为y =|x +2|=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.作出y =|x +2|的图象, 如图所示,易知在[-3,-2)上为减函数,在[-2,0]上为增函数.4.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点,那么-1<f (x )<1的解集是( )A.(-3,0)B.(0,3)C.(-∞,-1]∪[3,+∞)D.(-∞,0]∪[1,+∞)考点 函数单调性的应用题点 利用单调性解抽象函数不等式答案 B解析 由已知f (0)=-1,f (3)=1,∴-1<f (x )<1,即f (0)<f (x )<f (3).又∵f (x )在R 上单调递增,∴0<x <3,∴-1<f (x )<1的解集为(0,3).5.函数f (x )=-x 2+2(a -3)x +1在区间[-2,+∞)上单调递减,则实数a 的取值范围是( )A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞) 答案 B解析 二次函数开口向下,对称轴为x =a -3,∴a -3≤-2,∴a ≤1.6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,若f (4-a )>f (a ),则实数a 的取值范围是( ) A.(-∞,2)B.(2,+∞)C.(-∞,-2)D.(-2,+∞)考点 函数单调性的应用 题点 利用单调性解抽象函数不等式答案 A解析 画出f (x )的图象(图略)可判断f (x )在R 上单调递增,故f (4-a )>f (a )⇔4-a >a ,解得a <2.7.已知四个函数的图象如图所示,其中在定义域内具有单调性的函数是( )考点 函数的单调性的概念题点 函数单调性概念的理解答案 B解析 对于A ,存在x 1∈(0,1),f (x 1)>f (1),A 不对;对于C ,存在x 1>1,f (x 1)<f (1),C 不对;对于D ,存在x 1=-1,x 2=1,f (x 1)<f (x 2),D 不对;只有B 完全符合单调性定义.8.已知函数y =ax 和y =-b x在(0,+∞)上都是减函数,则函数f (x )=bx +a 在R 上是( )A.减函数且f (0)<0B.增函数且f (0)<0C.减函数且f (0)>0D.增函数且f (0)>0答案 A 解析 因为y =ax 和y =-b x在(0,+∞)上都是减函数, 所以a <0,b <0,f (x )=bx +a 为减函数且f (0)=a <0,故选A.二、填空题9.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥1,5-x ,x <1,则f (x )的单调递减区间是________. 答案 (-∞,1)解析 当x ≥1时,f (x )是增函数,当x <1时,f (x )是减函数,所以f (x )的单调递减区间为(-∞,1).10.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上是增函数,则实数a 的取值范围为________.答案 (-∞,2]解析 因为二次函数f (x )=x 2-(a -1)x +5的图象的对称轴为直线x =a -12,又函数f (x )在区间⎝⎛⎭⎫12,1上是增函数,所以a -12≤12,解得a ≤2. 11.已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围是________. 考点 函数单调性的应用题点 利用单调性解抽象函数不等式答案 ⎣⎡⎭⎫1,32 解析 由题意,得⎩⎪⎨⎪⎧ -1≤x -2≤1,-1≤1-x ≤1,x -2<1-x ,解得1≤x <32, 故满足条件的x 的取值范围是⎣⎡⎭⎫1,32. 三、解答题12.求函数y =-x 2+2|x |+3的单调递增区间.考点 求函数的单调区间题点 求函数的单调区间解 ∵y =-x 2+2|x |+3=⎩⎪⎨⎪⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.函数图象如图所示,∴函数y =-x 2+2|x |+3的单调递增区间是(-∞,-1]和[0,1].13.证明:函数f (x )=x 2-1x在区间(0,+∞)上是增函数. 证明 任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 21-1x 1-x 22+1x 2=(x 1-x 2)·⎝⎛⎭⎫x 1+x 2+1x 1x 2. 因为0<x 1<x 2,所以x 1-x 2<0,x 1+x 2+1x 1x 2>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=x 2-1x在区间(0,+∞)上是增函数.14.若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是____________.考点 函数单调性的应用 题点 已知二次函数单调性求参数范围答案 (0,1]解析 由f (x )=-x 2+2ax 在[1,2]上是减函数可得a ≤1.由g (x )=a x +1在[1,2]上是减函数可得a >0.∴0<a ≤1.15.设f (x )是定义在(0,+∞)上的函数,满足条件:(1)f (xy )=f (x )+f (y );(2)f (2)=1;(3)在(0,+∞)上是增函数.如果f (2)+f (x -3)≤2,求x 的取值范围.解 ∵f (xy )=f (x )+f (y ),∴令x =y =2,得f (4)=f (2)+f (2)=2f (2).又f (2)=1,∴f (4)=2.∵f (2)+f (x -3)=f (2(x -3))=f (2x -6),∴f (2x -6)≤2=f (4),即f (2x -6)≤f (4).∵f (x )是定义在(0,+∞)上的增函数,∴⎩⎪⎨⎪⎧ x -3>0,2x -6≤4,解得3<x ≤5.故x 的取值范围为(3,5].。