嵌入式串行外设接口(SPI)全解
- 格式:ppt
- 大小:573.50 KB
- 文档页数:17
串行外设接口(SPI)总线解析及应用
串行外设接口(SPI)总线是一个工作在全双工模式下的同步串行数据链路。
它可用于在单个主控制器和一个或多个从设备之间交换数据。
其简单的实施方案只使用四条支持数据与控制的信号线(图1):
虽然表1 中的引脚名称来自摩托罗拉开发的SPI 标准,但具体集成电路的SPI 端口名称往往与图1 中所示的不同。
图1:基本SPI 总线
表1:SPI 引脚名称分配
SPI 数据速率一般在1 到70MHz 的范围内,字长为从8 位及12 位到这两个值的倍数。
数据传输一般由数据交换构成。
在主控制器向从设备发送数据时,从设备也向主控制器发送数据。
因此主控制器的内部移位寄存器和从设备都采用环形设置(图2)。
图2:双移位寄存器形成一个芯片间的环形缓存器
在数据交换之前,主控制器和从设备会将存储器数据加载至它们的内部移位寄存器。
收到时钟信号后,主控制器先通过MOSI 线路时钟输出其移位寄存器的MSB。
同时从设备会读取位于SIMO 的主控器第一位元,将其存储在存储器中,然后通过SOMI 时钟输出其MSB。
主控制器可读取位于MISO 的从设备第一位元,并将其存储在存储器中,以便后续处理。
整个过程将一直持续到所有位元完成交换,而主控器则可让时钟空闲并通过/SS 禁用从设备。
SPI(SerialPeripheralInterface)协议SPI是串⾏外设接⼝(Serial Peripheral Interface)的缩写,是Motorola推出的⼀种同步串⾏接⼝技术,是⼀种⾼速的、全双⼯、同步的通信总线。
全双⼯:host能与外围从设备之间的发送线和接收线各⾃独⽴,能同时进⾏发送数据和接收数据。
源同步传输⽂章内容SPI介绍SPI协议通信时序详解SPI数据传输⽅式SPI总线优缺点1、SPI介绍应⽤场景SPI协议主要⽤于短距离的通信系统中,特别是嵌⼊式系统:存储器:RAM,EEPROM,Flash等数模转换器:A/D, D/A转换器等驱动接⼝:LED显⽰驱动器,I/O接⼝芯⽚,UART接收器等。
主从模式控制:SPI以主从⽅式进⾏⼯作,这种模式通常包含⼀个master和⼀个或多个slave,需要⾄少4根线(在单向传输时3根也可以),分别为:SDO/MOSI(master output slave input):主设备数据输出,从设备数据输⼊;SDI/MISO(master input slave output):主设备数据输⼊,从设备数据输出;SCLK:时钟信号,由主设备产⽣;CS/SS:⽚选信号,主设备控制并⽤于选择与其通信的从设备。
多Slave的SPI协议SPI协议可以操作在⼀个master对应⼀个或者多个slave的条件下,此时有多个CS/SS⽚选信号,但是⼀个时间只能有⼀个⽚选信号有效。
slave的输出端⼝MISO都是三态驱动;⾼电平,低电平和不选中时输出为⾼阻态。
数据交换(data exchanges)SPI设备之间的数据传输称为数据交换⽽不是数据传输。
这是因为SPI设备不能在进⾏数据通信的过程中仅充当transmitter和recieiver的⾓⾊,⽽是在每个时钟周期内,主从SPI设备都会发送1bit⼤⼩的数据,相当于主从设备进⾏了1bit的数据交换。
在数据的传输过程中,每次接收到的数据必须在下⼀次数据传输之前被采样,如果之前接收的数据没有被采样,那么这些已经收到的数据可能被丢弃,导致 SPI 模块最终失效,因此,在程序中,⼀般都会在 SPI 传输完数据之后,去读取 SPI 设备⾥⾯的数据,即使这些数据是在我们程序中是没有⽤的。
一、SPI接口简介SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。
SPI有三个寄存器分别为:控制寄存器SPCR,状态寄存器SPSR,数据寄存器SPDR。
外围设备FLASHRAM、网络控制器、LCD显示驱动器、A/D 转换器(如图一所示)和MCU等。
图一、ADC中的SPI二、SPI接口一个典型的SPI模块的核心部件是一个8位的移位寄存器和一个8位的数据寄存器SPIDR。
通过SPI进行数据传送的设备有主SPI和从SPI之分,即SPI传送在一个主SPI和一个从SPI之间进行。
图二给出了两个SPI模块相互连接、进行SPI传送的示意图,图左边是一个主SPI,图右边为一个从SPI。
图二、典型SPI示意图在AN-877应用笔记中,对spi的接口定义与典型spi接口有所不同,AN-877使用一根线SDIO代替了典型SPI的MISO和MOSI,SS接口用CSB代替。
图三和图四分别是双线模式下单器件控制(主从一对一)和双线模式下多器件控制(主从一对多)。
图三:主从一对一控制图四:主从一对多控制但是原理都一样。
主从机之间一般由3个引脚组成:串行时钟引脚(SCLK)、串行数据输入/输出引脚(SDIO)、片选引脚(CSB)。
1、引脚数据输入/输出(SDIO):该引脚用作数据的输入/输出,用作输入还是用作输出具体取决于所发送的指令(读或写)以及时序帧中的相对位置(指令周期或数据周期)。
在读或写的第一个阶段,该引脚用作输入,将信息传递到内部状态机。
如果该命令为读命令,状态机把该引脚(SDIO)变为输出,然后该引脚将数据回传给外部控制器。
如果该命令为写命令,该引脚始终用作输入。
串行时钟(SCLK):SCLK由外部控制器提供,时钟频率最高为25MHZ。
所有数据的输入输出都是与SCLK同步的。
输入数据在SCLK的上升沿有效,输出数据在SCLK的下降沿有效。
串行外设接口SPI通信协议详解什么是SPI?SPI的英文全称为Serial Peripheral Interface,顾名思义为串行外设接口。
SPI是一种同步串行通信接口规范,主要应用于嵌入式系统中的短距离通信。
该接口由摩托罗拉在20世纪80年代中期开发,后发展成了行业规范。
SPI通信的4种工作模式SPI通信中有4种不同的操作模式,不同的从机设备可能在出厂时就被设置好了某种模式,并且无法更改。
但是SPI通信必须处于同一种模式下才能进行。
因此我们应该对自己手里的SPI主机设备进行模式的配置,也就是通过CPOL(时钟极性)和CPHA(时钟相位)来控制SPI主设备的通信模式,具体如下:时钟极性(CPOL)定义了SCLK时钟线空闲状态时的电平:1.CPOL=0,即SCLK=0,表示SCLK时钟信号线在空闲状态时的电平为低电平,因此有效状态为高电平。
2.CPOL=1,即SCLK=1,表示SCLK时钟信号线在空闲状态时的电平为高电平,因此有效状态为低电平。
时钟相位(CPHA)定义了数据位相对于时钟线的时序(即相位):1.CPHA=0,即表示输出(out)端在上一个时钟周期的后沿改变数据,而输入(in)端在时钟周期的前沿(或不久之后)捕获数据。
输出端保持数据有效直到当前时钟周期的尾部边缘。
对于第一个时钟周期来说,第一位的数据必须在时钟前沿之前出现在MOSI线上。
也就是一个CPHA=0的周期包括半个时钟空闲和半个时钟置位的周期。
2.CPHA=1,即表示输出(out)端在当前时钟周期的前沿改变数据,而输入(in)端在时钟周期的后沿(或不久之后)捕获数据。
输出端保持数据有效直到下一个时钟周期的前沿。
对于最后一个时钟周期来说,从机设备在片选信号消失之前保持MISO信号线有效。
也就是一个CHPA=1的周期包括半个时钟置位和半个时钟空闲的周期。
Note:此处的前沿和后沿的意思表示在每个周期中第一个出现的边沿和最后一个出现的边沿。
第7章DSP片上串行通信外设7.1 串行外设接口(SPI)7.1.1 SPI模块概述串行外设接口(SPI)是一个高速同步的串行输入/输出接口,通常用于DSP与外设或其他处理器之间的通信。
SPI可采用主/从模式实现多处理器通信,典型的应用包括扩展I/O、移位寄存器、显示驱动器、模数转换器(ADC)等器件的外设拓展。
SPI与CPU接口如图7-1所示(1)SPI模块特点:●SPISOMI:SPI从输出/主输入引脚。
●SPISIMO:SPI从输入/主输出引脚。
● :SPI从发送器使能引脚。
●SPICLK:SPI串行时钟引脚。
●两种操作模式:主控制模式和从控制模式。
●波特率:125种可编程波特率,最大波特率受限于SPI引脚I/O缓冲器最大速度。
●数据字长:1~16位。
●4种时钟模式:无相位延时的下降沿、有相位延时的下降沿、无相位延时的上升沿、有相位延时的上升沿。
●同步接收和发送(发送功能可通过软件屏蔽)。
●通过中断或查询方式实现发送和接收操作。
●12个SPI模块控制寄存器,起始地址位于0x7040H。
●增强特点:16级发送/接收FIFO;延时发送控制。
(2)SPI模块结构框图图7-2是SPI工作于从模式时的结构框图2. SPI模块信号概述信号名称功能描述外部信号SPICLK SPISIMO SPISOMI SPISTE SPI时钟;SPI从入,主出;SPI从出,主入;SPI从发送使能。
控制信号SPI ClockRateLSPCLK 中断信号SPIRXINT SPITXINT 非FIFO模式下,作为发送中断/接收中断(作为SPI INT使用);FIFO模式下的接收中断。
FIFO模式下的发送中断。
1. SPI操作介绍SPI可以工作于主控制器模式也可以工作于从控制器模式。
图7-3介绍了两个控制器(一主一从)间的SPI通信典型连接。
1. SPI操作介绍SPI接口有3种可以使用的发送数据方式:●主控制器发送数据,从控制器发送伪数据;●主控制器发送数据,从控制器发送数据;●主控制器发送伪数据,从控制器发送数据。
SPI基础介绍SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。
是Motorola首先在其MC68HCXX系列处理器上定义的。
SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。
外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。
SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。
SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。
也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。
(1)SDO –主设备数据输出,从设备数据输入(2)SDI –主设备数据输入,从设备数据输出(3)SCLK –时钟信号,由主设备产生(4)CS –从设备使能信号,由主设备控制其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。
这就允许在同一总线上连接多个SPI设备成为可能。
接下来就负责通讯的3根线了。
通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。
SPI协议串行外设接口协议的解析SPI(Serial Peripheral Interface)协议是一种串行外设接口协议,常用于在微控制器和外部设备之间进行数据通信。
本文将对SPI协议的基本原理、通信格式以及常见应用进行解析。
一、SPI协议概述SPI协议是一种同步的全双工通信协议,其核心思想是通过使用四根线(片选信号、时钟、输入数据、输出数据)来实现设备之间的通信。
SPI可以同时支持单主机和多从机的通信方式,能够实现高速数据传输,并且相对简单易用。
二、SPI工作原理SPI工作在主-从模式下,一个主设备可以与一个或多个从设备进行通信。
SPI协议中的主设备控制时钟信号,指示数据传输的开始和结束,从设备根据时钟信号来读取或写入数据。
SPI通信时,主设备通过选择片选信号来选择要与其通信的从设备。
三、SPI通信格式1. 时钟极性(CPOL)和相位(CPHA):SPI通信协议的时钟极性和相位可以根据设备的要求进行设置,以适应不同设备的通信模式。
CPOL定义了在空闲状态下(时钟未激活)时钟信号的电平,高电平或低电平;CPHA定义了数据采样的时机,以时钟的上升沿还是下降沿为准。
2. 数据位顺序:SPI通信中数据传输的位顺序可以是LSB(Least Significant Bit,最低有效位)或MSB(Most Significant Bit,最高有效位)。
3. 传输速度:SPI通信的速度由主设备的时钟频率控制,可以根据从设备的要求和系统的稳定性来进行设置。
四、SPI应用场景SPI协议广泛应用于各种外设和传感器之间的通信,以下是几个常见的应用场景:1. 存储器芯片:SPI协议被广泛应用于存储器芯片(如Flash和EEPROM)和微控制器之间的通信,实现数据的读写操作。
2. 显示模块:很多液晶屏和OLED显示模块都采用SPI协议与主控制器进行通信,传输图像数据和命令。
3. 传感器:许多传感器(如温度传感器、加速度传感器等)通过SPI协议与控制器进行数据传输,实现实时数据采集和处理。