八年级数学实践与探索2
- 格式:pdf
- 大小:1.26 MB
- 文档页数:10
课堂教学导学案25,1.y x y x 的解。
”小风却对此半信半疑。
你能帮助小风打消顾虑吗?学完本节内容后你一定会做到。
2368x y x y ,,的解为探究1 一次函数与一元一次方程之间的关系● 在给出的直角坐标系中,画出函数y=2x+2的图象,由图可知方程2x+2=0的解 。
点拨:一次函数y =kx +b 中,给定了一个变量的值,求另一个变量的值,就是解关于另一个变量的一元一次方程.体现在函数图象上,就是知道了一次函数图象上一个点的横坐标或纵坐标,求另一个坐标.特别地,当y =0时,一元一次方程kx +b =0中x 的解,就是一次函数图象与x 轴交点的横坐标;当x =0时,y =b 就是一次函数图象与y 轴交点的纵坐标探究2一次函数与二元一次方程组之间的关系。
● 利用函数图象解方程组: (1) (2)点拨:一次函数y =kx +b ,如果从方程的角度看,就是一个以变量x ,y 为未知数的二元一次方程,一次函数y =kx +b 的图象上任意一个点的坐标就对应着这个方程的一个解.因此,一次函数图象上的无穷多个点,就对应着相应的二元一次方程的无穷多个解.根据一次函数与二元一次方程的关系,两个含有相同未知数x ,y 的二元一次方程组成的方程组⎩⎪⎨⎪⎧ y =k 1x +b 1,y =k 2x +b 2(可以化成⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的形式)的解,就对应着两个一次函数y =k 1x +b 1,y =k 2x +b 2图象的交点坐标.所以求两条直线交点的坐标,就转化为解二元一次方程组的解.探究3 一次函数与一元一次不等式的关系● 如图,直线y =kx +b 交坐标轴于A (-3,0)、B (0,5)两点,则不等式-kx -b <0的解集为( ).A. x >-3B. x <-3C. x >3D. x <3点拨:一元一次不等式kx +b >0(或kx +b <0)的解集,就对应着一次函数y =kx +b 在函数值y >0(或y <0)时,对应自变量x 的范围,体现在函数图象上,就是x 轴的上方(或下方)的射线(不含端点)对应的x 的取值范围.探究4 数形结合的数学思想● 如果双曲线y 1=-3x与直线y 2=-x +2交于点A (-1,n )、B .{12421--=+=x y x y {225=--=+y x y x Oy x(1)求出n 的值和点B 的坐标;(2)根据图象,写出y 1>y 2时,自变量x 的取值范围.点拨:用一次函数来研究一元一次方程、二元一次方程(组)、一元一次不等式问题,主要就是借助于图形的直观性解题,所以理解一次函数与一元一次方程、二元一次方程(组)、一元一次不等式的关系是解题的关键.同时,在一次函数这个高观点之下,重新来审视一元一次方程、二元一次方程(组)的解和一元一次不等式的解集,理解它们的几何意义,对于弄清知识之间的内在联系,使知识形成体系有着重要的意义.与不等式的意义一样,对于两个函数y 1=k 1x +b 1,y 2=k 2x +b 2(或y 2=k 2x),要找出y 1>y 2的自变量的取值范围,可以先用解方程组的办法求出图象的交点坐标.当y 1>y 2时,即k 1x +b 1>k 2x +b 2(或k 1x +b 1>k 2x),在图象上对应着交点的一侧,函数图象y 1=k 1x +b 1高于y 2=k 2x +b 2(或y 2=k 2x)的部分的自变量的取值范围.基础训练:。
2023-2024学年(华师版)八年级数学下册名师教学设计:课题实践与探索(3)一. 教材分析本节课是华师版八年级数学下册的课题实践与探索(3),主要内容是让学生通过实践活动,进一步理解和掌握数学知识。
教材通过具体的实例,引导学生探索和发现数学规律,培养学生的动手操作能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一定的数学基础知识,具备一定的动手操作能力。
但是,对于一些复杂的数学问题,学生可能还不知道如何运用所学的知识去解决。
因此,在教学过程中,教师需要关注学生的学习情况,及时给予引导和帮助。
三. 教学目标1.知识与技能:让学生通过实践活动,理解和掌握数学知识,提高解决问题的能力。
2.过程与方法:培养学生动手操作的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:让学生通过实践活动,理解和掌握数学知识。
2.教学难点:如何引导学生发现和总结数学规律。
五. 教学方法1.启发式教学:通过提问和引导,激发学生的思考,帮助学生理解和掌握数学知识。
2.实践活动:让学生通过动手操作,亲身参与实践活动,提高解决问题的能力。
3.小组合作:让学生分组进行合作,培养团队合作意识,提高沟通能力和解决问题的能力。
六. 教学准备1.教材:华师版八年级数学下册。
2.课件:与本节课相关的课件。
3.学具:与本节课相关的实践活动材料。
七. 教学过程1.导入(5分钟)教师通过一个具体的实例,引出本节课的主题,激发学生的兴趣。
2.呈现(10分钟)教师通过课件,展示与本节课相关的实例,让学生观察和思考,引导学生发现数学规律。
3.操练(10分钟)学生分组进行实践活动,教师巡回指导,帮助学生理解和掌握数学知识。
4.巩固(10分钟)教师通过提问和引导,帮助学生巩固所学知识,让学生能够运用所学知识解决问题。
5.拓展(10分钟)教师通过出示一些拓展题,让学生进行思考和解答,提高学生的解决问题的能力。
(新课标)2017-2018学年华东师大版八年级下册第十七章第五节17.5实践与探索课时练习一、单选题(共15题)1.某同学网购一种图书,每册定价20元,另加书价的5%作为快递运费.若购书x册,则需付款y(元)与x的函数解析式为()A.y=20x+1 B.y=21x C.y=19x D.y=20x-1 答案:B解析:解答:由题意得:购买一册书需要花费(20+20×5%)元,故购买x册数需花费x(20+20×5%)元.即y=x(20+20×5%)=21x选B分析: 根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x册与需付款y(元)与x的函数解析式2.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系式应为()A.y=40t+5 B.y=5t+40 C.y=5t-40 D.y=40-5t 答案:D解析:解答:依题意得,油箱内余油量y(升)与行驶时间t(小时)的关系式为:y=40-5t选:D.分析:根据:油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式3.某书贩以每本10元的价格从出版社购进某种练习册5000份,以每份30元的价格销售出x份(x<5000),未销售完的练习册又以每份2元的价格由废品收购站收购,这次买卖中该书贩获利y元,则y与x的函数关系式为()A.y=32x+40000(x<5000)B.y=32x-60000(x<5000)C.y=28x+40000(x<5000)D.y=28x-40000(x<5000)答案:D解析:解答: ∵总售价为:30x元,总成本为:10×5000=50000元,由废品收购站收购总价为:2×(5000-x)元,∴赚钱为:y=30x-50000+2×(5000-x)=28x-40000(x<5000)选D.分析: 等量关系为:利润=总售价-总成本+收购站收购总价,把相关数值代入4.某报亭老板以每份0.5元的价格从报社购进某种报纸500份,以每份O.8元的价格销售x 份(x<500),未销售完的报纸又以每份0.1元的价格由报社收回,这次买卖中该老板获利y 元,则y与x的函数关系式为()A.y=0.7x-200(x<500)B.y=0.8x-200(x<500)C.y=0.7x-250(x<500)D.y=0.8x-250(x<500)答案:A解析:解答: ∵总售价为0.8x元,总成本为0.5×500=250元,回收总价为0.1×(500-x),∴获利为:y=0.8x-250+0.1×(500-x)=0.7x-200(x<500)选A.分析:等量关系为:利润=总售价-总成本+回收总价,把相关数值代入5.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分钟30米的速度行走了前半程,为了不迟到他加快了速度,以每分钟45米的速度行走完了剩下的路程,那么小亮行走的路程y(米)与他行走的时间t(分)(t>15)之间的函数关系正确的是()A.y=30t(t>15)B.y=900-30t(t>15)C.y=45t-225(t>15)D.y=45t-675(t>15)答案:C解析:解答:由题意可得:y=45(t-15)=45t-225(t>15)选C.分析:利用他从家去上学时以每分钟30米的速度行走了前半程,所用时间为15分钟,进而得出y与t的函数关系式6.函数y=2x-1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:解答: ∵k=2>0,∴函数y=2x-1的图象经过第一,三象限;又∵b=-1<0,∴图象与y轴的交点在x轴的下方,即图象经过第四象限;所以函数y=-x-1的图象经过第一,三,四象限,即它不经过第二象限选B.分析:由于k=2,函数y=2x-1的图象经过第一、三象限;b=-1,图象与y轴的交点在x轴的下方,即图象经过第四象限,即可判断图象不经过第二象限7.“五一”期间,一体育用品商店搞优惠促销活动,其活动内容是:“凡在该商店一次性购物超过100元者,超过100元的部分按九折优惠”.在此活动中,小东到该商店为学校一次性购买单价为70元的篮球x个(x>2),则小东应付货款y(元)与篮球个数x(个)的函数关系式是()A.y=63x(x>2)B.y=63x+100(x>2)C.y=63x+10(x>2)D.y=63x+90(x>2)答案:C解析:解答:∵凡在该商店一次性购物超过100元者,超过100元的部分按九折优惠,∴小东到该商店为学校一次性购买单价为70元的篮球x个(x>2),则小东应付货款y(元)与篮球个数x(个)的函数关系式是:y=(70x-100)×0.9+100=63x+10(x>2)选:C.分析:根据已知表示出买x个篮球的总钱数以及优惠后价格,进而得出等式8.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12)x+12(0<x<24)B.y=-12C.y=2x-24(0<x<12)x-12(0<x<24)D.y=12答案:B解析:解答:由题意得:2y+x=24,故可得:y=-1x+12(0<x<24)选B.2分析: 根据题意可得2y+x=24,继而可得出y与x之间的函数关系式,及自变量x的范围9.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升.如果每升汽油7.6元,求油箱内汽油的总价y(元)与x (升)之间的函数关系是()A.y=7.6x(0≤x≤20)B.y=7.6x+76(0≤x≤20)C.y=7.6x+10(0≤x≤20)D.y=7.6x+76(10≤x≤30)答案:B解析:解答: 依题意有y=(10+x)×7.6=7.6x+76,10≤汽油总量≤30,则0≤x≤20选:B.分析: 根据油箱内汽油的总价=(原有汽油+加的汽油)×单价10.小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为()A.y=0.5t(8<t≤12)B.y=0.5t+2(8<t≤12)C.y=0.5t+8(8<t≤12)D.y=0.5t-2(8<t≤12)答案:D解析:解答: 下坡路的长度=4-1-0.2×5=2千米,下坡路的速度=2÷4=0.5千米/分钟,则y=平路+上坡路+(t-8)×下坡路速度=2+0.5×(t-8)=0.5t-2,即可得y=0.5t-2(8<t≤12)选:D.分析:当8<t≤12时,小高正在走下坡路,求出走下坡路的速度,然后根据y=平路+上坡路+(t-8)×下坡路速度,即可得出答案11.已知,如图,某人驱车在离A地10千米的P地出发,向B 地匀速行驶,30分钟后离P地50千米,设出发x小时后,汽车离A地y千米(未到达B地前),则y与x的函数关系式为()A.y=50x B.y=100x C.y=50x-10 D.y=100x+10 答案:D解析:解答: ∵汽车在离A地10千米的P地出发,向B地匀速行驶,30分钟后离P地50千米(未到达B地前),∴汽车的速度=50÷0.5=100(千米/时),则依题意有:y=100x+10选:D.分析:根据汽车的速度=50÷0.5=100千米/时,汽车离A地距离=10+行驶距离得出12.小明每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,设该天小明上学行走t分时行走的路程为S米,则当l5<t≤25时,s与t之间的函数关系是()A.s=30t B.s=900-30t C.S=45t-225D.s=45t-675答案:C解析:解答:以每分30米的速度行走了450米用的时间为=15s,t=45030则当l5<t≤25时,速度是每分45米,根据题意列出关系式:s=450+45(t-15)=45t-225(l5<t≤25).选:C.分析:当l5<t≤25时,小明的速度为每分45米,从而可得出s 与t的关系式13.为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t (15<t≤23)的函数关系为()A.y=100t(15<t≤23)B.y=100t-500(15<t≤23)C.y=50t+650(15<t≤23)D.y=100t+500(15<t≤23)答案:B解析:解答: ∵用了8分钟骑行了剩余的800米,=100米/分,∴速度v=8008则可得y=1000+100(t-15)=100t-500(15<t≤23)分析:先求出骑车的速度,然后根据路程=故障前行走的路程+故障后行走的路程,即可得出y与x的函数关系式14.若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为()A.y=t+2.4 B.y=0.5t+1 C.y=0.5t+0.3 D.y=0.5t-0.3答案:C解析:解答:依题意有:y=1.8+0.5(t-3)=0.5t+0.3选:C.分析:根据电话费=3分内收费+三分后的收费列出函数解析式15.平行四边形的周长为50,设它的长为x,宽为y,则y与x 的函数关系为()A.y=25-x B.y=25+x C.y=50-x D.y=50+x 答案:A解析:解答:∵平行四边形的周长为50,∴2x+2y=50,整理,得y=25-x选:A.分析:根据平行四边形的对边相等,周长表示为2x+2y,根据已知条件,建立等量关系,再变形二、填空题(共5题)16.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(单位:cm)与燃烧时间t(单位:h)(0≤t≤4)之间的关系是___答案:h=-5t+20解析:解答: 解:由题意得:5t+h=20,整理得:h=-5t+20,答案为:h=-5t+20分析:根据题意可得等量关系:燃烧的高度+剩余的高度=20cm,根据等量关系列出函数关系式17.为了加强公民节水意识,某市制定了如下用水收费标准,每户每月用水不超过10t时,水价为每吨1.2元;超过10t时,超过的部分按每吨1.8元收费,现有某户居民5月份用水xt(x>10),应交水费y元,则y与x的关系式__________.答案:y=1.8x-6解析:解答: 依题意有y=1.2×10+(x-10)×1.8=1.8x-6.所以y关于x的函数关系式是y=1.8x-6(x>10)答案为:y=1.8x-6分析:水费y=10吨的水费+超过10吨的水费,依此列式18.汽车以60千米/时速度匀速行驶,随着时间t(时)的变化,汽车的行驶路程s也随着变化,则它们之间的关系式为_________ 答案:s=60t解析:解答: 由路程=速度×时间,可得s与t的函数关系式为:s=60t答案为s=60t分析:根据路程=速度×时间,列出函数关系式19.已知等腰三角形的周长为24cm,设腰长为x(cm),底边长为y(cm),写出y关x函数解析式及自变量x的取值范围________.答案:y=24-2x(6<x<12)解析:解答:∵等腰三角形的周长为24cm,设腰长为x(cm),底边长为y(cm),∴y关于x函数解析式为:y=24-2x,自变量x的取值范围为:6<x<12.分析:利用等腰三角形的性质结合三角形三边关系得出答案20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为________答案:y=6+0.3x解析:解答: 根据题意可得:y=6+0.3x(0≤x≤5)分析:根据高度等于速度乘以时间列出关系式解答即可三、解答题(共5题)21.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为怎样的?答案:解答: 新增加的投资额x万元,x万元.则增加产值250100这函数关系式是:y=2.5x+15.即总产值y(万元)与新增加的投资额x(万元)之间函数关系为y=2.5x+15分析:每增加100元投资,一年增加250元产值,那么增加1万元投资,就要增加2.5万元的产值,根据总产值=现在年产值+增加的年产值可得出关系式22.一拖拉机有油10升,工作时每小时用油5升.写出剩余油量Q升与工作时间t小时之间的关系式,并画出函数的图象.答案:解答: 剩余油量Q升与工作时间t小时之间的关系式为:Q=10-5t(0≤t≤2)分析: 余油量=原有油-每小时用油×时间,函数图象为一条线段23.已知一个长方形周长为60米.求它的长y(米)与宽x(米)之间的函数关系式,并指出关系式中的自变量与函数答案:解答:由题意得,2(x+y)=60x+y=30,即y=30-x (0<x<30)故长方形的长与宽的关系为:y=40-x (0<x<30)分析:根据长方形的周长等于长方形长和宽之和的两倍,写出长与宽的关系式24.A,B两地相距400km,甲车从A地出发,以60km/h的速度匀速行驶到B地,设甲车与B的路程为y(km),行驶的时间为x(h),求y关于x的函数解析式,并写出自变量x的取值范围答案:解答:由题意得:60x+y=400,y=400-6x,400-6x≥0,,解得:x≤2003∵x≥0,∴0≤x≤2003分析:由题意得:甲车的行驶速度×行驶时间+y=400km,根据等量关系可得60x+y=400,然后再变形可得y=400-6x25.等腰三角形的周长为30cm.(1)若底边长为xcm,腰长为ycm,写出y与x的关系式,并注明自变量的取值范围.x+1,0<x<15答案:y=-12解答:∵等腰三角形的周长为30cm,底边长为xcm,腰长为ycm,x+15,自变量的取值∴y与x的关系式为:x+2y=30,即y=-12范围是:0<x<15;(2)若腰长为xcm,底边长为ycm,写出y与x的关系式,并注明自变量的取值范围答案:y=-2x+30,7.5<x<15解答:∵等腰三角形的周长为30cm,腰长为xcm,底边长为ycm,∴y与x的关系式为:y=-2x+30,自变量的取值范围是:7.5<x <15分析:(1)直接利用三角形周长公式求出y与x的函数关系,进而利用三角形三边关系得出自变量的取值范围;(2)直接利用三角形周长公式求出y与x的函数关系,进而利用三角形三边关系得出自变量的取值范围.。
合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。
新版华东师大版八年级数学下册《17.5实践与探索》说课稿26一. 教材分析华东师大版八年级数学下册《17.5实践与探索》是一节旨在培养学生实践能力和探索精神的课程。
本节课的内容包括两个部分,一部分是实践操作,另一部分是探索研究。
实践操作部分要求学生运用所学知识解决实际问题,提高学生的动手操作能力;探索研究部分则要求学生通过自主探究,发现规律,提高学生的思维能力和创新能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学产生了一定的兴趣。
但是,由于地区差异,学生的数学水平参差不齐,部分学生对数学仍然存在恐惧心理。
此外,学生对于实践与探索类课程的认识还不够深刻,需要在教学过程中加以引导。
三. 说教学目标1.知识与技能目标:学生能够运用所学知识解决实际问题,提高实践操作能力。
2.过程与方法目标:学生通过自主探究,发现规律,提高思维能力和创新能力。
3.情感态度与价值观目标:学生体验数学在生活中的应用,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:学生能够运用所学知识解决实际问题。
2.教学难点:学生通过自主探究,发现规律,提高思维能力和创新能力。
五. 说教学方法与手段1.教学方法:采用引导发现法、讨论法、实践操作法等。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。
六. 说教学过程1.导入新课:通过生活中的实际问题,引发学生对数学的兴趣,导入新课。
2.实践操作:学生分组讨论,运用所学知识解决实际问题,提高实践操作能力。
3.探索研究:学生自主探究,发现规律,提高思维能力和创新能力。
4.总结提升:教师引导学生总结本节课的知识点,加深对数学的理解。
5.布置作业:布置适量作业,巩固所学知识,提高应用能力。
七. 说板书设计板书设计遵循清晰、简洁、易懂的原则,突出本节课的关键知识点和思路。
主要包括以下几个部分:1.实践操作部分的板书设计:问题提出、方法指导、操作步骤等。
2.探索研究部分的板书设计:问题提出、思路引导、规律总结等。
新版华东师大版八年级数学下册《17.5实践与探索》教学设计26一. 教材分析华东师大版八年级数学下册《17.5实践与探索》这一节主要讲述了锐角三角函数的概念和应用。
通过本节课的学习,学生能够理解锐角三角函数的定义,掌握锐角三角函数的计算方法,并能够运用锐角三角函数解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析八年级的学生已经掌握了初中阶段的基础数学知识,对于函数的概念和解题方法有一定的了解。
但是,对于锐角三角函数的理解和应用可能还存在一定的困难。
因此,在教学过程中,教师需要通过生动的讲解和丰富的实例,帮助学生理解锐角三角函数的内涵和外延,提高学生的学习兴趣和解题能力。
三. 教学目标1.知识与技能目标:学生能够理解锐角三角函数的定义,掌握锐角三角函数的计算方法,并能够运用锐角三角函数解决实际问题。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的探究精神和创新意识。
四. 教学重难点1.教学重点:锐角三角函数的定义和计算方法。
2.教学难点:锐角三角函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣和思考,帮助学生理解锐角三角函数的内涵和外延。
2.小组合作学习:学生进行小组讨论和交流,培养学生的团队协作能力和问题解决能力。
3.启发式教学法:教师通过提问和引导,激发学生的思维,帮助学生掌握锐角三角函数的计算方法。
六. 教学准备1.教学课件:制作精美的教学课件,配合生动的讲解,帮助学生理解锐角三角函数的概念和应用。
2.练习题:准备适量的练习题,巩固学生的学习成果,提高学生的解题能力。
3.教学道具:准备一些教学道具,如三角板、直尺等,帮助学生直观地理解锐角三角函数的计算过程。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,如“一个直角三角形,其中一个锐角的正弦值是0.8,求这个锐角的余弦值。