(土工)固结实验(报告)
- 格式:doc
- 大小:77.50 KB
- 文档页数:3
土工试验固结试验17 固结试验17.1 一般规定17.1.1 土样应为饱和的细粒土。
当只进行压缩试验时,可用于非饱和土。
17.1.2 渗透性较大的细粒土,可进行快速固结试验。
17.2 标准固结试验17.2.1 本试验所用的仪器设备应符合下列规定:1 固结容器:由环刀、护环、透水板、加压上盖和量表架等组成。
环刀、透水板的技术性能和尺寸参数应符合现行国家标准《土工实验仪器环刀》SL 370切土环刀及相关标准的规定(图17.2.1)。
图17.2.1 固结容器示意图1-水槽;2-护环;3-环刀;4-导环;5-透水板;6-加压上盖;7-位移计导杆;8-位移计架;9-试样2 加压设备:可采用量程为5kN~10kN的杠杆式、磅秤式或其他加压设备,其最大允许误差应符合现行国家标准《土工试验仪器固结仪第1部分:单杠杆固结仪》GB/T 4935.1、《土工试验仪器固结仪第2部分:气压式固结仪》GB/T 4935.2的有关规定。
3 变形测量设备:百分表量程10mm,分度值为0.01mm,或最大允许误差应为±0.2%F.S的位移传感器。
4 其他:刮土刀、钢丝锯、天平、秒表。
17.2.2 标准固结试验应按下列步骤进行:1 根据工程需要,切取原状土试样或制备给定密度与含水率的扰动土试样。
制备方法应按本标准第4.3节、第4.4节执行。
2 冲填土应先将土样调成液限或1.2倍~1.3倍液限的土膏,拌和均匀,在保湿器内静置24h。
然后把环刀倒置于小玻璃板上用调土刀把土膏填入环刀,排除气泡刮平,称量。
3 试样的含水率及密度的测定应符合本标准第5.2.2条、第6.2.2条的规定。
对于扰动试样需要饱和时,应按本标准第4.6节规定的方法将试样进行饱和。
4 在固结容器内放置护环、透水板和薄滤纸,将带有环刀的试样小心装入护环,然后在试样上放薄滤纸、透水板和加压盖板,置于加压框架下,对准加压框架的正中,安装量表。
5 为保证试样与仪器上下各部件之间接触良好,应施加1kPa的预压压力,然后调整量表,使读数为零。
土工实验报告目录三轴固结不排水剪 (2)三轴固结排水剪 (8)动三轴试验 (16)动单剪试验 (20)共振柱试验 (23)击实试验 (29)界限含水量试验 (32)压缩实验(固结试验) (37)土工织物力学性能测试 (43)声波法测定土的动力参数 (49)三轴固结不排水剪试验目的:CU 试验是使试样先在某一周围压力作用下排水固结,然后在保持σ不变 的情况下,增加轴向压力直至破坏。
1.测定a εσσ~31)(-曲线与a u ε~曲线; 2.确定总应力强度指标cu cu C ϕ,,ϕ'',C ; 3.测定孔隙应力系数A ,B ,A ; 4.测定不排水强度3~σu C 。
试验原理: 1. 正常固结土对于正常固结土:cu cu C C ϕϕ>'='=,0 2.(1 )弱超固结土:孔压下降较慢(2)强超固结土:发生剪胀现象,强度包线并不是直线,而是一条微 弯曲线,且C C C C cu cu '>≠',0,,cu ϕϕ>'。
固结不排水剪试验是使试样先在某一周围压力作用下排水固结,然后,在保持不排水的情况下,增加轴向压力直至破坏。
由不同围压作用得出不同应力圆,然后根据摩尔——库仑理论,求得抗剪强度参数。
三、试验仪器:三轴压力室;加压系统(围压加压系统、轴压加压系统); 量测系统(孔压量测系统、体变量测系统);附属设备:击实筒、饱和器、切土盘、切土器及切土架、分样器、承膜筒、天平、量表、空压机。
四、试验步骤:1.试样制备:采用人工击实法制备土样,注意击实分5层,测定土样ρ,ω;2.试样抽气饱和:使饱和度S r>95%;3.试样安装:·从饱和器中取出试样,在侧面贴上7条6mm左右湿滤纸条,底部顶部放上滤纸,再开孔隙压力阀及量管阀,使仪器底座充水排气,关阀。
仪器底座放透水石,再放上湿滤纸,放置试样。
·将橡皮膜套在承膜筒内,两端向外翻出,用吸球从吸嘴吸气,使橡皮膜贴紧承膜筒内,然后将承膜筒套在试样外,放气,翻起橡皮膜,取出承膜筒。
土工实验报告土工实验报告一、引言土工工程是土壤力学和岩土工程学的一个重要分支,研究土壤的物理力学性质以及土壤与结构物之间的相互作用。
本实验旨在通过一系列土工实验,探索土壤的力学性质和工程应用。
二、实验目的本实验的主要目的是通过以下几个方面的实验,对土壤的力学性质进行研究:1. 确定土壤的颗粒组成和颗粒分布特征;2. 测定土壤的密度和含水率;3. 研究土壤的压缩特性和固结性质。
三、实验方法1. 颗粒组成和颗粒分布特征的测定通过取样和筛分的方法,将土壤样品分为不同粒径的颗粒,并利用显微镜观察颗粒形态和组成。
2. 密度和含水率的测定采用快速湿度计测定土壤样品的含水率,然后利用密度计测定土壤的干密度和湿密度,进而计算得到土壤的相对密度和含水量。
3. 压缩特性和固结性质的研究通过压缩试验,测定土壤的压缩性和固结性。
首先对土壤样品进行标准贯入试验,得到贯入阻力曲线;然后进行固结试验,测定不同固结应力下土壤的压缩指数和固结指数。
四、实验结果与分析1. 颗粒组成和颗粒分布特征的测定结果显示,土壤样品主要由石英、长石和云母等颗粒组成,颗粒分布较为均匀。
2. 密度和含水率的测定结果表明,土壤的干密度为X g/cm³,湿密度为Y g/cm³,相对密度为Z%。
含水率为W%。
3. 压缩特性和固结性质的研究结果显示,土壤样品在不同固结应力下具有不同的压缩指数和固结指数。
通过绘制压缩曲线和固结曲线,可以得到土壤的压缩特性和固结性。
五、实验结论通过本次土工实验,我们得出以下结论:1. 土壤样品的颗粒组成主要由石英、长石和云母等颗粒组成,颗粒分布较为均匀。
2. 土壤样品的密度和含水率分别为X g/cm³和Y g/cm³,相对密度为Z%,含水率为W%。
3. 土壤样品在不同固结应力下具有不同的压缩指数和固结指数,通过压缩曲线和固结曲线可以得到土壤的压缩特性和固结性。
六、实验总结本实验通过一系列土工实验,深入研究了土壤的力学性质和工程应用。
土工实验报告总结一、实验目的本次土工实验旨在通过一系列的测试和测量,深入了解土的基本性质,如含水率、密度、渗透性、压缩性和抗剪强度等。
这些参数对于工程设计和施工具有重要的指导意义,是评估土的工程性能和安全性的关键指标。
二、实验方法与过程1.含水率测定:通过烘干法测定土的含水率,计算公式为W=(m1-m2)/m2×100%。
2.密度测定:采用环刀法测定土的密度,计算公式为ρ=m/V。
3.渗透性实验:采用常水头渗透实验测定土的渗透系数,了解土的透水性能。
4.压缩性实验:通过固结实验测定土的压缩系数和压缩模量,了解土的压缩性能。
5.抗剪强度实验:采用直接剪切实验测定土的抗剪强度指标,包括内摩擦角和粘聚力。
三、实验结果与分析1.含水率:实验测得土样的含水率为15.3%,该值对于土的工程性质具有重要影响,含水率过高或过低都可能影响土的强度和稳定性。
2.密度:实验测得土样的密度为1.8g/cm³,该值反映了土的紧密程度,对于估算土的承载力和稳定性具有重要意义。
3.渗透性:实验测得土样的渗透系数为5×10-4cm/s,表明该土具有一定的透水能力,对于排水设计和防渗工程有指导作用。
4.压缩性:实验测得土样的压缩系数为0.2MPa-1,压缩模量为50MPa,表明该土具有一定的压缩性,对于地基设计和沉降预测有参考价值。
5.抗剪强度:实验测得土样的内摩擦角为32°,粘聚力为15kPa,表明该土具有一定的抗剪强度,对于边坡设计和稳定性分析具有指导意义。
四、结论与建议根据本次实验结果,我们可以得出以下结论:1.该土样具有适中的含水率和密度,但需注意含水率的变化可能对土的工程性质产生影响。
2.该土具有一定的渗透性,可用于排水设计和防渗工程。
3.该土具有一定的压缩性,在地基设计中需考虑其沉降变形的影响。
4.该土具有一定的抗剪强度,但需注意在剪切条件下可能发生失稳。
建议在工程实践中充分考虑该土样的工程性质,根据具体情况采取相应的处理措施,确保工程安全与稳定。
土的固结实验港一黄鹏飞1103010124实验目的:本试验之目的在于测定土的沉降变形,了解土体在侧限条件下的变形与时间~压力的关系,结合其它试验指标配合计算土的压缩系数、压缩模量,确定土压缩性的高低。
基本原理:侧限压缩试验又称固结试验。
土体的固结是指土体在外力作用下,土体中的水和气体被逐渐排走,孔隙体积减小,土颗粒之间重新排列的现象。
土的固结试验是通过测定土样在各级垂直荷载作用下产生的变形,计算各级荷载下相应的孔隙比,用以确定土的压缩系数和压缩模量等。
仪器设备:1.固结容器:由环刀、护环、透水石、水槽、加压上盖组成2.环刀:高20mm,面积30cm2或50cm2;3.加压设备:应能垂直地在瞬间施加各级规定的压力,且没有冲击力,压力准确度应符合现行国家标准《土工仪器的基本参数及通用技术条件》GB/T15406的规定。
4.变形量测设备:量程10mm,最小分度值为0.01mm的百分表或准确度为全量程0.2%的位移传感器。
5.其它:开土刀、过滤纸等。
实验步骤:1、试样制备:按密度试验要求取原状土或制备扰动土土样。
并测定试样的含水率和密度,取切下的余土测定土粒比重。
试样需要饱和时,应按规定进行抽气饱和;2、安装:在压密容器中放置好透水石和滤纸,将带有环刀的试样和环刀一起刃口向下小心放入护环,再在试样上放置滤纸和透水石,最后放上传压活塞,安装加压装置和百分表;3、调零:施加预压力使试样与仪器上下各部件之间接触,将百分表或传感器调整到零位或测读初读数,通常将百分表测距调到大于8mm;4、加载:确定需要施加的各级压力,压力等级宜为12.5、25、50、100、200、400、800、1600、3200kPa 。
第一级压力的大小应视土的软硬程度而定,宜用12.5kPa 、25kPa 或50kPa 。
最后一级压力应大于土的自重压力与附加压力之和。
只需测定压缩系数时,最大压力不小于400kPa ;5、沉降记录(建议,实际操作没有按照这个执行):施加每级压力后24h 测定试样高度变化作为稳定标准,每间隔1小时变形小于0.01mm 时,作为稳定读数;测定沉降速率时,施加每一级压力后宜按下列时间顺序测记试样的高度变化。
土工试验指导书及试验报告实验一含水量、密度、相对密度测定A 实验要求(1)由实验室提供扰动土样,或由学生现场取样,要求学生测定该土样的含水量、密度和相对密度;(2)根据实验结果要求学生确定该土的孔隙比(e)孔隙率(n)、饱和度(S r)、干土密度(ρd)和饱和密度(ρsat)等物理指标;(3)观察原状土样。
B 实验方法一、含水量试验土的含水量是土在100℃~105℃下烘至恒重时所失去的水份质量与土颗粒质量的比值,用百分数表示。
本试验采用烘干法或酒精燃烧法,烘干法为室内试验的标准方法。
(一)仪器设备:1、恒温电烘箱2、无水酒精3、天平(感量0.01g)4、称量盒(又叫烘土盒)5、干燥器(用无水氯化钙作干燥剂)(二)试验步骤:1、选取有代表性的试样不少于20g(砂土或不均匀的土应不少于50g),酒精燃烧法的试样大约5~6 g放入称量盒内立即盖紧,称称量盒和湿土质量(m1)并准确至0.01g。
记录称量盒号码、称量盒质量(m3)和m.2、打开称量盒,放入电烘箱中在100℃~105℃温度下烘至恒重。
(烘干时间一般自温度达到100℃~105℃算起不少于6小时).然后取出称量盒,加盖后放进干燥器内,使冷却至室温。
3、从干燥器中取出称量盒,称取称量盒加干土的质量(m2),准确至0.01g,并将此质量记入表格内。
4、本试验须进行二次平行测定。
(三)计算:按下式计算含水量:W(%)=(m1-m2)/(m2-m3)×100%计算至0.1%式中:m1-m2 试样中所含水的质量;m2-m3 试样土颗粒的质量。
(四)有关问题说明:1、含水量试验用的土应在打开土样包装后立即采取(或直接现场取土),以免水份改变,影响结果.2、本试验须进行平行测定,每组学生取两次试样测定含水量,取其算术平均值作为实验室称干试样的质量。
二、密度试验单位体积土的质量称为土的密度。
密度的测定,对一般粘性土采用环刀法,如试样易碎或难以切削成有规则的形状时可采用蜡封法、灌水法和灌砂法等。
实训六固结试验一、实训时间与课时二、实训名称与内容1、固结实验2、固结实验是将天然状态下的原状土或人工制备的扰动土,制备成一定规格土样,然后置于固结仪内,在不同荷载和在完全侧限条件下测定土的压缩变形。
三、实训目的与要求1、试验的目的是测定试样在侧限与轴向排水条件下,变形和压力或孔隙比E等指标。
和压力的关系,绘制压缩曲线,以便计算土的压缩系数 、压缩模量s2、通过各项压缩性指标,可以分析、判断土的压缩特性和天然土层的固结状态,计算土工建筑物及地基的沉降等。
四、实训场地、仪器与设备1、实训楼土工实训室2、固结仪;环刀:面积30cm2,高2cm;天平;测微表;秒表;烘箱;修土刀;称量盒;滤纸等。
五、实训步骤与方法1、实训步骤(1)根据工程要求,用环刀(50cm3)切取试样备用,并测出土样的密度、含水量、和比重。
(参见前面的试验)(2)把下护环和大的透水石放入固结容器,并放上一张滤纸。
(3)将带有环刀的试样,刃口向下小心地装入压缩容器的下护环内。
(4)再套入上护环,放上滤纸和稍小的透水石,最后放上加压盖。
(5)轻抬杠杆,将装好试样的压缩容器放在加压台的正中,使加压横梁的凹槽与加压盖的钢珠紧密结合,然后装上测微表(百分表),并预调百分表大于6mm以上,并检查表是否灵敏和垂直。
(学生在试验前应熟悉测微表如何读数。
)(6)在砝码吊盘上加相当于试样受压约为1kPa的预压荷载,使固结仪的各部分接触良好,并调平加压杠杆,然后调整测微表,使其大指针归零。
(7)卸去预压荷载,施加第一级荷载,其大小可视土的软硬程度或工程情况一般采用25、50、100、200、300、400 kPa ,或按设计要求,模拟实际加荷情况进行调整。
(8)在加荷同时开动秒表计时,按规定的时间读数,做完一级,再加下一级荷载,直至全部荷载完成。
在试验过程中,应始终保持加压杠杆的平衡。
(9)试验结束后,迅速拆去测微表,卸除砝码,取出环刀,把仪器擦干净。
实验六------固结试验实验六固结试验一、试验目的:固结试验是测定土体在外力作用下排水、排气、气泡压缩性质的一种测试方法。
在一般情况下,土体承受三个主应力的作用,发生三相应变。
压缩试验的目的在于测定试样在侧限和轴向排水条件下的变形和压力、变形和时间以及空隙比和压力间的关系,以便绘制压缩曲线,求得土的压缩系数a V、压缩模量E S、,以便来判断土的压缩性和进行变形计算。
二、实验方法:正常慢固结试验、快速固结试验。
本试验因时间关系用快速固结试验法。
三、试验原理:试样装在厚壁金属容器内,上下各放透水石一块,然后在试样上分级施加垂直压力P。
记录加压后不同时间的垂直变形量,绘制不同荷载下垂直变形量Δh与时间t的关系曲线;垂直变形Δh与相应荷载P的关系曲线;空隙比e与荷载P的关系曲线。
由于试样受金属厚壁容器的限制,不可能产生侧向膨胀,土样只有垂直变形,故该试验称为侧限压缩试验。
通过记录加压前后土样空隙比的变化,建立变形和空隙比的关系,然后计算地基的压缩模量。
四、仪器设备:目前常用的压缩试验仪分杠杆加压式和磅称式两种。
本试验用杠杆加压式。
常用型号WG—1B三联中压固结仪、WG—1C三联低压固结仪。
1、压缩仪(土样面积30cm2,土样高度2cm),固结压力应满足12.5、25.0、50.0、100.0、200.0、300.0、400.0、600.0、800.0、1600.0kp的等级荷载,杠杆比1:12。
2、测微表(最大量程为10mm、最小分辨率为0.01mm的百分表)。
3、透水石试样上下放透水石,以便于土样受压后土中空隙水排除。
五、操作步骤1、环刀选用按工程需要选择(大环刀)50cm2或(小环刀)30cm2切土环刀(本试验用50cm2切土环刀),调整天平平衡,称量环刀的重量m1,计算初始密度ρ0,填入表1中。
2、套切试样前环刀内壁涂一薄层凡士林,以减少试样与环刀壁的摩擦及对试样的扰动。
整平试样两端用环刀套切试样。
石家庄铁道大学研究生课程论文培养单位土木工程学院学科专业建筑与土木工程课程名称非饱和土力学任课教师考试日期 2015.1.15学生姓名学号研究生学院非饱和土固结实验报告一、非饱和土固结试验工程意义土体的压缩变形特性决定了地基沉降量的大小和固结时间的长短, 尤其是非饱和土体的压缩变形特性是目前工程界关注的焦点。
在荷载作用下,土体中产生超孔隙水压力,在排水条件下,随着时间发展,土中水被排出,超孔隙水压力逐渐消散,土体中有效应力逐渐增大,直至超孔隙水压力完全消散,这一过程称为固结。
饱和土的固结可视为孔隙水压力的消散和土骨架有效应力相应增长的过程。
非饱和土的孔隙中同时含有气体和水,固结过程中,土中水和气会发生相互作用,非饱和土要涉及两种介质的渗透性,而且非饱和土的渗透性受土的结构性影响相当显著。
这些使非饱和土的固结过程非常复杂。
由于土体内部结构复杂, 使得非饱和土体在固结变形特性上与饱和土体存在巨大差异, 同时也导致非饱和土地基在设计和施工中存在大量不确定因素。
因此掌握非饱和土体的固结变形机理, 并且有针对性的对地基沉降加以控制是目前极待解决的问题。
二、实验方案通过一维固结试验,利用实验数据整理出在分级施加垂直压力p下试件的竖向变形s与时间t的s-t曲线、试件排水v与时间t的v-t曲线以及e-p曲线,研究非饱和重塑粉质粘土在饱和度Sr=0.569下的压缩变形特性。
1.土样本实验使用重塑非饱和粉质粘土,土的压实度DC=0.9 、含水率w=12%、土粒比重Gs=2.72、最大干密度pdmax=1.92g/com,实验中的试件尺寸为Ф61.8mm×H20mm,总质量m=116.04g,其中固体颗粒质量ms=103.6g2. 实验设备本实验采用的非饱和土固结仪(如图1-1所示)由中国人民解放军后勤工程学院、电力部电力自动化院大坝所、江苏省溧阳市永昌工程实验仪器有限公司联合研制生产。
其主要结构有:2.1 压缩部件:由压缩容器、压力室座、导环、陶土板、透水板、加压帽表杆支座等组成,承放土样用。
一、实验目的本次固结实验旨在通过测定土的压缩系数、压缩模量、体积压缩系数、压缩指数、回弹指数、竖向固结系数、水平向固结系数以及先期固结压力等参数,分析土的变形特性,为土工工程设计和施工提供科学依据。
二、实验原理土体在外部荷载作用下,空隙中的水和空气逐渐被挤出,土颗粒之间相互挤紧,封闭气泡的体积缩小,从而导致土体的压缩变形。
本实验通过施加不同压力,观察土样的压缩变形,从而计算出土的各种固结参数。
三、实验仪器1. 小型固结仪:包括压缩容器和加压设备两部分,环刀(内径61.8mm,高20mm,面积30cm²),单位面积最大压力4kg/cm²;杠杆比1:10。
2. 测微表:量程10mm,精度0.01mm。
3. 天平,最小分度值0.01g及0.1g各一架。
四、实验步骤1. 按工程需要选择面积为30cm²的切土环刀取土样。
2. 在固结仪的固结容器内装上带有试样的切土环刀(刀口向下),在土样两端贴上洁净而润湿的滤纸,放上透水石,然后放入加压导环和加压板以及定向钢球。
3. 检查各部分连接处是否转动灵活;然后平衡加压部分。
4. 横梁与球柱接触后,插入活塞杆,装上测微表,并使其上的短针正好对准6字,再将测微表上的长针调整到零,读测微表初读数R0。
五、实验结果与分析1. 压缩系数:根据实验数据,计算出土的压缩系数α1-1,表明在相同条件下,土样的压缩变形与其应力增量成正比。
2. 压缩模量:通过计算压缩模量E,可以评估土体的变形能力。
实验结果显示,土样的压缩模量E1-1较大,说明土体具有较高的变形抵抗能力。
3. 体积压缩系数:体积压缩系数αv反映了土体在压缩过程中体积的变化。
实验数据表明,土样的体积压缩系数αv较小,说明土体在压缩过程中体积变化较小。
4. 压缩指数:压缩指数C反映土体的压缩特性。
实验结果显示,土样的压缩指数C较大,说明土体在压缩过程中表现出较明显的非线性关系。
5. 回弹指数:回弹指数β反映了土体在卸载后的恢复能力。
土工实验工作总结
土工实验是土木工程中非常重要的一部分,通过实验可以对土壤的物理性质、力学性质和工程性质进行研究和分析,为工程设计和施工提供重要的依据。
在过去的一段时间里,我们进行了一系列的土工实验工作,现在我将对这些工作进行总结和分析。
首先,我们进行了土壤的物理性质实验,包括颗粒分析、含水量测定、密度测定等。
通过这些实验,我们了解了土壤的颗粒组成、孔隙结构以及含水量和密度的变化规律,为土壤的工程性质提供了基础数据。
其次,我们进行了土壤的力学性质实验,主要包括压缩试验、剪切试验和抗压试验。
通过这些实验,我们得到了土壤的压缩特性、剪切特性和抗压特性的参数,为土壤的工程设计和施工提供了重要的参考依据。
最后,我们进行了土工材料的工程性质实验,主要包括渗透试验、压缩固化试验和抗拉强度试验。
通过这些实验,我们对土工材料的渗透性、压缩固化性和抗拉强度有了更深入的了解,为土工材料的选择和使用提供了科学依据。
通过以上的土工实验工作,我们不仅对土壤和土工材料有了更深入的了解,同时也积累了丰富的实验经验,为今后的工程实践提供了宝贵的经验和参考。
希望通过我们的努力,能够为土木工程领域的发展和进步贡献一份力量。
土工实训报告
一、实训目的
本次土工实训的目的是通过实践操作,加深对土力学和土质土力学的基本理论的理解,掌握土工实验的基本原理和基本技能,培养我们的动手能力和分析解决实际问题的能力,为我们今后从事土木工程或岩土工程的专业工作打下坚实的基础。
二、实训内容
在本次土工实训中,我们进行了以下几个方面的实验:
土壤的物理性质实验:包括含水率、密度、液塑限、颗粒分析等实验,以了解土壤的基本物理性质。
土壤的力学性质实验:包括压缩实验、剪切实验、三轴实验等,以了解土壤在不同压力和湿度下的力学性能。
土壤的渗透性实验:通过渗透实验测定土壤的渗透系数,以了解土壤的渗透性能。
土壤的固结实验:通过固结实验了解土壤在压力作用下的排水固结性能。
三、实训过程
在实训过程中,我们首先听取了指导老师的讲解,了解了各个实验的基本原理和操作方法。
然后,我们按照指导老师的讲解进行操作,记录实验数据,分析实验结果。
在操作过程中,我们遇到了一些问题,但在指导老师的耐心指导下,我们最终克服了困难,完成了实验任务。
四、实训总结
通过本次土工实训,我深刻认识到了理论与实践相结合的重要性。
只有通过实践操作,才能真正理解土力学和土质土力学的基本理论。
同时,我也体会到了团队合作的重要性。
只有大家齐心协力,才能顺利完成实验任务。
在今后的学习和工作中,我将继续努力,不断提高自己的实践能力和综合素质。
最新固结实验报告
实验目的:
本次实验旨在研究土壤固结特性,通过固结试验获取土壤的压缩性参数,为工程建设提供地质依据。
实验材料:
1. 土样:取自XX工程场地的扰动样和原状样。
2. 固结仪:包括加载系统、测量系统和数据处理软件。
3. 其他辅助设备:天平、刻度尺、研钵、蒸馏水等。
实验方法:
1. 土样制备:按照标准方法制备土样,包括风干、筛选、混合和装样。
2. 初始条件测定:测定土样的初始干密度和含水率。
3. 固结仪校准:确保加载系统和测量系统的准确性。
4. 固结试验:将土样置于固结仪中,按照预定的加载速率施加垂直压力,记录土样的变形和孔隙水压力变化。
5. 数据记录:试验过程中,实时记录土样的沉降量、侧向应变和时间。
6. 结果分析:根据固结曲线,计算土壤的压缩系数、固结系数和前期
固结压力等参数。
实验结果:
1. 土样的初始干密度为1.45 g/cm³,含水率为12%。
2. 固结试验显示,土样在加载初期沉降迅速,随着压力的增加,沉降
速率逐渐减缓。
3. 根据固结曲线,计算得到的压缩系数为0.35,固结系数为0.025,
前期固结压力为50 kPa。
结论:
通过对XX工程场地土壤的固结试验分析,发现该土壤具有一定的压缩性,且在前期固结压力下表现出较好的固结特性。
建议在工程建设中,应考虑土壤的固结特性,合理设计基础和排水系统,以确保工程的稳
定性和安全性。
(土工)固结实验(报告)实验目的:本实验旨在了解土壤固结特性,理解计算固结指标的方法和意义,掌握常用汉密尔顿原理的使用。
实验原理:土壤固结是指在外加载荷下,土体体积随时间缩小的过程。
这是因为土颗粒相互排列的状态产生变化,空隙度减小,土体正应力增加,密度增大,而且伴随着排水,孔隙水压力变化,同时,孔隙度减小,渗透系数减小,吸力增大,水分从孔隙中流出,而表面吸引力增加,更加剧烈的导致固结作用。
汉密尔顿原理是关于连续体分析的一个原理。
它指出,在稳定的状态下,连续体应满足三个内力平衡方程、三个运动方程和一定数量的边界条件。
这些方程可以用一个广义能量原理推导出来。
在变形的过程中,变形能减小,根据能量守恒原理,应当有其他能量增加,例如势能和动能。
因此,广义能量原则给出了连续体内力平衡方程、运动方程和材料的本构方程。
实验内容:1. 实验小组按照材料的规定,将土样进行在室温条件下沉重压缩。
2. 记录在土样沉重压缩的过程中土样高度和载荷的变化情况。
3. 根据连续物理力学和弹性理论,对土样的固结变形进行分析,并计算出土壤的固结指标以及压缩曲线。
实验装置:1. 土样压实器:用于实现在规定的温度、载荷、速率和路径下进行土样压实。
2. 计量仪器:包括土壤重量计、直尺、卡尺、环氧树脂、计算机等。
实验结果:土样高度与载荷的关系可以描述为h=H-C1·log10σ其中h表示土样高度,σ表示土样的应力,C1是一个常数,H表示土样的初始高度。
引入一种无量纲固结指数预测土壤的固结变形,通常以土样的含水率、土样的初始密度、土壤压缩指数和固结应力等作为参数进行计算。
结果分析:本次实验根据实验结果计算出了土壤固结指数和压缩曲线,根据得到的数据和绘制的曲线,得出以下结论:1. 土壤的含水率对固结指数有很大的影响,含水率越高,固结指数越低,土壤的压缩性越强。
2. 土壤的初始密度对固结指数也有很大的影响,初始密度越大,固结指数越大,土壤的压缩性越低。
标准固结试验报告
报告编号:第页共页工程名称/ 委托编号
委托单位/ 样品编号
施工单位/ 委托日期
见证单位/ 试验日期
见证人/ 见证编号/ 报告日期
委托范围K8+000~K9+000 路基试验性质委托试验
土样说明
粘土、土黄色、粘土、无杂质、无异味、土质均匀
(原状土)
取样部位K8+500
试验依据TB 10102-2010 《铁路工程土工试验规程》初始孔隙比e0 1.04
仪器设备单杠杆固结仪管理编号:型号规格: 有效期至:百分表管理编号:型号规格有效期至:电热鼓风恒温干燥箱管理编号:型号规格: 有效期至:电子秤管理编号:型号规格: 有效期至:
孔隙比与压力关系曲线
试验结果垂直压力p i(kPa)50 100 200 400 800
单位沉降量S i
(mm/m)
46.3 65.4 94.3 128.2 166.5
孔隙比e i0.95 0.91 0.85 0.78 0.70 压缩系数a v(MPa-1) 1.80 0.80 0.60 0.35 0.20 压缩模量E s(MPa) 1.03 2.45 3.14 5.15 8.70
备注/
声明1、报告未盖试验单位“试验报告专用章”无效。
2、复制报告未重新加盖试验单位“试验报告专用章”无效。
3、对报告若有异议,应在十五日内向试验单位提出。
4、有关试验数据未经允许,任何单位不得擅自向社会发布信息。
批准:审核:校核:试验:。
土工实验报告范文实验名称:土工实验实验目的:1.了解土壤的物理和力学特性;2.掌握土工实验的基本操作方法;3.分析土壤的工程性质。
实验原理:土工实验是通过对土壤进行一系列试验来了解土壤的物理和力学特性。
常用的土工实验包括含水量试验、比重试验、颗粒组成试验、压缩试验、剪切试验等。
通过这些试验可以获得土壤的各项物理和力学指标,对土工工程设计和土力学研究有重要意义。
实验材料和设备:1.土壤样品2.秤3.烘箱4.比重瓶5.天平6.压缩仪7.剪切仪实验步骤:1.求取土壤样品2.确定土壤的含水量试验步骤:a.取一定质量的土壤样品b.将土壤样品放入烘箱中烘干c.称取烘干后的土壤样品质量,并称取湿土壤样品质量d.根据质量差值计算土壤的含水量3.比重试验步骤:a.取一定体积的土壤样品b.将土壤样品放入比重瓶c.称取比重瓶的质量,并记录d.加入适量水,使土壤悬浮在水中e.将比重瓶放入天平上,称取总质量f.根据总质量和瓶质量计算土壤的比重4.压缩试验步骤:a.取一定体积的土壤样品b.将土壤样品放入压缩仪c.施加一定的压力,测量土壤的变形d.根据变形和压力计算土壤的压缩性指标5.剪切试验步骤:a.取一定体积的土壤样品b.将土壤样品放入剪切仪c.施加剪切力,测量土壤的抗剪强度d.根据剪切力和土壤样品的面积计算土壤的抗剪强度指标实验结果分析:通过以上实验,我们获取了土壤的含水量、比重、压缩性和抗剪强度等指标。
根据这些指标,可以评估土壤的工程性质和适用性。
例如,含水量可以影响土壤的密实度和承载能力;比重可以衡量土壤的颗粒结构和孔隙结构;压缩性和抗剪强度可以评估土壤的变形和稳定性。
结论:通过土工实验,我们了解了土壤的物理和力学特性,并掌握了相应的实验操作方法。
通过分析土壤的工程性质,可以为土工工程设计和土力学研究提供依据。
同时,实验结果也为土壤的选择和使用提供了重要参考。
1.刘丰,杜金福,邱延青.土工实验[M].郑州:郑州大学出版社。
土的固结实验报告一、实验目的。
本实验旨在通过对土壤的固结性能进行测试,了解土壤在受力作用下的变形规律,为土木工程和地基处理提供科学依据。
二、实验原理。
土的固结是指土体在受力作用下发生变形的过程,其主要原理包括固结应力、固结应变和固结模量。
固结应力是指土体在受力作用下产生的应力,固结应变是指土体在受力作用下产生的变形,固结模量是指土体在受力作用下的变形模量。
三、实验材料和设备。
1. 实验材料,选取了粘性土和砂土作为实验材料。
2. 实验设备,实验室常规土工试验设备,包括固结仪、应变计、应力计等。
四、实验步骤。
1. 准备土样,按照一定比例混合粘性土和砂土,制备成土样。
2. 装置实验设备,将土样放入固结仪中,安装应变计和应力计。
3. 施加载荷,逐渐施加固结应力,记录土样的固结应变和固结模量。
4. 数据处理,根据实验数据,绘制土样的固结曲线图,并进行分析和总结。
五、实验结果和分析。
通过实验,我们得到了土样在不同固结应力下的固结应变和固结模量数据,并绘制成固结曲线图。
通过分析实验数据,我们发现随着固结应力的增加,土样的固结应变逐渐增大,固结模量逐渐减小。
这表明土样在受力作用下会产生较大的变形,同时土样的刚度也会逐渐降低。
六、实验结论。
1. 土的固结性能与固结应力呈正相关关系,固结应变与固结模量呈负相关关系。
2. 土的固结性能对土木工程和地基处理具有重要意义,需要根据实际情况进行合理的设计和施工。
七、实验总结。
通过本次实验,我们对土的固结性能有了更深入的了解,同时也掌握了一定的实验操作技能。
在今后的工程实践中,我们将更加注重土的固结性能的研究,为工程建设提供更加可靠的技术支持。
八、参考文献。
1. 《土力学实验指导》,XXX,XXX出版社,200X年。
2. 《岩土力学与基础工程》,XXX,XXX出版社,200X年。
以上就是本次土的固结实验的报告内容,希望对大家有所帮助。
固结实验报告
专业班级学号姓名同组者姓名(写一个)实验编号实验名称固结实验
实验日期批报告日期成绩
一、实验目的
土的固结试验可测定土的压缩系数、压缩模量、体积压缩系数、压缩指数、回弹指数、竖向固结系数、水平向固结系数以及先期固结压力,为计算分析土的变形特性提供依据。
二、实验原理
土在外荷载作用下,其空隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土体的压缩变形。
三、实验仪器
1、小型固结仪:包括压缩容器和加压设备两部分,环刀(内径Ф61.8mm,高20mm,面积30cm2),单位面积最大压力4kg/cm2;杠杆比1:10。
2、测微表:量程10mm,精度0.01mm。
3、天平,最小分度值0.01g及0.1g各一架。
四、实验步骤
1、按工程需要选择面积为30cm2的切土环刀取土样。
2、在固结仪的固结容器内装上带有试样的切土环刀(刀口向下),在土样两端应贴上洁净而润湿的滤纸,放上透水石,然后放入加压导环和加压板以及定向钢球。
3、检查各部分连接处是否转动灵活;然后平衡加压部分。
4、横梁与球柱接触后,插入活塞杆,装上测微表,并使其上的短针正好对
R。
准6字,再将测微表上的长针调整到零,读测微表初读数0
5、加载等级:按教学需要本次试验定为0.5、1.0、2.0、3.0、4.0、每级荷载经10分钟记下测微表读数,读数精确到0.01mm。
然后再施加下一级荷载,以此类推直到第五级荷载施加完毕,记录测微表读数R1、R2、R3、R4、R5。
7、试验结束后,必须先卸下测微表,然后卸掉砝码,升起加压框架,移出压缩仪器,取出试样后将仪器擦洗干净。
五、注意事项
1、使用仪器前必须严格按程序进行操作,对仪器不清楚的地方马上问老师
2、试验过程中不能卸载,百分表也不用归零。
六、实验数据记录与处理
压缩曲线
固结试验记录
工程编号:试样面积:c㎡
仪器编号:试验前试样高度0h:mm 试验日期:试验前孔隙比0e:。