8热力学第三定律
- 格式:ppt
- 大小:788.00 KB
- 文档页数:51
热力学:1.热力学第一定律:自然界中的一切物质都有能量,能量不可能被创造,也不可能被消灭,但可以从一种形态转变为另一种形态;在能量的转换过程中能量的总量保持不变。
2.热力学第二定律:克劳修斯说法:热不可能自发地、不付代价的从低温物体传至高温物体。
开尔文说法:不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。
第二类永动机是不存在的。
3.热力学第三定律:奈斯特定理:当温度趋于绝对温度时,任何物质系统中所发生的过程,其熵变也趋于零。
不可能通过有限过程将系统冷却至绝对零度。
绝对零度只能无限逼近,而不能最终达到。
4.热力学第零定律:两个系统分别通过导热壁与第三个物体达热平衡,则这两个物体彼此间也必然达热平衡。
5.卡诺定理:(1)在相同的高温热源和低温热源之间工作的一切可逆卡诺机,其效率都相等,与工作物质无关。
(2)在相同的高温热源和低温热源之间工作的一切不可逆热卡诺机,其效率必小于可逆机的效率。
燃气轮机:工作原理::燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。
燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。
空气与燃料混合燃烧后的高温高压燃气推动涡轮做功带动发电机发电。
机械设计基础:自由度:构件可能出现的独立运动的数目。
对构建自由度的限制叫做约束。
零件—静连接—构件—运动副—机构—动静连接—机器—机械。
英语:热能与动力工程—Thermal energy and power engineering机械动力—Mechanical power机械设计基础—Mechanical design basis热力学—Thermodynamics 传热学—Heat-transfer 专业—major。
热力学三大定律内容是什么表述方式有几种热力学三大基本定律是应用性很强的科学原理,对社会的进展具有重要的促进作用,三大定律力量守恒定律、熵增定律、肯定零度的探究。
热力学三大定律内容热力学第肯定律是能量守恒定律。
一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
(假如一个系统与环境孤立,那么它的内能将不会发生变化。
)热力学其次定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不行能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不行能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。
以及熵增表述:孤立系统的熵永不减小。
热力学第三定律通常表述为肯定零度时,全部纯物质的完善晶体的熵值为零,或者肯定零度(T=0K)不行达到。
R.H.否勒和E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K,称为0K不能达到原理。
热力学的其他定律其实除了热力学三大定律,还存在第零定律,也就是假如两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
第零定律是在不考虑引力场作用的状况下得出的,物质(特殊是气体物质)在引力场中会自发产生肯定的温度梯度。
假如有封闭两个容器分别装有氢气和氧气,由于它们的分子量不同,它们在引力场中的温度梯度也不相同。
假如最低处它们之间可交换热量,温度达到相同,但由于两种气体温度梯度不同,则在高处温度就不相同,也即不平衡。
因此第零定律不适用引力场存在的情形。
第零定律比起其他任何定律更为基本,但直到二十世纪三十年月前始终都未有察觉到有需要把这种现象以定律的形式表达。
第零定律是由英国物理学家拉尔夫·福勒于1939年正式提出,比热力学第肯定律和热力学其次定律晚了80余年,但是第零定律是后面几个定律的基础,所以叫做热力学第零定律。
热学三大公式
热学是物理学中的一个重要分支,涉及到热量、热力学能量、热传递等方面的知识。
在热学中,有三个非常重要的公式,分别是:
1. 热力学第一定律公式:Q = U + W
这个公式表示热量 Q 等于内能 U 加上摩擦功 W。
它表明了热量和内能之间的关系,说明了热传递的根本原因是物体之间的内能差异。
这个公式在解释热传递现象和计算热传递的热量时非常有用。
2. 热力学第二定律公式:N = Q - W
这个公式表示净热量 N 等于热量传递 W 减去摩擦功 N。
它表明了热量传递的方向和热量传递的多少取决于内能差异的大小,而与摩擦功无关。
这个公式在解释热传递的规律和计算热量传递的效率时非常有用。
3. 热力学第三定律公式:热量不可能自发地从低温物体传到高
温物体
这个公式表示热量传递是一种自发的过程,也就是说,热量传递是从高温物体向低温物体传递的。
这个公式表明了热传递是一种不可避免的自然现象,同时也说明了热量传递的根本原因是物体之间的内能差异。
这个公式在解释热传递现象和计算热传递的热量时非常有用。
这三个公式是热学中最基本的公式,对于理解热学概念和应用具有非常重要的意义。
此外,热学还有很多其他的公式和规律,例如热力学第二定律的另一种表述方式——熵增定律,以及热力学第三定律的应用,等等,这些都需要深入学习才能掌握。
热力学的第三定律的基本概念及实际应用热力学的第三定律:基本概念及实际应用1. 基本概念热力学第三定律是热力学基本定律之一,它揭示了在接近绝对零度时,系统熵的变化规律。
这一定律由德国物理学家恩斯特·韦伯和马克斯·普朗克在1923年提出,后来被广泛接受和证实。
1.1 熵的定义要理解热力学第三定律,首先需要明确熵的概念。
熵是热力学系统中的一种度量,表示系统混乱程度的物理量。
在宏观上看,熵可以理解为系统中的能量分布均匀程度。
一个系统的熵越大,其能量分布越均匀,系统越趋向于热力学平衡。
1.2 绝对零度的概念绝对零度是热力学温标(开尔文温标)的最低温度,对应于0K。
在绝对零度时,理论上系统中的分子和原子的运动将停止,系统达到最低的能量状态。
1.3 第三定律的内容热力学第三定律指出,在温度接近绝对零度时,系统的熵接近一个常数。
换句话说,系统熵的变化趋于停止。
这表明,无论系统如何接近绝对零度,其熵值都不会降低到零。
换句话说,绝对零度是不可达到的。
2. 实际应用热力学第三定律在许多实际领域中具有重要意义,以下是一些主要应用:2.1 制冷技术热力学第三定律在制冷技术中起着关键作用。
根据第三定律,制冷剂在接近绝对零度时,其制冷能力会减弱。
因此,在设计和使用制冷系统时,需要考虑到这一限制。
2.2 低温物理在低温物理领域,热力学第三定律对于理解和研究物质在接近绝对零度时的性质具有重要意义。
例如,超导体在超低温下表现出独特的电磁性质,这些性质与热力学第三定律密切相关。
2.3 信息论热力学第三定律与信息论也有着密切的联系。
熵在信息论中用作信息量的度量,而热力学第三定律揭示了在低温下系统熵的变化规律。
这为信息处理和传输提供了理论基础。
2.4 宇宙学在宇宙学中,热力学第三定律对于理解宇宙的演化和命运具有重要意义。
根据第三定律,宇宙的熵会随时间增加,这有助于解释宇宙从一个高度有序的状态发展到目前这个复杂、混乱的状态。
热力学第三定律——能斯特定理热力学第三定律可表述为:热力学系统的熵在温度趋近于绝对零度时将趋于定值,而对于完整晶体而言,这个定值为零。
它又被称为能斯特定理。
所以这一节,我们从瓦尔特·赫尔曼·能斯特(Walther Hermann Nernst)的故事讲起。
1864年6月25日,能斯特出生于西普鲁士的布里森(现属波兰)。
他父亲是一名乡村法官。
他曾分别在苏黎世大学, 柏林大学, 格拉茨大学和维尔茨堡大学学习物理和数学。
于 1887获得其博士学位,1889年,在莱比锡大学完成其博士后研究。
瓦尔特·赫尔曼·能斯特在当时社会上照明使用的是碳丝灯,昏暗而昂贵的,因为它需要将灯泡内抽成真空。
经过一段时间的实验,能斯特发现使用钨当作灯丝,能够使灯泡更亮并且寿命更长,并由此获得了匈牙利的专利,而能斯特也足以称得起“知识就是财富”的典范,他以100万马克的价格出售了这项专利,这真是笔巨大的财富,要知道当时普通民众工资才50马克/月。
1898年,能斯特用他的财富购买了他有生之年拥有的18辆汽车中的第一辆,他在车上装了一个汽缸,增加了早期汽车的动力。
并购买了500多公顷的乡村地产,供他打猎。
优渥的生活条件可以让他安心做点研究啦。
于是在1905年,他提出了他的“新热定理”,也就是热力学第三定律。
他指出,当温度接近绝对零度时,熵接近零,而自由能保持在零度以上。
这是他最值得记住的工作,因为它使化学家能够通过对热量的量测,确定化学反应中的自由能,进而确定反应平衡。
能斯特也因此获得了1920年的诺贝尔化学奖。
化学反应同时能斯特与威廉一世(普鲁士国王,德意志帝国皇帝)交好,其为能斯特争取到了1100万马克的科学进步基金以供其进行研究。
能斯特实验室发现在低温下,物质的比热容下降明显,而且很可能在绝对零度时消失。
而早在1906年爱因斯坦发表的一篇论文中,曾预测了这种低温状态下液体和固体比热容的下降。
热学三大定律一、热力学第一定律:能量守恒定律能量守恒定律,也称为热力学第一定律,是热学中最基本的定律之一。
它表明,能量在物理系统中的总量是守恒的,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
1.1 热力学第一定律的表达式热力学第一定律可以用以下的数学表达式表示:ΔU=Q−W其中,ΔU表示系统内能的增量,Q表示通过吸热或放热方式传递给系统的热量,W表示系统对外做功。
根据能量守恒定律,系统内能的增量等于热量和做功的代数和。
1.2 能量的转化与利用能量在自然界中不断转化与利用。
从太阳的辐射到地球上的物体,能量以辐射的方式传递;从燃烧中形成的热能到驱动汽车的机械能,能量以热传递和机械传递的方式转化。
在实际应用中,我们常常要考虑如何有效地转化和利用能量。
例如,汽车发动机将燃料的化学能转化为机械能,但也会损失一部分能量,以热的形式散失到环境中。
通过改进发动机的设计和运行方式,可以提高能量利用效率,减少能源浪费。
二、热力学第二定律:熵增原理熵增原理是热力学中的一个基本原理,它对能量转化的方向和过程进行了限制。
熵增原理指出,在自然界中,任何封闭系统的熵总是趋于增加,而不会减少。
2.1 熵的概念与定义熵是描述系统无序程度的物理量,它和热力学中的状态有关。
熵的定义可以表示为:ΔS=∫dQ T其中,ΔS表示系统的熵变,dQ表示系统吸收的热量,T表示热力学温度。
熵变的正负表示系统熵的增加或减少,而不同物质之间的熵可以进行比较。
2.2 熵增原理的意义熵增原理告诉我们,在自然界中,熵总是趋于增加。
这意味着能量转化存在一定的限制和方向。
例如,热从高温物体传递到低温物体,系统的熵会增加;如果热从低温物体传递到高温物体,系统的熵会减少,这违背了熵增原理。
熵增原理的应用广泛,例如在能源利用和环境保护中。
合理地利用能源资源,减少能量的损耗和浪费,可以降低系统的熵增,提高能源利用效率。
同时,减少熵增也有助于减少环境污染与能源消耗。
热力学三大定律总结热力学第一定律是能量守恒定律。
热力学第二定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。
以及熵增表述:孤立系统的熵永不减小。
热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0)不可达到。
一、第一定律热力学第一定律也就是能量守恒定律。
自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。
1、内容一个热力学系统的内能U增量等于外界向它传递的热量Q与外界对它做功A的和。
(如果一个系统与环境孤立,那么它的内能将不会发生变化。
)2、符号规律热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△E=-W+Q时,通常有如下规定:①外界对系统做功,A>0,即W为正值。
②系统对外界做功,A<0,即W为负值。
③系统从外界吸收热量,Q>0,即Q为正值④系统从外界放出热量,Q<0,即Q为负值⑤系统内能增加,△U>0,即△U为正值⑥系统内能减少,△U<0,即△U为负值3、理解从三方面理解(1)如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时系统内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=A(2)如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时系统内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q(3)在做功和热传递同时存在的过程中,系统内能的变化,则要由做功和所传递的热量共同决定。
在这种情况下,系统内能的增量△U 就等于从外界吸收的热量Q和外界对系统做功A之和。
热力学三定律
1.热力学三定律
热力学第一定律即能量守衡与转化定律,其内容为:在任何孤立的系统中,不论发生何种变化,无论能量从一种形式转化为另一种形式,或从一部分物质传递给另一部分物质,系统的总能量守恒。
热力学第二定律的内容:热能的传递具有不可逆性,即在没有外界作用的情况下,热能只会从热体传向冷体,而不可能从冷体传到热体。
热力学第三定律是系统的熵在绝对零度时为零,即不存在任何的无序。
2.燃烧理论
燃烧一般是由热、光或火花等外因引发的复杂化学过程。
1772年,法国的拉瓦锡提出增重是反应物与空气化合的结果,初步揭示了燃烧的实质。
1777年他在《燃烧通论》中提出了燃烧氧化学说,他对燃烧的正确解释是以物质不灭定律为基础的,成为近代科学发展的柱石。
3.电磁理论
电磁理论认为:变化着的电场伴随变化着的磁场,变化着的磁场也伴随变化着的电场。
麦克斯韦电磁理论基础的电学和磁学的经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。
麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程预言:变化着的电磁场以波的形式向空间传播。
4.元素周期律
元素周期律揭示了元素的性质随着元素原子序数的递增而呈周期性变化的规律。
浅析热力学三大定律一、第一定律热力学第一定律也叫能量不灭原理,就是能量守恒定律。
简单的解释如下:ΔU = Q+ W或ΔU=Q-W(目前通用这两种说法,以前一种用的多)定义:能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。
基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。
普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。
热力学的基本定律之一。
热力学第一定律是对能量守恒和转换定律的一种表述方式。
热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。
表征热力学系统能量的是内能。
通过作功和传热,系统与外界交换能量,使内能有所变化。
根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-W或Q=ΔU+W这就是热力学第一定律的表达式。
如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-W+Z。
当然,上述ΔU、W、Q、Z均可正可负(使系统能量增加为正、减少为负)。
对于无限小过程,热力学第一定律的微分表达式为δQ=dU+δW因U是态函数,dU是全微分[1];Q、W是过程量,δQ和δW只表示微小量并非全微分,用符号δ以示区别。
又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。
热力学第一定律的另一种表述是:第一类永动机是不可能造成的。
这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。
显然,第一类永动机违背能量守恒定律。
二、第二定律1.定义①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。
热力学三大定律内容及公式
热力学三大定律,又称玻尔定律,是热力学的基础,也是物质传递的基本原理和实验原理。
热力学三大定律分别是第一定律、第二定律和第三定律,它们分别提出了物质传递和能量传递的基本原理,为热力学的发展奠定了基础。
第一定律,也称为热力学定律,即热力学系统的总能量是守恒的,即能量守恒定律。
它定义了保守特性,即热力学系统内外能量发生变化时,系统外能量的增加与系统内能量的减少之和等于零。
记做:ΔE+ΔI=0 其中,ΔE表示系统外的能量的变化,ΔI表示系统内的能量的变化。
第二定律即增温定律,指所有的热耗散都会引起热力学系统的温度升高。
它提出了热机械效率的概念,即热机械效率应与完全机械效率一样,必然<1,记做
η<1。
它定义了热机械过程的不可逆性,即作任何单向热机械过程的逆过程,其热机械效率必然<1,记做η<1。
第三定律即热大定律,也称为热死亡定律,它指出:任何物质最终可以达到的最低温度是一个恒定的,记做T0,它是热源的无穷大与绝热物体的温度。
它定义了热力学系统的无穷小,就是热源的无穷大与绝热物体的温度之间的温差,记做ΔT=T/T0。
热力学三大定律是热力学发展过程中被公认的理论框架,它们就是热力学概念的基本单元,也是我们理解和探究物质传递和能量传递的基础。