氯离子对304不锈钢应力腐蚀
- 格式:docx
- 大小:11.30 KB
- 文档页数:1
304l耐氯离子标准304L是一种耐氯离子腐蚀的不锈钢材料,其主要由铬、镍、钢和一小部分碳、硅等元素组成。
它具有良好的机械性能和耐蚀性能,广泛应用于化工、石油、海洋工程等领域。
首先,我将介绍304L的化学成分。
304L不锈钢的化学成分中含有18-20%的铬和8-12%的镍。
铬是不锈钢中最主要的合金元素之一,能够形成一层致密的氧化铬膜,使钢材具有较好的耐蚀性。
镍除了提高钢材的耐腐蚀性外,还能提高304L的屈服强度和冲击韧性。
除此之外,304L还含有少量的碳、硅、锰、磷、硫等元素,这些元素的添加可以改善钢材的加工性能和强度。
其次,我将详细介绍304L的耐氯离子腐蚀性能。
氯离子是一种常见的化学物质,常存在于水中、海水中以及化工生产中。
对于很多材料来说,氯离子的存在都会对其造成腐蚀,因此对于耐氯离子蚀的要求很高。
304L钢材具有优异的耐氯离子蚀性能。
首先,铬元素能够与氯离子结合形成一层致密的氧化铬膜,这一层膜能够阻隔外界的氯离子侵入钢材内部,形成抗腐蚀屏障。
其次,304L中的镍元素能够提高材料的抗腐蚀能力,使钢材具有更好的耐蚀性。
另外,304L中少量的碳能够增强钢材的硬度和强度,提高其抵抗氯离子腐蚀的能力。
此外,钢材中的硅元素能够提高304L的耐氯离子腐蚀能力。
除了化学成分的影响外,304L的微观结构对其耐氯离子腐蚀性能也有影响。
304L一般采用固溶态退火或热处理的方式生产,以获得均匀晶粒和良好的腐蚀性能。
如果晶粒较大,会导致材料强度的减小和腐蚀性能的下降。
因此,在生产和加工过程中,要注意控制晶粒尺寸,以提高304L的耐氯离子腐蚀性能。
在实际应用中,304L广泛应用于化工、石油、海洋工程等领域。
在化工领域,304L常用于制造储槽、管道、阀门等设备,能够在强氯离子腐蚀环境下长期使用。
在石油工程领域,304L常用于制造石油管道、石油储罐等设备,能够抵抗海水和含氯环境的腐蚀。
在海洋工程领域,304L常用于制造船舶、海洋平台等设备,能够抵抗海水的腐蚀。
158研究与探索Research and Exploration ·工艺与技术中国设备工程 2019.08 (上)由于具有优良的耐蚀性及综合力学性能,铬镍奥氏体不锈钢在工程中应用越来越广泛。
同时,许多学者对不锈钢应力腐蚀开裂的研究日益广泛和深入,并取得了相当大的进展。
应力腐蚀裂纹常导致不锈钢构件在低于设计应力、没有任何明显宏观变形和不出现任何征兆的情况下突然迅速破裂,这不仅会造成巨大危害,也严重妨碍了不锈钢的进一步推广和应用。
1 情况概述某装置汽提单元自开工以来,位于汽提泵出口管线的光学视镜石棉垫片多次发生泄漏。
最近一次因泄漏更换石棉垫片后,发现视镜下部管段仍有液体介质漏出,拆开保温后发现视镜下部管段已开裂。
开裂管段材质为304不锈钢,规格Ф114×5mm。
管线操作温度100℃左右、压力0.4MPa,外部有保温层。
内部介质为含有氯化钙的胶粒水,其中氯离子含量约为38~54mg/L。
为了查明裂纹性质及产生原因,采取相应的防范措施,在失效部位进行取样进行检测分析。
2 检查情况2.1 宏观检查通过检查发现,开裂管段外壁有很多呈枯树枝状的裂纹,裂纹开裂方向既有沿轴向的,也有沿环向的,裂纹处及管段整体未见明显变形,如图1所示。
沿管段开裂部位横向截断,观察裂纹处的管壁横断面,可见裂纹从外壁表面沿纵深方向扩展,其中主裂纹已经穿透,如图2所示。
图1 开裂管段外表面裂纹 图2 开裂管段管壁横断面如图3所示开裂管段的内表面光滑,无腐蚀痕迹,除裂纹部位外均保持原始加工表面。
将裂纹打开,观察裂纹的断面,可以看到断裂方向基本垂直于表面,断口平齐,表面为粗瓷状,裂纹断面由管段外表面的黑棕色向内表面过渡为棕灰色。
断口呈脆性断裂特征,如图4所示。
304不锈钢管线腐蚀开裂原因分析文佳卉(独山子石化公司研究院,新疆 独山子 833600)摘要:采用宏观检查、材质检测、硬度测试和金相分析等方法对304不锈钢(0Cr18Ni10)管线开裂的原因进行分析。
氯离子与不锈钢腐蚀氯离子对不锈钢腐蚀的机理!氯离子腐蚀是一种金属晶粒间的腐蚀,表现为不锈钢的脆裂,而且电焊修补后,这中裂纹会沿着焊缝延伸。
根据我们公司的使用情况,设备使用了10年,水温度在70,85摄氏度时候,氯离子在100PPM左右,304的设备开始产生裂纹,最初在焊缝上最为突出,而316L的设备倒是还未出现问题。
但是按照规范奥氏体不锈钢设备氯离子的含量应该控制在25PPM。
从我们使用的情况看,cl-对304的腐蚀一般表现为应力腐蚀的特征,而且多数从焊缝的热影响区、煅件的本体等应力集中的区域开始出现腐蚀。
不锈钢耐腐蚀的机理是由于存在元素铬,铬在很多条件下能钝化从而使设备得以保护。
而以氯为代表的活性阴离子极易破坏钝化膜,在材料局部区域形成孔蚀核,最终形成蚀孔。
因而不锈钢最怕氯离子。
从资料看,什么样的不锈钢对氯离子都没有防腐蚀。
但是我们公司有一种产品的反应釜中包含双氧水,氯化钠,氢氧化钠。
但反应釜使用了好多年还没有出现腐蚀情况。
个人认为,碱性环境氯离子对材质腐蚀不是特别明显。
氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。
在海水环境下不锈钢的使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。
对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀~以下钢种供参考:高强度耐海水腐蚀马氏体时效不锈钢 00Cr16Ni6Mo3Cu1N高强度耐海水腐蚀不锈钢 00Cr26Ni6Mo4CuTiAl耐海水不锈钢Yus270(20Cr,18Ni,6Mo,0(2N)(2 ,3(6 ,海水因地域不同而多少有些差异,溶于海水的盐类浓度为3其中氯离子浓度为19000 ppm。
而自来水的氯离子浓度上限值为200 ppm,所以海水中氯离子浓度相当于自来水的lOO倍。
不锈钢应力腐蚀的影响因素不锈钢是一种耐腐蚀的金属材料,但在特定条件下,它仍然可能发生应力腐蚀。
应力腐蚀是指在存在应力的情况下,金属材料在特定环境中发生腐蚀的现象。
以下是关于不锈钢应力腐蚀影响因素的详细解释。
1. 环境因素:- 氯离子:氯离子是导致不锈钢应力腐蚀的主要因素之一。
在含有氯离子的环境中,不锈钢容易发生晶间腐蚀。
氯离子的浓度越高,应力腐蚀的风险就越大。
- 酸性环境:酸性环境也容易引起不锈钢应力腐蚀。
酸性溶液可以破坏不锈钢表面的保护膜,使其更容易受到腐蚀。
- 温度:高温环境下的不锈钢更容易发生应力腐蚀。
高温会加速腐蚀反应的速率,增加不锈钢的腐蚀风险。
2. 材料因素:- 合金成分:不同成分的不锈钢具有不同的耐腐蚀性能。
一般来说,镍含量越高的不锈钢具有更好的耐腐蚀性能。
- 冷处理:冷处理可以增加不锈钢的强度,但也会增加应力腐蚀的风险。
冷处理后的不锈钢容易在应力作用下发生晶间腐蚀。
3. 应力因素:- 拉应力:拉应力是引起不锈钢应力腐蚀的主要应力形式。
拉应力会导致不锈钢晶粒的晶间腐蚀,从而降低材料的强度和耐腐蚀性能。
- 残余应力:残余应力是由于制造过程中的热处理、焊接或冷加工等引起的。
残余应力会削弱不锈钢的耐腐蚀性能,增加应力腐蚀的风险。
为了减少不锈钢的应力腐蚀风险,可以采取以下措施:- 控制环境条件,尽量避免不锈钢暴露在含有氯离子或酸性溶液的环境中。
- 选择合适的不锈钢材料,特别是具有高镍含量的不锈钢。
- 避免过度冷处理,以减少应力腐蚀的风险。
- 控制应力,尽量避免不锈钢受到拉应力或残余应力的影响。
总之,不锈钢应力腐蚀受到环境、材料和应力等多个因素的影响。
了解这些影响因素并采取相应的措施可以有效降低不锈钢应力腐蚀的风险。
氯离子对不锈钢腐蚀的机理Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998氯离子对不锈钢腐蚀的机理在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。
普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。
Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。
Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。
氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。
虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。
成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。
吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。
因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。
电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。
这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。
因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。
3. 2 防止孔蚀的措施(1)在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。
耐孔蚀不锈钢基本上可分为3 类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。
设计时应优先选用耐孔蚀材料。
氯离子对不锈钢的腐蚀问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。
但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。
不锈钢的腐蚀失效分析:1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。
应力腐蚀失效所占的比例高达45 %左右。
常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。
其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。
控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。
严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。
在工艺条件允许的范围内添加缓蚀剂。
铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。
实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。
2、孔蚀失效及预防措施小孔腐蚀一般在静止的介质中容易发生。
蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。
,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。
只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。
常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。
降低氯离子在介质中的含量。
加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。
不锈钢沸腾氯化镁应力腐蚀试验
不锈钢在氯离子的存在下,在高温和高压环境中会出现应力腐蚀现象。
氯离子可以进入不锈钢晶界并与晶体中的钢铁原子发生反应,形成氯化物。
在高温高压的作用下,氯化物会引起钢中的应力集中,导致晶格扩张和晶界腐蚀。
这种应力腐蚀破坏会导致不锈钢的力学性能下降,甚至导致不锈钢的断裂和破损。
沸腾氯化镁应力腐蚀试验是一种用于评估不锈钢在高温高压下抵抗应力腐蚀性能的试验方法。
在试验中,将不锈钢试样置于含有氯化镁的高温高压环境中,通常会加入一定的应力,例如通过拉伸试样。
通过观察不锈钢试样的外观变化、测量应力腐蚀裂纹的长度和宽度等方式,评估不锈钢在沸腾氯化镁环境下的耐蚀性能。
沸腾氯化镁应力腐蚀试验可以用于研究不同不锈钢材料的应力腐蚀性能差异,评估不同工艺条件下不锈钢材料的耐腐蚀性能,并指导不同领域的工程设计和材料选择。
氯离子貌似是容易导致304应力腐蚀或晶间腐蚀
由于304不锈钢里有致钝化元素容易形成钝化膜,遇氯离子易发生小孔腐蚀或者点蚀所以要限制含量
用哈-C吧这个没问题。
一般现在在氯气和液氯方面用的材料现在都是这个。
要不就蒙耐尔合金
不锈钢304对氯离子腐蚀的敏感性随着温度升高,耐腐蚀性减[弱,有个经验数据,仅供参考,304在10℃时可耐228ppm氯离子腐蚀,在20℃时可耐150ppm氯离子腐蚀,在40℃时可耐71.3ppm氯离子腐蚀,在60℃时可耐37.5ppm氯离子腐蚀,在80℃时可耐20.5ppm 氯离子腐蚀,在100℃时可耐212ppm氯离子腐蚀。
316不锈钢在10℃时可耐1050ppm氯离子腐蚀,在20℃时可耐650ppm氯离子腐蚀,在40℃时可耐290ppm氯离子腐蚀,在60℃时可耐140ppm氯离子腐蚀,在80℃时可耐81ppm氯离子腐蚀,在100℃时可耐50ppm 氯离子腐蚀。
而超级不锈钢(254SMO)在40℃时可耐18500ppm氯离子腐蚀.。