第八章倍性育种
- 格式:ppt
- 大小:3.51 MB
- 文档页数:54
第一节染色体倍性育种的概念和意义园艺植物与其他植物一样,其细胞中所包含的染色体数目都是一定的。
如柑桔类植物,其性细胞都是具有一套数目为9条的染色体组(也称染色体基数x=9),其体细胞则含有两套完整的染色体组,称为二倍体(2n=2x=18)。
大多植物种类、品种、类型或单株,体细胞一般都是二倍体。
如果植物体细胞的染色体数目只有基数的一倍的,称为单倍体;为基数的三倍或三倍以上的称为多倍体,如三倍体(3x)、四倍体(4x)、五倍体和六倍体等。
其中,三倍体和五倍体等称奇数多倍体,四倍体和六倍体等称偶数多倍体。
所谓染色体的倍性育种就是指利用各种园艺植物染色体倍性特点,通过各种途径,获得各种园艺植物表现优良的倍性群体。
并通过鉴定、选择,从中筛选出表现最优良的类型,以至最终培育成优良的新品种。
倍性育种包括多倍体育种和单倍体育种。
多倍体育种具有较大的实践意义,多是以培育出优良的多倍体新品种为目的。
根据报道,植物界中多倍体是普遍存在的,特别是在被子植物中,多倍体种约占全部的30~47%,育种资源相当丰富。
不少园艺植物的多倍体类型具有营养生长旺盛,生物产量高,果大、花大,果实少籽或无籽,经济价值,适应性和抗逆性强等优良性状,所以通过多倍体育种所产生的多倍体优良品种,在生产上具有较高应用价值。
首先在果树上多倍体品种在应用上成就较突出。
除自然多倍体,如三倍体香蕉、大蕉、粉蕉、龙牙蕉等,六倍体欧洲李和柿,八倍体大果型草莓,六倍体、七倍体、八倍体大果型树莓,以及六倍体、八倍体桑,甚至二十二倍体黑桑等为生产上的主要栽培类型外,还有许多人工培育的优良多倍体品种成为生产上的主栽品种,如欧洲葡萄森田尼、大玫瑰香、大无核等9个四倍体品种;美洲葡萄康可品种有7个四倍体芽变选出的品种;欧美杂种有巨峰、吉峰系列、黑奥林、红富士、吉香、“高尾”等十几个四倍体品种。
西瓜上的四倍体少籽西瓜和三倍体无籽西瓜品种,柑桔上的美国oroblanco 三倍体无核葡萄柚和我国的四倍体少籽十月桔,以及菠萝上的西印度群岛的三倍体Cabezona等也都在生产具有较高的栽培价值。
第8章远缘杂交与倍性育种要求:熟悉远缘杂交的概念,了解克服远缘杂交困难的基本方法。
了解多倍体的来源及特点,多倍体产生的途径,多倍体育种的基本步骤。
掌握单倍体产生的途径,单倍体的鉴定及育种步骤。
内容:一、远缘杂交(一)远缘杂交的作用(二)远缘杂交障碍克服及后代选择二、倍性育种(一)多倍体育种(二)单倍体育种⏹一、远缘杂交(一)远缘杂交的作用1、远缘杂交的概念不同种、属或亲缘关系更远的植物类型间的有性杂交属间杂交:水稻×玉米;水稻×竹子;水稻×李氏禾;玉米×高粱;小麦×大麦;小麦×黑麦种间杂交:陆地棉×海岛棉;普通小麦×硬粒小麦;甘蓝型油菜×白菜型油菜。
⏹远缘杂交的主要特征是生殖隔离从育种的角度出发,栽培作物与其野生种的杂交、种内亚种杂交以及不同生态型间的杂交,也属远缘杂交。
但一般不存在严重的生殖隔离,因此,特称为亚远缘杂交。
如栽培稻×野生稻,籼稻×粳稻、冬小麦×春小麦等。
⏹2、远缘杂交的作用(1)有利基因转移。
将异源种属植物有利性状引入栽培作物品种,提高抗逆、抗病性,培育新品种或创造新材料。
普通小麦×长穗偃麦草(抗条锈病)(2n=42)[1956]↓小偃6号[1979]高产、优质、抗条锈病、抗逆(耐干热风)推广面积近70万hm2。
更重要的是小偃6号已成为我国小麦育种的骨干亲本(长达15年以上),其衍生品种达50多个,累计推广3亿多亩,增产小麦150亿多斤。
⏹小偃6号:20年磨一剑小偃6号的耐干热风特性是这样发现的。
当时,小麦成熟前连续40天阴雨,6月14日天气突然暴晴,一天中几乎所有的小麦都青干了,除小偃6号的祖父(小偃55-6)和长穗偃麦草仍保持着金黄颜色外,其他材料全部青干,这个材料经过两次杂交,育成了小偃6号。
2006年度唯一获得国家最高科学技术奖的科学家。
竹稻:30年磨一剑广东梅洲市农校远缘杂交在一定程度上打破物种之间界限,促进不同物种的基因交流。
第二节倍性育种一、倍性育种的概念和作用1、基本概念多倍体植物(polyploid plant):细胞内含有三个以上染色体组的植物称为多倍体植物。
植物界约有1/2植物属于此。
倍性育种:根据育种目标要求,采用染色体加倍或染色体数减半的方法选育植物新品种的途径称为倍性育种。
目前最常用的是整倍体,包括两种形式,一是利用染色体数加倍的多倍体育种,一是利用染色体数减半的单倍体育种。
2、多倍体育种的作用(1)创造新物种、新作物或新品种人类栽培的作物中,小麦、花生、烟草、甘薯、马铃薯、陆地棉、海岛棉、甘蓝型和芥菜型油菜等都是多倍体。
它们都是由二个或二个以上的二倍体种经自然杂交、加倍和长期进化而成的。
人工创造的异源多倍体小黑麦,同源三倍体的甜菜和西瓜、同源四倍体的水稻、荞麦、葡萄等,都已在生产上应用,并取得了明显的经济效益。
(2)通过染色体加倍,克服远缘杂交的困难如普通小麦和节节麦杂交时,正反交均不成功,只有将节节麦加倍成同源四倍体后,杂交才能成功。
3、单倍体育种作用单倍体本身没有任何生产应用价值,但将单倍体技术应用于作物育种中,则有如下优点:(1)控制杂种分离,缩短育种年限杂交育种年限较长。
单倍体育种直接将F1或F2代杂种的花药进行离体培养,诱导其花粉发育成单倍体,再经染色体加倍后,就可得到纯合的二倍体。
这种纯合体相当于同质结合的纯系,在遗传上是稳定的,不会发生性状分离。
这样,从杂种到获得纯合品系,只需要一个世代。
(2)提高获得纯合材料的效率如假定只有二对基因差别的父、母本进行杂交,其F1代出现纯显性个体的机率是1/16,而用杂种F1代的花药离体培养,并加倍成纯合二倍体后,其纯合显性个体出现的机率是1/4。
(3)排除显隐性的干扰,提高选择的准确性假如要选择纯显性个体,单倍体育种中只有一种基因型AABB,表现型也只有一种,一选就准;但在杂交育种中,由于存在基因间显隐性的干扰,AABB和AABb、AaBB、AaBb三种基因型在表现型上相同,无法区别,且该表现型在F代群体中出现的机率高达9/16,更加2难以取舍。