传热综合实验
- 格式:pdf
- 大小:587.93 KB
- 文档页数:9
冷热空气列管换热器传热综合实验
冷热空气列管换热器传热综合实验是一种实验方法,用于研究冷热空气之间的传热现象以及列管换热器的性能。
这种实验通常用于工程领域,旨在评估换热器在不同工况下的传热效果,为工程设计和优化提供依据。
下面是进行冷热空气列管换热器传热综合实验的一般步骤:
1. 实验装置搭建:准备一个实验装置,包括冷热空气源、列管换热器、测量仪器等。
确保实验装置的密封性和安全性。
2. 参数设置:确定实验所需的工况参数,如空气流量、温度差、流速等。
这些参数可以根据实际需求和研究目的进行设定。
3. 数据采集:启动实验装置,让冷热空气分别通过列管换热器的冷热侧。
使用传感器和测量仪器记录下冷热空气的温度、压力等相关数据。
4. 数据分析:根据采集到的数据进行分析和计算,评估传热器的传热性能。
常见的评价指标包括传热系数、热效率、温度场分布等。
5. 结果讨论:根据实验结果进行讨论,分析影响传热性能的因素,探讨可能的改进方法或优化方案。
6. 实验总结:总结实验结果,撰写实验报告,包括实验目的、方法、结果和结论等内容。
需要注意的是,具体的实验步骤和方法可能因实验目的、设备配置和研究要求的不同而有所差异。
在进行实验前,应详细了解实验装置和操作方法,并遵循实验安全规范。
传 热 综 合 实 验一、实验目的1.通过对本换热器的实验研究,可以掌握对流传热系数αi 的测定方法,加深对其概念和影响因素的理解。
2.应用线性回归分析方法,确定关联式Nu=ARemPr 0.4中常数A 、m 的值。
3.通过对管程内部插有螺旋线圈的空气-水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B 、m 的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验原理对于流体在圆形直管中作强制湍流时的对流传热系数的准数关联式可以表示成:n m C Nu Pr Re = (1)系数C 与指数m 和n 则需由实验加以确定。
对于气体,Pr 基本上不随温度而变,可视为一常数,因此,式(1)可简化为:m A Nu Re = (2)式中: λαd Nu 2=μρdu =Re 通过实验测得不同流速下孔板流量计的压差,空气的进、出口温度和换热器的壁温(因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内、外壁温度与壁面的平均温度近似相等),根据所测的数据,经过查物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法确定关联式m A Nu Re =中常数A 、m 的值。
三、 设备主要技术数据 1. 传热管参数:表1 实验装置结构参数2.空气流量计(1) 由孔板与压力传感器及数字显示仪表组成空气流量计。
空气流量由公式[1]计算。
(第1套)6203.00)(113.18P V t ∆⨯=………………………………………………………………[1] (第2套)6203.00)(113.18P V t ∆⨯=………………………………………………………………[1] 其中,0t V - 20℃ 下的体积流量,m 3/h ;P∆-孔板两端压差,Kpa1tρ-空气入口温度(及流量计处温度)下密度,kg/m 3。
(m3/h)与压差之间的关系。
(2) 要想得到实验条件下的空气流量V (m 3/h)则需按下式计算: 02732730t tV V t ++⨯= (2)其中,V -实验条件(管内平均温度)下的空气流量,m 3/h ;t -换热器管内平均温度,℃;t 1-传热内管空气进口(即流量计处)温度,℃。
强化对流传热综合设计实验
该实验主要是为了帮助学生深入了解强化传热的原理和方法,学生可以通过综合设计实验的方式,掌握强化传热的技术,了解不同的传热方式和传热器材的应用,同时加强学生的动手能力、操作技能和科学研究能力。
实验设计:
1.实验目的:
(1)了解传热的基本原理和种类;
(2)学习传热的计算方法;
(3)掌握强化传热的技术和应用;
(4)综合应用各种传热方式和传热器材进行传热设计实验。
2. 实验器材:
(1)导热实验仪;
(2)传热器材:传热管、传热盘、传热板、传热棒、传热器等;
(3)计算机和数据采集器。
3. 实验步骤:
(1)测量传热器材的基本参数和物理量。
(2)建立传热模型,采用计算机软件进行传热模拟。
(3)进行强化传热操作实验,记录实验数据。
(4)对实验结果进行分析和处理,综合考虑各种传热方式和传热器材的特点,优化传热设计。
4. 实验要点:
(1)要认真测量传热器材的基本参数和物理量,保证实验数据的准确性。
(2)要注意安全操作,避免因不当操作而导致事故或设备损坏。
(3)要加强数据的处理和分析,根据实验结果优化传热设计。
(4)要积极探索和研究相关领域的知识,丰富自己的专业素养。
结语:
通过强化对流传热综合设计实验,学生可以深入了解传热的原理和方法,掌握强化传热技术的应用,同时加强自己的动手能力、操作技能和科学研究能力,为将来的专业发展奠定坚实的基础。
传热综合实验传热综合实验是化工、机械、材料等专业中的重要实验之一。
本实验旨在通过实践操作,让学生深入理解传热理论,并掌握传热实验技巧,了解传热实验设备的基本特点和使用方法。
本文将就传热综合实验进行详细介绍。
一、实验原理在传热综合实验中,通过传热器件和传热介质来掌握传热方式和表征物质的传热性能。
热源:热源是产生热量的装置,通常使用电加热方式。
传热介质:传热介质是传递热量的介质,如水、空气等。
传热器件:传热器件是介质和热源之间传热的设备,可分为对流传热、辐射传热、传导传热三种方式。
在实验中,通过热功率测量,流量测量,温度测量等操作,得出传热介质的传热性能参数,实现对传热规律的探讨和总结等目的。
二、实验设备传热综合实验设备一般包括热源、传热介质、传热器件和测量系统四部分。
1、热源:采用电阻加热,均匀升温,稳定加热;2、传热介质:水或空气,可根据不同的实验需要进行选择;3、传热器件:采用双管夹套式传热器,包括热器壳体、热器体、进出口、传热管等组成;4、测量系统:温度计、流量计、电压表等测量仪器。
三、实验过程传热综合实验主要包括三个步骤,即实验准备,实验操作,实验结果的处理及分析。
(1)检查实验仪器设备的工作状态以及正确性等,不能出现故障和问题;(2)加热热源,并控制加热电流,保持稳定,确保传热介质均匀受热;(3)调节传热介质的流量及其温度,保证传热介质的流速、温度、压力等参数符合实验要求;(4)对传热管的长度、直径、管壁材料、壁厚等进行测量和记录,为后续实验数据收集打下基础。
2、实验操作(1)调节传热介质的流量,保持稳定;(2)采集出口传热器的温度,通过计算可以推算出传热的热流,进而计算出传热系数;(3)采用热传导实验,测量传热壁板的温度分布,推算出传热系数;(4)采用加热器将热量通过辐射的方式传递到样品上,测量样品温度变化,进而计算得出热辐射传热系数。
3、实验结果的处理及分析(1)通过测量传热介质进口、出口的温度、流量、压力数据等,可得出介质的传热性能参数;四、实验注意事项(1)实验者必须具备基本的实验技能,正确操作和安装实验设备;(2)务必严格按照实验设计方案执行实验操作,掌握各种测量仪器的使用方法、精度和准确性;(3)实验过程中出现异常情况,要及时排除并进行记录,以保证实验数据的真实性;(4)实验结束后要认真整理实验设备,清洗干净所有仪器,保证设备干净整洁,方便下一次实验的开展。
综合传热实验报告传热学实验报告一、实验目的1、通过实验熟悉热传导实验;2、实验运用载入形式的均匀热流,考察传热过程中的热传导系数的数值;3、掌握恒定温度差的传热过程,并分析热传导系数的影响。
二、实验原理当一块物体介质之间存在温度差的时候,它们之间会发生热传递,应用热传形式的方式研究它们之间的热传导系数。
热传导的形式有很多种,但是本实验中采用的是载入形式的均匀热流。
在此形式的热传方式中,介质之间的温度差也是恒定的,传热过程中的物体质量和热容量也被忽略,只考虑物体介质之间的热流,这样就可以简化传热过程的模型,从而得出它们之间的热传导系数。
三、实验设备实验中使用的设备主要是:加热片、铜片、温度计、加热源、电阻表等。
四、实验步骤1、将加热片和铜片装入实验装置中,并将它们的温度设置为相同的温度。
2、将加热源的电流调到一个基本值,并从电阻表中测量出来的电阻值。
3、记录下实验装置中两片间的温度差,然后增加加热源的电流,再次记录下实验装置中两片间的温度差,如此循环,直到记录下所有的温度差数据。
4、根据数据计算出两片间的热传导系数,并将计算结果与理论值进行比较,分析出热传导系数的变化过程。
五、实验数据加热电流:0.1A~3A温差(℃):0.15~3.45六、实验结果根据所得的实验数据计算,两片之间的热传导系数为:K=0.064 W/(m·K)七、实验讨论比较理论计算出来的热传导系数(K=0.066 W/(m·K)),可以看到实验得出的热传导系数与理论值有一定的差异,这可能因为实验时的不确定性所致。
八、结论根据本次实验,可以得出两片之间的热传导系数为K=0.064W/(m·K),与理论值有一定的差异,可能是实验不确定性所致,可以通过进一步的实验,对热传导系数进行准确的测定。
传热综合实验实验报告数据处理传热是物质内部或不同物质之间热量传递的过程,是热力学中的重要概念之一。
为了更好地理解传热现象,学习传热的基本规律和特性,我们进行了传热综合实验。
实验目的:通过实验研究不同材料的导热性能,探究传热的规律,加深对传热知识的理解。
实验仪器和材料:1.导热仪:用于测量不同材料的导热系数。
2.热平衡仪:用于测量不同材料的热平衡状态。
3.热导率测定装置:用于测量材料的热导率。
4.不同材料样品:如金属、塑料、木材等。
实验步骤:1.准备不同材料的样品,并测量其初始温度。
2.将样品放入导热仪中,测量不同时间下样品的温度变化,并记录数据。
3.将样品放入热平衡仪中,观察不同材料的热平衡状态,并记录数据。
4.使用热导率测定装置,测量不同材料的热导率,并记录数据。
实验结果和数据处理:根据实验所得数据,我们进行了数据处理和分析,得出了以下结论:1.不同材料的导热系数存在明显差异。
金属材料具有较高的导热系数,而塑料和木材等非金属材料的导热系数较低。
这是因为金属材料中的自由电子具有很高的导热能力,而非金属材料中的分子运动受限,导致热的传递较慢。
2.不同材料的热平衡状态存在差异。
通过观察热平衡仪中的样品,我们可以发现金属材料的热平衡状态较快,而非金属材料的热平衡状态较慢。
这是由于金属材料的导热性能好,能够迅速将热量传递到周围环境,而非金属材料的导热性能较差,导致热平衡状态的达到需要更长的时间。
3.不同材料的热导率也存在差异。
热导率是材料传导热量的能力的物理量,是描述材料导热性能的重要指标。
通过测量不同材料的热导率,我们可以得出不同材料导热性能的大小关系,并进一步验证了导热系数的差异。
通过以上实验和数据处理,我们深入了解了传热的规律和特性。
不同材料的导热性能受材料本身的性质和结构等因素影响,这对于工程领域的材料选择和热传导问题的解决具有重要意义。
在实际应用中,我们可以根据不同需求选择合适的材料,以达到更好的热传导效果。
传热综合实验报告传热综合实验报告引言:传热是物质内部或不同物质之间热能传递的过程。
在工程领域中,传热的研究对于提高能源利用效率、改善工艺流程等方面具有重要意义。
本实验旨在通过实际操作,探究传热的基本原理和实际应用。
实验目的:1. 了解传热的基本概念和原理;2. 掌握传热实验的基本操作方法;3. 分析传热实验结果,探讨传热机制。
实验步骤:1. 实验前准备:准备实验所需材料和仪器设备,包括热导率测量仪、传热模型等;2. 实验一:热导率测量。
通过热导率测量仪测量不同材料的热导率,包括金属、塑料等;3. 实验二:传热模型实验。
选择一个传热模型,如平板散热器,将其加热并记录温度变化;4. 实验三:传热管实验。
将传热管加热并测量不同位置的温度,分析传热过程。
实验结果与分析:1. 热导率测量结果表明,不同材料的热导率存在较大差异。
金属材料的热导率较高,而塑料等非金属材料的热导率较低。
这与金属的晶体结构和电子传导机制有关;2. 传热模型实验结果显示,随着加热时间的增加,模型表面的温度逐渐升高,表明传热过程中热能从高温区传递到低温区;3. 传热管实验结果表明,在传热管的两端,温度差异较大,而在中间位置,温度差异较小。
这说明传热管的传热效果在两端较好,而在中间位置传热效果较差。
实验讨论:1. 通过热导率测量实验,我们了解了不同材料的热导率特性。
这对于材料选择和工程设计中的热传导问题具有指导意义;2. 传热模型实验结果表明,传热是一个由高温区向低温区传递热能的过程。
这与热力学第二定律相符合;3. 传热管实验结果提示我们,在传热过程中,传热效果会受到材料、管道长度等因素的影响。
因此,在实际工程应用中,需要考虑传热效果的优化。
结论:通过本次传热综合实验,我们对传热的基本原理和实际应用有了更深入的了解。
热导率测量结果表明不同材料的热导率存在差异,传热模型实验结果显示了传热的基本过程,传热管实验结果提示了传热效果受到多种因素影响。
综合传热实验一、实验目的综合传热实验是将干饱和蒸汽通过一组实验铜管,管子在空气中散热而使蒸汽冷凝为水,由于钢管的外表状态及空气流动情况的不同,管子的凝水量亦不同,通过单位时间凝水量的多少,可以:1、观察和分析影响传热的诸多因素;2、计算出每根管子的总传热系数K值。
二、装置简介实验装置示意图见图11.3-1:图11.3-1 综合传热实验装置示意图1.电热蒸汽发生器 2.蒸汽出口测温琴键开关 3.琴键开关转换开关 4。
蒸汽入口测温琴键开关 5.温度显示仪表 6.蒸汽出口 7.电接点压力表 8.安全阀。
9。
连接软管分汽缸 10.排水放气阀 11.φ25翅片管 12.φ25铜光管13.φ25.9铝管 14.24×26铜方管 15.φ30铜管 16.凝结刻度储水器 17.放水阀 18.支架台 19.岩棉保温管 20.水位计 21.自动加热开关组 22.风机开关实验台由电热蒸汽发生器、一组表面状态不同(铜光管、铝光管、管外加铝翅片以及不同保温材料的保温管)的六根铜管、分汽缸、冷凝管、冷凝水蓄水器(可计量)及支架等组成。
强制通风时,配有一组可移动的风机(图中未绘出),用它来对管子吹风。
因而,实验台可进行自然对流和强迫对流的传热实验。
通过实验,可对各种不同影响传热因素进行分析,从而建立起影响传热因素的初步认识和概念。
三、实验方法及步骤1、打开电热蒸汽发生器上的供汽阀,然后从底部的给水阀门(兼排污),往蒸汽发生器的锅炉加水,当水面达到水位计的三分之二高处时,关闭给水阀门。
2、打开蒸汽发生器上的电加热器(手动)开关,指示灯亮,内部的电锅炉加热。
待电接点压力表达到要求压力时(事先按需要用螺丝扳手调定),电接点压力表动作(断电)。
此时,由电接点压力表控制继电器,使加热器按一定范围进行加热,以供实验所需的蒸汽量。
3、打开配气管上所有阀门(或按实验需要打开其中几个阀门)和玻璃蓄水器下方的放水阀。
然后,打开供汽阀缓慢向测试管内送汽,(送汽压力略高于实验压力),预热整个实验系统,并将系统内的空气排挣。
传热综合实验报告传热综合实验报告一、实验目的传热综合实验是为了让学生掌握传热基本原理和方法,以及学习各种传热方式的特点和应用。
通过实验,学生可以了解传热的基本规律、掌握传热过程中的数据处理方法,并能够运用所学知识分析和解决工程问题。
二、实验原理1. 传热基本概念传热是物质内部能量的转移,是由于温度差而引起的。
它包括三种方式:导热、对流和辐射。
导热是指物质内部分子之间的能量转移;对流是指物质内部或外部流体中,因温度差而引起的能量转移;辐射则是指物体表面发射出来的电磁波辐射。
2. 热导率测量在实验中,我们使用了稳态法测量铜棒、铝棒和不锈钢棒的导热系数。
稳态法测量时,在杆上选取两个距离L处,分别测量两点温度差ΔT1和ΔT2,并利用公式计算出杆上的导热系数λ。
在实验中,我们使用了水冷却装置对不锈钢棒进行对流传热实验。
通过测量水的进口温度、出口温度、水流量和杆表面温度,计算出对流传热系数h。
4. 辐射传热测量在实验中,我们使用了黑体辐射器和红外线探测仪对不同材料的辐射传热进行了测量。
通过调节黑体辐射器的温度和测量红外线探测仪的输出电压,计算出各种材料的辐射传热系数ε。
三、实验步骤1. 稳态法测量导热系数(1)将铜棒、铝棒和不锈钢棒依次放入加热器中加热。
(2)当杆上温度稳定后,在距离L处分别用两个温度计测量两点温度差ΔT1和ΔT2。
(3)根据公式λ=(P/kA)×L/ΔT求出导热系数λ。
2. 对流传热测量(1)将不锈钢棒插入水冷却装置中。
(2)调节水流量和水温,使其保持稳定状态。
(3)测量水的进口温度、出口温度、水流量和杆表面温度。
(4)根据公式h=q/(T1-T2)×A×(1-ε)求出对流传热系数h。
(1)将黑体辐射器加热至一定温度,并测量其输出电压。
(2)将不同材料的样品放置于黑体辐射器前方,并用红外线探测仪测量其输出电压。
(3)根据公式ε=V/V0×(T/T0)^4求出各种材料的辐射传热系数ε。