传热实验实验报告
- 格式:doc
- 大小:794.50 KB
- 文档页数:16
传热实验报告传热实验是热力学课程中的重要实验之一,通过传热实验可以对传热过程进行直观的观察和分析,了解传热规律与特性。
本次实验我们使用了传导、传 convection、辐射传热三种方式进行传热实验,并进行了实验数据的分析。
实验仪器:热导仪、试样、流体传热实验器、红外线辐射仪。
实验步骤:1. 传导传热实验:先将试样加热到恒定温度,用热导仪测量试样两侧的温度差,测量时间为10分钟,并记录测量结果。
2. 传 convection 传热实验:使用流体传热实验器,将流体加热到一定温度,利用流体对试样进行传热,测量试样两侧的温度差和流体温度,测量时间为10分钟,并记录测量结果。
3. 辐射传热实验:使用红外线辐射仪,对试样进行辐射传热实验,测量试样的辐射功率和温度差,测量时间为10分钟,并记录测量结果。
实验结果和分析:1. 传导传热实验:根据测量结果,我们可以得到试样的传导热流量。
传导热流量和温度差呈线性关系,即传导热流量与温度差成正比。
传导热流量与试样的导热性能有关,导热性能越好,传导热流量越大。
2. 传 convection 传热实验:传 convection 传热是流体对试样进行传热的过程。
根据测量结果,我们可以得到传 convection 传热的热流量。
传 convection 传热的热流量与流体温度差、试样的表面积和流体对流传热系数有关。
流体温度差越大、试样表面积越大、流体对流传热系数越大,传 convection 传热的热流量越大。
3. 辐射传热实验:辐射传热是通过辐射获得的热流量。
根据测量结果,我们可以得到试样的辐射功率。
辐射功率与试样的表面积、温度差和辐射系数有关。
试样表面积越大、温度差越大、辐射系数越大,辐射功率越大。
通过对实验结果的分析,我们可以得出传热实验中的一些结论:1. 传热方式不同,热流量和传热特性也不同。
传导传热主要取决于试样的导热性能,传 convection 传热主要取决于流体的流动状态和流体对流传热系数,辐射传热主要取决于试样的表面特性和温度差。
传热比赛实验报告(共7篇)传热比赛探究性实验的案例设计传热比赛探究性实验的案例设计【教学设计理念】1、科学来源于生活,应用于生活。
新课程标准体现的教育理念之一也指出课程要回归生活。
本课的教学设计就是以学生生活为基础,以学科知识为支撑的,通过我们身边的问题,激发学生的好奇心和求知欲望,在解决生活问题的过程中获得科学知识,明白科学道理,从中体验科学探究的乐趣,意识到生活中随时随处有科学。
2、规范细节,养成良好的科学素养。
小学科学课程是以培养科学素养为宗旨的科学启蒙课程。
科学素养的形成应以学生的试验设计、认真观察、科学记录、条理表达、乐于合作、善于倾听、客观评价等能力的训练作为切入点,在每一个细节之中,逐步规范学生的学习习惯和探究习惯,以达到受用终生的目的。
【探究性活动设计】探究活动一:热是怎样在物体中传递的。
1、指明探究方向:师:有了疑问,就得有研究方法,如果老师提供给你们材料,你们能不能根据自己生活经验,设计一个实验方案?(能)如果大部分同学已经做好,我就拍手提示你好吗?下面听清要求:打开盒子,看看里面的材料,然后设计出你们的实验方案。
2、学生设计实验方案。
3、汇报实验方法:教师根据学生的汇报作补充提示。
4、学生实验探究。
师:结合刚才我们的讨论,先完善好你们的实验方案,再进行实验,并及时记录实验现象,完成实验报告单。
5、研究汇报:汇报要求:要想取得发言权,必须先对前面小组的汇报进行评价,然后才能发言,相同的内容不要重复,否则取消发言权。
6、教师小结:通过用不同的材料来进行实验,同学们发现了同一个现象:,热都是从温度高的地方传递向温度低的地方,像这样在固体中传递热的方式科学上称为传导。
(板书:传导)。
7、解释生活现象:现在,谁能解释杯子是怎样变热的?师谈话:其实,像这种传递热的现象在生活中还有很多,你能再举几个例子吗?探究活动二:物体传递热的能力相同吗?1、引出探究话题:师:刚才同学们提到了勺子,生活中的汤勺一般都是用什么材料制作的?你知道是为什么吗?2、学生解释。
实验时间:2021年X月X日实验地点:实验室一、实验目的1. 熟悉传热的基本原理和实验方法。
2. 了解传热过程中的实验现象,如温度变化、流量变化等。
3. 通过实验验证传热学的基本定律,如牛顿冷却定律、热传导定律等。
二、实验原理传热是指热量从高温物体传递到低温物体的过程。
传热方式主要有三种:传导、对流和辐射。
本实验主要研究传导和对流两种传热方式。
1. 传导传热:热量通过物体内部从高温部分传递到低温部分的过程。
本实验中,采用导热系数较高的金属棒进行实验。
2. 对流传热:热量通过流体(如空气、水等)的流动传递的过程。
本实验中,采用空气作为传热介质。
三、实验现象1. 传导传热现象(1)实验现象:将一端加热的金属棒置于室温环境中,观察到金属棒另一端温度逐渐升高。
(2)分析:这是由于金属棒内部热量通过传导方式传递,导致另一端温度升高。
(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,另一端温度升高ΔT=20℃。
2. 对流传热现象(1)实验现象:将加热后的金属棒放入装有空气的密闭容器中,观察到金属棒温度逐渐降低。
(2)分析:这是由于金属棒表面空气被加热,密度减小,上升;冷空气下降,形成对流,使热量传递给空气,导致金属棒温度降低。
(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,另一端温度降低ΔT=10℃。
3. 热交换器传热现象(1)实验现象:将加热后的金属棒放入热交换器中,观察到金属棒温度逐渐降低,同时热交换器中的冷却水温度逐渐升高。
(2)分析:这是由于金属棒与冷却水之间发生热交换,热量从金属棒传递给冷却水,导致金属棒温度降低,冷却水温度升高。
(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,金属棒温度降低ΔT=15℃,冷却水温度升高ΔT=5℃。
四、实验结论1. 通过实验验证了传导和对流两种传热方式的存在。
实验五 传热实验一、 实验目的1. 了解换热器的结构及用途。
2. 学习换热器的操作方法。
3. 了解传热系数的测定方法。
4. 测定所给换热器的传热系数K 。
5. 学习应用传热学的概念和原理去分析和强化传热过程,并实验之。
二、 实验原理根据传热方程m t KA Q ∆=,只要测得传热速度Q 、有关各温度和传热面积,即可算出传热系数K 。
在该实验中,利用加热空气和自来水通过列管式换热器来测定K ,只要测出空气的进出口温度、自来水的进出口温度以及水和空气的流量即可。
在工作过程中,如不考虑热量损失,则加热空气放出的热量Q 1与自来水得到热量Q 2应相等,但实际上因热量损失的存在,此两热量不等,实验中以Q 2为准。
三、 实验流程及设备四、 实验步骤及操作要领1.开启冷水进口阀、气源开关,并将空气流量调至合适位置,然后开启空气加热电源开关2.当空气进口温度达到某值(加120℃)并稳定后,改变空气流量,测定不同换热条件下的传热系数;3.试验结束后,先关闭电加热器开关。
待空气进口温度接近室温后,关闭空气和冷水的流量阀,最后关闭气源开关;五、 实验数据1.有关常数换热面积:0.4m 22.实验数据记录表以序号1为例:查相关数据可知:18.8℃水的密度348.998m kg=ρ20℃水的比热容()C kg kJ C p 。
⋅=185.4空气流量:s m Q 3004.0360016==气 水流量:s kg Q W 022.03600/48.99810803-=⨯⨯=⋅=ρ水水 水的算数平均温度:C t t t 。
出入平均3.212246.182=+=+=传热速率:s J Q t t W C p 437.5016.18-24022.0418512=⨯⨯=-⋅=)()(水()()()()℃查图得:对数平均温度:逆△△。
△022.3699.0386.3699.09.146.18245.291.110-06.06.181.1106.1824386.366.185.29241.110ln 6.185.29241.110ln 122111122121=⨯====--=-==--=--==-----=∆∆∆-∆=∆∆t t t t T T tT t t t t t t m t m t m R P C t ϕϕ 传热系数:K m W t S Q K m 2801.34022.364.0437.501=⨯=∆⋅=六、 实验结果及讨论1.求出换热器在不同操作条件下的传热系数。
传热实验报告一、实验目的。
本实验旨在通过测量不同材料的传热性能,探究热传导的基本规律,加深对传热学原理的理解。
二、实验原理。
传热是物体内部或不同物体之间由于温度差而发生的热量传递过程,其方式包括热传导、对流和辐射。
本实验主要关注热传导,即热量在固体内部的传递过程。
热传导的速率与材料的热导率、截面积和温度差有关。
热导率是材料本身的性质,不同材料具有不同的热导率。
三、实验材料和装置。
实验材料,铜棒、铝棒、铁棒。
实验装置,热传导实验装置、热导率测定仪。
四、实验步骤。
1. 将铜棒、铝棒、铁棒分别安装在热传导实验装置上,并接通电源,使其达到稳定状态。
2. 测量不同材料的初始温度,并记录下来。
3. 记录实验装置上的温度计读数,随时间的变化情况。
4. 根据实验数据,计算出不同材料的热传导率。
五、实验数据和结果分析。
通过实验数据的测量和计算,得出了不同材料的热传导率。
结果显示,铜棒的热传导率最高,铁棒次之,铝棒最低。
这与我们对材料热导率的认识是一致的。
铜具有较高的热导率,因此在工业和日常生活中得到广泛应用。
六、实验结论。
通过本次实验,我们深入了解了材料的热传导性能,并通过实验数据验证了热传导的基本规律。
不同材料的热传导率差异较大,这对于材料的选择和应用具有一定的指导意义。
七、实验总结。
本次实验通过测量不同材料的热传导率,加深了我们对传热学原理的理解。
同时,实验过程中我们也学会了使用热传导实验装置和热导率测定仪,提高了实验操作能力。
八、参考文献。
[1] 王振宇. 传热学[M]. 北京,高等教育出版社,2008.[2] 张明. 热力学与传热学[M]. 北京,清华大学出版社,2010.以上就是本次传热实验的实验报告,希望对大家有所帮助。
传热实验实验报告一、实验目的。
本实验旨在通过传热实验,探究不同材料的传热特性,加深对传热机理的理解,为工程实践提供理论支持。
二、实验原理。
传热是物体内部或不同物体之间热量传递的过程,包括传导、对流和辐射三种方式。
在本实验中,我们主要关注传导传热的特性。
传导是通过物质内部的分子振动传递热量,其速度取决于物质的导热系数和温度梯度。
传热实验通常通过测量材料的导热系数来研究传热性能。
三、实验仪器与材料。
1. 导热实验仪。
2. 不同材料的样品(如金属、塑料、绝缘材料等)。
3. 温度计。
4. 数据记录仪。
四、实验步骤。
1. 将实验仪器连接好并预热至稳定状态。
2. 准备不同材料的样品,并测量其初始温度。
3. 将样品放置在传热实验仪上,记录下不同时间间隔下的温度变化。
4. 根据实验数据,计算不同材料的导热系数。
五、实验数据与分析。
通过实验记录和数据处理,我们得到了不同材料的导热系数。
在实验过程中,我们发现金属类材料的导热系数较高,而绝缘材料的导热系数较低。
这与材料的分子结构和热传导机理密切相关。
通过对实验数据的分析,我们得出了不同材料传热特性的定性和定量结论。
六、实验结论。
通过本次传热实验,我们深入了解了不同材料的传热特性,掌握了传热实验的基本方法和数据处理技巧。
同时,我们也加深了对传热机理的理解,为今后的工程实践提供了有益的参考。
七、实验总结。
本次传热实验取得了良好的实验结果,但也存在一些不足之处,例如实验过程中的温度测量误差、样品准备不均匀等。
在今后的实验中,我们将进一步改进实验方法,提高实验数据的准确性和可靠性。
八、参考文献。
1. 李华,张三. 传热学[M]. 北京,高等教育出版社,2008.2. 王五,赵六. 传热实验指导[M]. 北京,科学出版社,2015.以上就是本次传热实验的实验报告内容,谢谢阅读。
传热综合实验实验报告数据处理传热是物质内部或不同物质之间热量传递的过程,是热力学中的重要概念之一。
为了更好地理解传热现象,学习传热的基本规律和特性,我们进行了传热综合实验。
实验目的:通过实验研究不同材料的导热性能,探究传热的规律,加深对传热知识的理解。
实验仪器和材料:1.导热仪:用于测量不同材料的导热系数。
2.热平衡仪:用于测量不同材料的热平衡状态。
3.热导率测定装置:用于测量材料的热导率。
4.不同材料样品:如金属、塑料、木材等。
实验步骤:1.准备不同材料的样品,并测量其初始温度。
2.将样品放入导热仪中,测量不同时间下样品的温度变化,并记录数据。
3.将样品放入热平衡仪中,观察不同材料的热平衡状态,并记录数据。
4.使用热导率测定装置,测量不同材料的热导率,并记录数据。
实验结果和数据处理:根据实验所得数据,我们进行了数据处理和分析,得出了以下结论:1.不同材料的导热系数存在明显差异。
金属材料具有较高的导热系数,而塑料和木材等非金属材料的导热系数较低。
这是因为金属材料中的自由电子具有很高的导热能力,而非金属材料中的分子运动受限,导致热的传递较慢。
2.不同材料的热平衡状态存在差异。
通过观察热平衡仪中的样品,我们可以发现金属材料的热平衡状态较快,而非金属材料的热平衡状态较慢。
这是由于金属材料的导热性能好,能够迅速将热量传递到周围环境,而非金属材料的导热性能较差,导致热平衡状态的达到需要更长的时间。
3.不同材料的热导率也存在差异。
热导率是材料传导热量的能力的物理量,是描述材料导热性能的重要指标。
通过测量不同材料的热导率,我们可以得出不同材料导热性能的大小关系,并进一步验证了导热系数的差异。
通过以上实验和数据处理,我们深入了解了传热的规律和特性。
不同材料的导热性能受材料本身的性质和结构等因素影响,这对于工程领域的材料选择和热传导问题的解决具有重要意义。
在实际应用中,我们可以根据不同需求选择合适的材料,以达到更好的热传导效果。
传热实验实验报告数据处理传热实验实验报告数据处理一、实验目的本次传热实验的目的是通过测量不同材料和不同几何形状的物体在稳态条件下的温度分布,了解传热过程中各种因素对传热速率和传热方式的影响。
二、实验原理本次实验采用导热板法进行测量,即在物体表面放置一块导热板,通过测量导热板两端的温度差来计算物体表面的温度分布情况。
导热板法适用于固体材料,其原理是利用物质内部分子间相互作用力使能量自高温区向低温区传递。
当物质内部达到稳定状态时,能量自然会达到平衡状态。
三、实验步骤1. 准备工作:将所需材料(如铜、铝、钢等)制成不同几何形状(如圆柱形、球形等)。
2. 将导热板放置在试样表面,并记录下导热板两端的温度差。
3. 重复步骤2,直至记录到试样表面各点的温度差。
4. 对于每个试样,重复步骤2-3,记录不同时间下的温度分布情况。
5. 根据实验数据计算出不同试样的导热系数和传热速率。
四、实验数据处理1. 温度差计算:将导热板两端的温度差值除以导热板长度得到温度梯度。
例如,若导热板长度为L,两端温度分别为T1和T2,则温度梯度为(T2-T1)/L。
2. 传热速率计算:根据实验数据可得到试样表面各点的温度分布情况,利用傅里叶传热定律计算出传热速率。
公式如下:q=-kA(dT/dx)其中,q表示单位时间内通过物体某一截面的能量流量,k表示物体的导热系数,A表示截面积,(dT/dx)表示温度梯度。
3. 导热系数计算:根据传热速率公式可得到物体的导热系数。
公式如下:k=qL/(AΔT)其中,q表示单位时间内通过物体某一截面的能量流量,L表示能量流动方向上的长度,A表示截面积,ΔT表示两端温差。
五、实验结果分析根据实验数据处理结果,我们可以得到不同材料和几何形状的物体的导热系数和传热速率。
通过比较不同物体的导热系数和传热速率,可以得出以下结论:1. 不同材料的导热系数存在差异,一般来说金属类材料的导热系数较高。
2. 不同几何形状的物体传热速率也存在差异,一般来说球形物体传热速率最快。
第1篇一、实验背景热传导是物理学中的一个基本概念,指的是热量在物体内部或物体间的传递过程。
为了让学生更好地理解热传导的原理,我们进行了以下实验。
二、实验目的1. 了解热传导的概念和原理。
2. 观察不同材料的热传导性能。
3. 探讨影响热传导速度的因素。
三、实验器材1. 铜棒、铁片、木棒、塑料棒、玻璃棒、酒精灯、火柴、试管夹、烧杯、热水、凡士林。
四、实验步骤1. 实验一:(1)将铜棒固定在支架上,在火柴头上蘸少许凡士林,依次粘在铜棒的三个孔上。
(2)用酒精灯加热铜棒的一端,观察火柴由被加热的一端向另一端逐渐脱落的现象。
2. 实验二:(1)用试管夹夹住铁片,在铁片上放上蜡,分别从一边或中央加热铁片,观察铁片的熔化情况。
(2)将铁丝、木棒、塑料棒、玻璃棒、铜棒同时放入装有热水的烧杯中,用手感觉不同材料传热速度的快慢。
五、实验现象1. 实验一:(1)加热铜棒时,火柴由被加热的一端向另一端逐渐脱落。
(2)加热铁片时,从一边加热的熔化速度比从中央加热的快。
2. 实验二:将不同材料放入热水中,发现铜棒传热速度最快,其次是铁片、玻璃棒、塑料棒和木棒。
六、实验结论1. 热传导是指热量在物体内部或物体间的传递过程。
2. 不同材料的热传导性能不同,铜的热传导性能最好,其次是铁、玻璃、塑料和木棒。
3. 影响热传导速度的因素包括材料的热传导性能、物体的形状和大小等。
七、实验反思本次实验让学生直观地了解了热传导的原理,提高了学生的实验操作能力和观察能力。
在实验过程中,我们发现以下问题:1. 实验过程中,部分学生操作不规范,导致实验结果不准确。
2. 实验过程中,部分学生对实验现象的描述不够准确,影响了实验结论的可靠性。
针对以上问题,我们提出以下改进措施:1. 加强实验操作规范培训,确保实验结果准确。
2. 提高学生对实验现象的观察能力和描述能力,为实验结论提供有力支持。
八、实验总结本次实验让学生通过实际操作,了解了热传导的原理,掌握了不同材料的热传导性能,为今后的学习奠定了基础。
化工原理传热实验报告实验目的,通过传热实验,掌握传热原理,了解传热过程中的热阻和传热系数的测定方法,掌握传热表面积的计算方法。
一、实验原理。
传热是指热量从一个物体传递到另一个物体的过程。
在传热过程中,热量的传递方式有对流、传导和辐射三种。
本实验主要研究对流传热。
二、实验仪器和设备。
1. 传热实验装置。
2. 温度计。
3. 计时器。
4. 水槽。
5. 水泵。
三、实验步骤。
1. 将水加热至一定温度,保持恒温。
2. 将试验管装入传热实验装置中,打开水泵,使水流通过试验管。
3. 记录试验管的进口和出口水温,以及进口和出口水的流量。
4. 根据实验数据计算出传热系数和传热表面积。
四、实验数据处理。
1. 根据实验数据计算出传热系数和传热表面积。
2. 绘制传热系数与雷诺数的关系曲线。
五、实验结果分析。
根据实验结果,我们可以得出传热系数与雷诺数呈线性关系,传热系数随雷诺数的增大而增大。
传热表面积的计算结果与实际情况相符合。
六、实验结论。
通过本次传热实验,我们深入了解了传热原理,掌握了传热系数和传热表面积的计算方法,提高了实验操作能力和数据处理能力。
七、实验总结。
传热实验是化工原理课程中的重要实践环节,通过实验操作,我们不仅学到了理论知识,更加深了对传热原理的理解。
在今后的学习和工作中,我们将继续努力,不断提高自己的实验能力和科研能力。
通过本次传热实验,我们对传热原理有了更深入的了解,掌握了传热系数和传热表面积的计算方法,提高了实验操作能力和数据处理能力。
希望通过这篇实验报告,能够对大家有所帮助,也希望大家能够在今后的学习和工作中继续努力,不断提高自己的实验能力和科研能力。
一、 实验名称:传热实验二、实验目的:1.熟悉套管换热器的结构;2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、. 三、实验原理:本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。
套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。
传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m⋅∆⋅=(1)传热实验图2-2-5-1(1) 套管换热器示意图式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2)式中:3600/h S V V =——空气流量[m 3/s] V h ——空气流量[m 3/h]ρ——空气密度[kg/m 3],以下式计算:]/)[273(4645.031m kg t R p Pa ++=ρ (3)Pa ——大气压[mmHg]Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃]Cp ——空气比热[K kg J ⋅/],查表或用下式计算: ]/[04.01009K kg J t C m p ⋅+=(4)t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃]②传热平均面积A m :][2m L d A m m π=(5)式中:d m =传热管平均直径[m]L —传热管有效长度[m ]③传热平均温度差△t m 用逆流对数平均温差计算:T ←——Tt 1——→t 2 )(),(2211t T t t T t -=∆-=∆2121ln t t t t t m ∆∆∆-∆=∆(6)式中:T ——蒸汽温度[℃]2、传热膜系数(给热系数)及其关联式空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示:n r m e P AR Nu =(7)式中:N u ——努塞尔特准数R e ——雷诺准数 P r ——普兰特准数A ——系数,经验值为0.023m ——指数,经验值为0.8n ——指数,经验值为:流体被加热时n=0.4,流体被冷却n=0.3为了测定传热膜系数,现对式(7)作进一步的分析:λαdNu =(8)α——空气与管壁间的传热膜系数[W/m 2·k] 本实验可近似取α=K[传热系数],也可用下式计算:)(m W i t t A q -=α(9)A i ——传热管内表面积[m 2] t W ——管壁温[℃]t m ——空气进、出口平均温度[℃] d ——管内径[m]λ——空气的导热系数[W/m ·k],查表或用下式计算:λ=0.0244+7.8×10-5t m(10)μρdu =Re(11)u ——空气在加热管内的流速[m/s]μ——空气定性温度(t m )下的粘度[pa ·s],查表或用下式计算:μ=1.72×10-5+4.8×10-8t m(12)d ,ρ——意义同上。
λμP C =Pr(13)C p , μ, λ——意义同上在定性温度t m =50~70℃时普兰特准数值Pr=0.698~0.694,取平均值为0.696,那么Pr n =0.6960.4=0.865,代入式(7)即可得如下的实验关联式:m e R A Nu '= (14)式中A ’=0.865A ,测定A ’、m 值后,再算出A 值,即可得到本实验的准数关联式(7)的形式。
四、实验设备流程图:本实验套管换热器流程如图2-2-5-2(a )所示,它为双套管并装换热器,其中一套的内管为光滑铜管,另一套为螺纹铜管(图中只画出其中一套设备)。
冷空气由风机1送入,经表压计2测定表压,流量计3测定流量,阀4调节气量,温度计5测定进口温度,进套管换热器6被加热,热空气出口温度由7测量。
进套管间的蒸汽由温度计8测量温度,压力表9测定压强,阀10调节进汽量。
冷凝水由疏水器12排除,管间的不凝气由放空管11定期排放。
另外,管壁及各测温点还配有热电偶测温装置。
本实验列管换热器流程如图2-2-5-2(b)所示,冷空气由风机1送入,经阀2调节气量,气体流量计3测定流量并由气体加热器12将空气加热到指定温度,经温度计4测定进口温度后送入列管式换热器,冷却后的空气由温度计5测量温度,然后排出换热器;进换热器的水的流量由阀10调节,经液体流量计9测定流量及温度计6测定温度后进入换热器,冷热流体在列管的管壁上进行热量交换,经加热的水由温度计8测定温度后排出换热器。
41—风机 2—表压计 3—流量计 4—空气调节阀5—进口温度计6—换热器主体 7—出口温度计 8—蒸汽温度计 9—蒸汽压力表 10—蒸汽调节阀11—不凝气放空管 12—疏水器图2-2-5-2(a)套管式传热实验装置流程图五、实验方法:1、向锅炉加水至指定水位,通电加热至锅炉产生蒸汽压1.5kg/cm2(表)左右,待用。
2、关闭调节阀4,起动风机1,慢慢开启阀4至最大,观察流量压差计3的最大读数量程,确定5—6组读数及每组读数的压差值。
3、开启蒸汽阀10进汽,压力表9控制在0.5[kg/cm2](表)左右,同时打开放空阀11至有蒸汽排出时关闭。
4、按拟好的压差量程,空气的流量由大至小测取读数(但不能测流量为零的读数)每组读数包括空气流量、表压、进出口温度和蒸汽进口温度。
若用液体温度计测温度,要求读到0.1℃,若用热电偶测温,可由电位差计的读数查表而得温度。
5、数据测量完毕,先关蒸汽后停风机。
6、由测得的流量压差读数,根据流量曲线图查出相应的流量。
六、原始数据记录表:mm 8.18=φ mm d 8.16= mm L 1224= mmHg P a 761=表1七、数据处理表及图:4.0=n ; 696.0=r P ;865.0696.04.0==nrP表2表3图14.079.00228.0reu P R N八、计算举例:取第4组数据举例计算 1.传热系数K 的计算:s m s m V V h s /00633.0/36008.223600/33=== 331/253.1/6.302732.587614645.02734645.0m kg m kg t R p P a =⎪⎪⎭⎫ ⎝⎛++⨯=⎪⎪⎭⎫⎝⎛++=ρ()C C t t t m ︒=︒+=+=60.6026.906.302/21K kg J t C m p ⋅=⨯+=+=/42.101160.6004.0100904.01009()()Wt t C V q p s 716.4816.306.9042.1011253.100633.012=-⨯⨯⨯=-=ρ2233m 069565.010*******8.168.1814159.3m m L d A m =⨯⨯⨯+⨯==--π()()C C t T t ︒=︒-=-=∆4.906.300.12111 ()()C C t T t ︒=︒-=-=∆4.306.900.12122K K t t t t t m 06.554.304.90ln 4.304.90ln2121=-=∆∆∆-∆=∆ k m W k m W t A q K mm ⋅=⋅⨯=∆⋅=22/776.125/06.55069565.0716.481同理,其他组数据计算结果如表2和表3. 2.传热膜系数(给热系数)及其关联式的计算:()()()22/647.114 /60.600.121069565.0716.481 m W m W t T A qt t A qm m m W i =-⨯=-=-=αKm W K m W t m⋅=⋅⨯⨯+=⨯+=--/02913.0 /60.60108.70244.0 108.70244.055λ 127.6602913.0108.16647.1143=⨯⨯==-λαd N us m s m d V u s/571.28/2108.1614159.300633.02232=⎪⎪⎭⎫⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛=-πsP s P t a a m/0000201.0 /60.60108.41072.1 108.41072.18585=⨯⨯+⨯=⨯+⨯=----μ 224.299170000201.0253.1571.28108.163=⨯⨯⨯==-μρdu R e820.1127.66log log 1010==u N 476.4224.29917log log 1010==e R同理,其他组数据计算结果如表2和表3. 作e u R N 1010log log -关系曲线图如图1. 由图像可得:79.0366.4640.4728.1944.1=--=m7.1476.479.0820.1log log 'log 101010-=⨯-=-=e u R m N A0197.010'7.1==-A 0228.0865.00197.0865.0'===A A所以传热膜系数的通用关联式为:4.079.00228.0reu P R N =九、讨论:。