实验室样品前处理常用方法
- 格式:docx
- 大小:16.14 KB
- 文档页数:3
分析样品的预处理在分析样品之前,我们通常需要进行样品的预处理。
样品的预处理目的在于减少或消除样品中的干扰物质,提高所要测定物质的测定灵敏度和准确性。
以下是样品预处理的一些常见方法和技术。
1.溶解和稀释:对于固体样品,我们通常需要将其溶解在适当的溶剂中,以便进行后续的测试。
在溶解过程中,有时会发生不完全溶解、化学反应等问题,这时可以考虑改变溶剂的性质、溶剂温度、溶剂处理时间等方法来解决。
2.过滤:样品中常常会含有悬浮物、杂质等,通过使用不同孔径的过滤器可以将这些杂质过滤掉,得到干净的样品溶液。
过滤的选择应根据样品的性质和分析要求来确定过滤介质和过滤孔径。
3.浓缩:在一些情况下,我们需要测定样品中微量物质的含量,而样品的体积过大或浓度过低,这时可以使用浓缩方法来提高所要测定物质的浓度。
一般浓缩方法有蒸发浓缩、冷冻浓缩、萃取浓缩等。
4.萃取:样品中可能存在各种不同相的物质,我们需要将所要分析的物质从样品中分离出来。
这时可以使用液液萃取、固相萃取、固液萃取等方法来实现。
具体选择方法应根据所要分析物质的性质和样品的特点来确定。
5.补充试剂:为了提高分析灵敏度和准确性,有时需要在样品中添加一些试剂。
例如,pH调节剂可以调节样品的酸碱度,表面活性剂可以改善分析物质的溶解性和传质速度,络合剂可以形成络合物增大分析物质的测定信号等。
6.去除干扰物质:在样品中常常存在各种干扰物质,它们可能会影响我们所要测定物质的测定结果。
因此,我们需要采取相应的方法去除或减少这些干扰物质的影响。
常见的方法有沉淀分离、离子交换吸附、膜分离、柱层析等。
7.校正和标定:在样品预处理之后,我们需要进行校正和标定,以确保所得结果的准确性和可靠性。
校正和标定通常通过使用标准参照物、内标法、外标法等方法来进行。
总之,样品的预处理在分析过程中扮演着至关重要的角色。
通过恰当的预处理方法,我们可以提高样品的纯度、去除干扰物质、提高分析信号、减小误差等,从而得到准确可靠的分析结果。
GC-MS分析样品前处理⽅法——固相微萃取(SPME)固相微萃取(Solid-Phase Microextraction,简写为SPME)是⽬前较为常⽤的⾹⽓⾹味提取技术,具有简单,快速,集采样、萃取、浓缩、进样与⼀体的特点。
1990年由加拿⼤Waterloo⼤学的Arhturhe和Pawliszyn⾸创,1993年由美国Supelco公司推出商品化固相微萃取装置,1994年获美国匹兹堡分析仪器会议⼤奖。
内容提要:⼀、固相微萃取 (SPME)基本原理⼆、固相微萃取(SPME)操作⽅法三、固相微萃取(SPME)特点四、固相微萃取(SPME)应⽤范围五、固相微萃取(SPME)操作条件选择六、固相微萃取(SPME)操作注意事项七、固相微萃取(SPME)定量⽅法⼋、固相微萃取(SPME)⼲扰物九、固相微萃取(SPME)应⽤实例⼀固相微萃取 (SPME)基本原理固相微萃取主要针对有机物进⾏分析,根据有机物与溶剂之间“相似者相溶”的原则,利⽤⽯英纤维表⾯的⾊谱固定相对分析组分的吸附作⽤,将组分从试样基质中萃取出来,并逐渐富集,完成试样前处理过程。
在进样过程中,利⽤⽓相⾊谱进样器的⾼温将吸附的组分从固定相中解吸下来,由GC/GCMS来进⾏分析。
⼆固相微萃取(SPME)操作⽅法有⼿动和全⾃动两种⽅式,下⾯以⼿动操作为例。
1、样品萃取①将SPME针管穿透样品瓶隔垫,插⼊瓶中。
②推⼿柄杆使纤维头伸出针管,纤维头可以浸⼊⽔溶液中(浸⼊⽅式)或置于样品上部空间(顶空⽅式),萃取时间⼤约2-30分钟。
③缩回纤维头,然后将针管退出样品瓶2、GC/GCMS分析①将SPME针管插⼊GC/GCMS仪进样⼝。
②推⼿柄杆,伸出纤维头,热脱附样品进⾊谱柱。
③缩回纤维头,移去针管。
3、全⾃动固相微萃取(SPME),⾃动提取和进样解析:三固相微萃取(SPME)特点简单,快速,集采样、萃取、浓缩、进样与⼀体。
⼀般不需要有机溶剂。
⼀般⾹⽓⾹味组分(挥发性特强的部分除外)提取⽐静态顶空的灵敏度⾼好多倍或能够提取出来。
样品前处理技术1)溶剂萃取液体样品最常用的萃取技术之一是溶剂萃取,通常叫做液液萃取。
据调查,在分析化学实验室中几乎半数的人员常常使用液液萃取。
在固体或者气体中含有的某些物质,也可以使用溶剂将它们溶解出来,这样的方法也称作溶剂萃取。
根据基质的不同,可分为液液萃取、液固萃取和液气萃取(溶液吸收)。
其中,使用最为广泛的是液液萃取。
液液萃取技术利用样品中不同组分分配在两种不混溶的溶剂中溶解度或分配比的不同来达到分离、提取或纯化的目的。
现在的液液萃取技术已不只是传统的使用分液漏斗的一步液液萃取,它还包括连续萃取、逆流萃取、微萃取、萃取小柱技术、在线萃取技术、自动液液萃取等方式。
其中,连续萃取和逆流萃取有利于处理含有低分配系数物质的样品;微萃取技术有利于提高灵敏度和减少溶剂用量,但回收率方面还有待提高;萃取小柱技术模仿了传统的液液萃取技术,而且使样品收集变得非常容易,同时避免了样品乳化问题;在线萃取和自动液液萃取等方式能够减小人为误差,有利于处理大体积样品。
2)蒸馏蒸馏是一种使用广泛的分离方法,根据液体混合物中液体和蒸汽之间混合组分的分配差异进行分离。
蒸馏技术是挥发性和半挥发性有机物样品精制的第一选择。
对于复杂的环境样品前处理而言,很少会用到简单的常压蒸馏,更多使用的是分馏、水蒸气蒸馏、真空蒸馏、抽提蒸馏与液液萃取或升华等技术的联用。
3)固相萃取固相萃取就是利用固体吸附剂将液体样品中的目标化合物吸附,使其与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。
与液液萃取等传统的分离富集方法相比,具有如下优点:(1)高的回收率和富集倍数。
大多数固相萃取体系的回收率较高,可达70%~100%;另外,富集倍数一般很高,很多体系很容易就能达到几百倍,少数体系甚至能达到几千或几万倍。
(2)使用的高纯有毒有机溶剂量很少,减少了对环境的污染,是一种对环境友好的分离富集方法。
(3)无相分离操作,易于收集分析物组分,能处理小体积试样。
几种常用样品前处理方法在食品重金属检验中的应用摘要介绍了食品金属元素检验时常用的样品前处理方法,分析了在食品金属元素检验中湿消化法,干灰化法,微波消解法和酸提取法这四种样品前处理方法的应用和注意事项。
为食品检验工作者选取适当的样品前处理方法提供一定的参考。
关键词湿消化法;微波消解食品是人类生存的基本要素,由于工业化的发展,导致食品中可能含有或者被污染有危害人体健康的物质。
随着人们生活水平的提高,食品安全性问题日益受到重视,国家加大了对食品的监管工作。
与此同时也使食品检验工作者的检验工作量增多,这就要求食品检验工作者在保证检验质量的同时还应该提高工作效率。
在食品的重金属检验中,样品前处理最为食品检验的关键步骤,直接影响分析结果的精密度和准确度,选择合适的前处理方法,缩短样品的前处理时间,是在保证检验质量的同时提高检验效率的一个重要方法。
笔者依据目前常用的四种样品前处理方法结合食品中金属元素的检验经验,分析了四种方法在食品金属检验中的应用和注意事项,为食品检验工作者选取合适的样品前处理方法提供一定的参考。
湿消化法湿消化法是在适量的食品样品中,加入氧化性强酸,加热破坏有机物,使待测的无机成分释放出来,形成不挥发的无机化合物,以便进行分析测定。
湿法消化是目前应用比较广泛的一种食品样品前处理方法,该方法实用性强,几乎所有的食品都可以用该方法消化。
下面介绍下湿法消解的优势:首先、前处理所用的试剂即酸都可以找到高纯度的,同时基体成分都比较简单(偶尔也会产生部分硫酸盐);其次、在实验过程中,只要控制好消化温度,大部分元素一般很少或几乎没有损失。
例如,在测定酱油中的砷含量时采用湿法消化加入了硝酸高氯酸混合酸和硫酸,加标回收率为95%以上。
即便像“汞”等极易挥发的元素,只要正确掌握消化温度,也不会有损失。
但是湿消化法也有一定的缺陷:首先,由于该反应是氧化反应,样品氧化时间较长,需要一个小时左右的时间(随样品的成分而定),且实验过程中一次不能消化超过10个样品,因此方法的劳动强度比较大。
样品前处理的原理
样品前处理的原理主要是将样品分解,使被测组分定量地转入溶液中以便进行分析测定的过程。
这一过程的目标是使被测组分能够从样品中释放出来,并且确保其在溶液中的稳定性和可测量性。
对于无机物,可以采用溶解法、熔融法、烧结法或闭管法进行处理。
这些方法包括将试样溶解于水、酸、碱或其他溶剂中,利用酸性或碱性熔剂与试样混合,在高温下进行复分解反应或氧化还原反应,将试样中的被测组分转化成易溶于水或酸的化合物。
烧结法亦称半熔法,是在低于熔点的温度下,让试样与固体试剂发生反应。
闭管法亦称密闭增压酸溶解法,是将试样和酸或混合酸的溶剂置于合适的容器中,再将容器装在保护套中,在密闭情况下进行分解。
对于有机物,可以采用干灰化法、湿消化法或微波消解法进行处理。
这些方法利用不同的化学或物理手段将有机物分解,使其中的被测组分能够被提取和测量。
样品前处理的基本要求如下:样品应分解完全使被测组分全部进入溶液,处理过程中不应引入被测组分也不能使被测组分损失,处理时所用试剂及反应生成物对后续测定尽量无干扰。
以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。
硝酸硫酸消解法是一种常用的样品前处理方法,通常用于溶解样品中的有机物,使其转化为无机物以便于后续分析或测定。
该方法的步骤如下:1. 准备样品:首先将待消解的样品制备成适当的形式,例如将固体样品研磨成细粉末或将液体样品转移到适当的容器中。
2. 加入硝酸硫酸混合液:将硝酸和硫酸按比例混合,并向样品中加入足够的混合液。
通常使用的比例为1:1或3:1的硝酸硫酸混合液。
3. 消解过程:将样品与硝酸硫酸混合液充分混合,然后加热进行消解。
可以使用加热板、炉子或消解仪等设备进行加热。
加热的温度和时间根据样品的性质和所需的消解程度而定。
4. 冷却和稀释:在消解完成后,将样品冷却至室温。
然后可以根据后续的分析要求,适当稀释样品,以便于分析或测定。
需要注意的是,硝酸硫酸消解法操作涉及到强酸和高温,因此在操作过程中必须采取必要的安全措施,如佩戴防护眼镜和手套等,以避免可能的危险。
此外,不同样品的消解条件会有所差异,因此在实施该方法时,建议参考具体的消解方法和标准操作程序。
当使用硝酸硫酸消解法时,需要考虑以下一些注意事项:1. 安全操作:硝酸和硫酸都属于强酸,具有腐蚀性和氧化性,请务必佩戴适当的防护装备,如安全眼镜、实验手套和防护服。
在操作过程中,确保实验室通风良好,以避免有害气体和蒸汽的积聚。
2. 选择适当比例的混合液:硝酸和硫酸的混合液比例可根据样品的特性和所需的消解程度进行调整。
一般而言,常见的混合液比例是1:1或3:1。
样品的性质和所需分析的目的会影响最佳的混合液比例选择。
3. 控制消解温度和时间:消解温度和时间取决于样品的性质和含有的有机物的复杂程度。
通常情况下,消解温度选择为150-250摄氏度,消解时间可能需要几小时甚至更长时间。
4. 冷却和稀释:消解结束后,样品需要冷却到室温。
为了进行后续的分析或测定,可能需要稀释样品以达到适当的浓度范围。
5. 校准和质控:在使用硝酸硫酸消解法进行样品前处理之前,请确保合适的校准和质控步骤进行,以确保分析结果的准确性和可靠性。
样品前处理的常用消解体系酸消解法酸消解法酸消解法包括敞口酸消解法和高压密闭酸消解法。
敞口酸消解法是应用最普遍的一种样品分解方法。
利用各种酸的化学能力,将待测的金属元素从样品中溶解出来转移到液体中。
酸消解法常用的酸的种类和性质如下:(1)硝酸HN0 (相对密度1.42, 70 %水溶液,m/m ),沸点120C在常压下的沸点为120C,在0.5 MPa下,温度可达176C,它的氧化电位显著增大,氧化性增强。
能对无机物及有机物进行氧化作用。
金属和合金可用硝酸氧化为相应的硝酸盐,这些硝酸盐通常易溶于水。
部分金属元素,如Au, Pt, Nb, Ta, Zr 不被溶解。
AI和Cr不易被溶解。
硝酸可溶解大部分的硫化物。
(2 )盐酸HCI (相对密度1.19, 37 %水溶液,m/m ),沸点110C盐酸不属于氧化剂,通常不消解有机物。
盐酸在高压与较高温度下,可与许多硅酸盐及一些难溶氧化物、硫酸盐、氟化物作用,生成可溶性盐。
许多碳酸盐、氢氧化物、磷酸盐、硼酸盐和各种硫化物都能被盐酸溶解。
(3 )高氯酸HC104(相对密度1.67, 72 %水溶液,m/m ),沸点130CHC10是己知最强的无机酸之一。
经常使用HCIQ来驱赶HCI, HN0和HF,而HC10本身也易于蒸发除去,除了一些碱金属(K,Rb, Cs )的高氧酸盐溶解度较小外,其他金属的高氯酸盐类都很稳定且易溶于水。
用HC10分解的样品中,可能会有10 %左右的Cr以CrOC1的形式挥发掉,V也可能会以VOCI的形式挥发。
HC10是一种强氧化剂,热的浓HC10氧化性极强,会和有机化合物发生强烈(爆炸)反应,而冷或稀的HC10则无此情况。
因此,通常都与硝酸组合使用,或先加入硝酸反应一段时间后再加入高氯酸(HN0的用量大于HC10的4倍)。
高氯酸大多在常压下的预处理时使用,较少用于密闭消解中,要慎重使用。
在使用聚四氟乙烯(PTFE烧杯分解样品时,选用HC10赶酸可避免过高温度导致PTFE材料的不稳定。
《样品前处理技术与ICP-MS联用检测环境中的痕量金属元素》一、引言随着工业化和城市化的快速发展,环境中的痕量金属元素污染问题日益突出。
为了准确、快速地检测环境样品中的痕量金属元素,科学家们不断探索新的分析技术。
其中,样品前处理技术与ICP-MS(电感耦合等离子体质谱)联用技术因其高灵敏度、高分辨率和高通量等优点,在环境监测领域得到了广泛应用。
本文将详细介绍样品前处理技术及其与ICP-MS联用的方法,并探讨其在检测环境中的痕量金属元素中的应用。
二、样品前处理技术样品前处理是分析化学中一个至关重要的步骤,它直接影响到分析结果的准确性和可靠性。
针对环境样品中的痕量金属元素检测,样品前处理技术主要包括以下几个方面:1. 样品采集与保存:根据不同的环境类型和检测目的,选择合适的采样方法和采样设备,确保样品的完整性和代表性。
同时,要采取适当的措施防止样品在采集、运输和保存过程中受到污染。
2. 样品破碎与研磨:将采集的样品破碎成粉末状,以便进行后续的化学处理。
同时,研磨过程中要避免样品的损失和污染。
3. 酸浸提法:将破碎后的样品与酸进行混合,使金属元素从固相中解离出来。
选择合适的酸种类和浓度对提高金属元素的提取率具有重要意义。
4. 净化与富集:通过一系列的化学处理步骤,如共沉淀、离子交换、吸附等,去除干扰物质,富集目标金属元素。
这可以提高分析的灵敏度和准确性。
三、ICP-MS技术ICP-MS是一种基于电感耦合等离子体的高灵敏度质谱技术,具有高分辨率、高灵敏度和高通量等特点。
它可以将离子化后的金属元素以质谱的形式进行检测,具有很高的分析精度和可靠性。
ICP-MS技术主要包括以下几个步骤:1. 样品引入:将经过前处理的样品引入到ICP-MS系统中。
通常采用微注射器或喷雾器等设备将样品溶液引入到等离子体中。
2. 离子化:在电感耦合等离子体的作用下,样品中的金属元素被离子化成为带电的离子。
3. 质谱分析:离子化的金属元素经过质量分析器进行分离和检测,得到各元素的质谱图。
实验室样品前处理常用方法
【样品前处理要求】
1.样品是否要预处理,如何进行预处理,采样何种方法,应根据样品的性状、检验的要求和所用分析仪器的性能第方面加以考虑。
2.应尽量不用或少使用预处理,以便减少操作步骤,加快分析速度,也可减少预处理过程中带来的不利影响,如引入污染、待测物损失等。
3.分解法处理样品时,分解必须完全,不能造成被测组分的损失,待测组分的回收率应足够高。
4.样品不能被污染,不能引入待测组分和干扰测定的物质。
5.试剂的消耗应尽可能少,方法简便易行,速度快,对环境和人员污染少。
1 高温灰化法
高温灰化法是利用热能分解有机试样,使待测元素成可溶状态的处理方法。
其处理过程是准确是准确称取0.5~1.0g(有些试样要经过预处理),置于适宜的器皿中,zui常用的是适宜的坩锅,如铂坩锅、石英坩锅、瓷坩锅、热解石墨坩锅等,然后置于电炉进行低温碳化,直至冒烟近尽。
再放入马弗炉中,由低温升至375~600℃左右(视样品而定),使试样完全灰化。
试样不同,灰化的温度和时间也不相同,冷却后,灰分用无机酸洗出,用去离子水稀释定容后,即可进行待测元素原子吸收法测定。
灰化法是有机试样zui常用的方法之一,其优点:操作比较简单,适宜于大量试样的测定,处理过程中不需要加入其它试剂,可避免污染试样,但灰化法也存在明显的缺点:在灰化过程中,引起易挥发待测元素的挥发损失,待测元素沾壁及滞留在酸不溶性灰粒上的损失。
汞和硒等易挥发元素,灰化处理中挥发损失严重,不易采用。
As、B、Cd、Cr、Fe、Pb、P、V、Zn等元素在灰化过程中有一定程度的挥发损失。
Cu、Ni等形成某些有机复合物,在温度相对较低时,也会挥发。
非金属元素能形成多种多样化合物,易于挥发。
应特别指出的是,为克服灰化法的不足,在灰化前加入适量的助灰化剂,可减少挥发损失和粘壁损失。
常见的灰化剂有:MgO、Mg(NO3)2、HNO3、H2SO4等。
其中HNO3起氧化作用,加速有机物的破坏,因而可适当降低灰化温度,减少挥发损失。
加入H2SO4能使挥发性较大的氯酸盐转化为挥发性较小的硫酸盐,起到象基体改良剂的作用,硫酸可是使灰化温度升高到980℃,镉、铅未发现明显的损失。
Mg(NO3)2有双重作用,其分解为NO2和MgO,前者促进氧化,后者可稀释灰分,减少灰分与坩锅壁的总接触面积,从而减少沾留。
例如:As、Cu、Ag等在常规灰化时会有严重损失,如果加入Mg(NO3)2后,则能得到满意的结果。
2 湿法消化法
湿法消化法亦称湿灰化法,其实质是用强氧化性酸或强氧化剂的氧化作用破坏有机试样,使待测元素以可溶形式存在。
其基本方法是:称取预处理过的试样于玻璃烧杯中(或石英烧杯、聚四氟乙烯烧杯),加入适量消化剂,通常应在100~200℃下加热以促进消化,待消化液清亮后,蒸发剩余的少量液体,用纯水洗出,定容后即可进行原子吸收法测定。
湿法消化法中zui常用的试剂是HNO3、HClO4、H2SO4等强氧化性酸,以及H2O2、KMnO4 等氧化性试剂。
实际上多用以一定比例配制的混合酸。
在消化过程中避免产生易挥发性的物质,避免有新的沉淀形成。
例如,HNO3:HClO4:H2SO4=3:1:1的混合酸适于大多数的生物试样的消化,但样品含钙高,则可不用H2SO4,以避免CaSO4沉淀形成。
某些硫酸盐(如Pb2+、Ag+、Ba2+)和氯酸盐(Pb2+、Ag+如等)呈不溶性,因此测定这类样品时不宜使用HClO4或H2SO4。
其它氧化剂如H2O2、高锰酸盐等也可用于消化试样,钼盐则能作催化剂加速氧化反应。
湿法消化法处理试样的优点是:设备简单、操作方便,待测元素的挥发性较灰化法小,因此是目前zui常用的处理方法。
但是,湿法消化法并非没有损失。
例如:测定汞时,如果用开口烧瓶消化,则有很大损失,必须配以闭合回流冷凝装置。
在消化过程中,如果有机物烧焦时,砷、硒、锑等可形成挥发性氢化物而损失。
如果试样中含有有机氯化物时,Ge、As等可形成挥发性氯化物而损失,钌、锇等可形成挥发性氧化物而损失。
当含有HCl、HClO4、H2SO4的消化液超过其沸点时,As、Sb、B、Cr、Ge、Sn等元素会因生成低沸点化合物而不同程度的损失。
另外,湿法消化法加入试剂量大,会引入杂质元素,空白值高,也是其主要缺点。
湿法消化法是有机试样zui常用消化方法,对不同试样、不同待测组分,一般采用不同的混合酸,zui常用的有以下几种:
(1) 硝酸+硫酸分解法。
适用于鱼、奶、面粉、饮料等食品消化。
取适量样品于125ml三角瓶中,加5ml硫酸和10~20ml 硝酸,在电热板上低温加热。
待剧烈反应结束后徐徐升温,分解有机物。
当分解液开始变黑时,加3~5ml硝酸,继续加热分解,必要时反复操作,直至分解液成无色透明或淡黄色后,蒸干到硫酸冒烟至尽,冷却后加1~5mlHCl(1:1)或HNO3(1:1)溶液,水浴上或电炉上加热彻底溶解,以纯水洗至25~50ml 容量瓶中,定容后即成测试溶液。
(2)硝酸+硫酸+高氯酸分解法。
适用于鱼、鸡蛋、奶制品、牛肝、面粉、小米、胡萝卜、南瓜、白菜、苹果、苹果汁、薯干等样品消化。
取适量样品于125ml三角瓶中,加10~20ml硝酸,在电热板上低温加热。
待剧烈反应结束后取下烧杯,稍冷后,各加2~5ml硫酸、高氯酸,缓慢加热分解。
当溶液开始变黑时,加3~5ml硝酸继续加热分解,必要时反复添加硝酸,然后继续到产生高氯酸白烟,直至分解液变为透明或淡黄色再加热也不变黑为止。
此时有机物完全分解,然后进行硫酸冒烟处理。
冷却后加1~5mlHCl(1:1)或HNO3(1:1)溶液,水浴上或电炉上加热彻底溶解,以纯水洗至25~50ml容量瓶中,定容后即成测试溶液。
(3)硝酸+高氯酸分解法。
适用于乳制品、食油、鱼和各种谷物食品等含钙量大的样品分解。
取适量样品于三角瓶中,加10ml或20ml硝酸,在电热板上缓慢加热。
待剧烈反应结束后,再加5ml高氯酸,继续加热分解。
如果分解液没有变为透明或淡黄色,可再加入5ml硝酸分解,如此反复操作,直到有机物完全分解。
样品分解后,再加热到高氯酸白烟消失。
当有机物未完全分解,在浓缩蒸干时,高氯酸极易引起爆炸。
冷却后加1~5mlHCl(1:1)或HNO3(1:1)溶液,水浴上或电炉上加热彻底溶解,以纯水洗至25~50ml容量瓶中,定容后即成测试溶液。
(4)硝酸+硫酸+过氧化氢分解法。
适宜于大米、土豆、牛奶、蔬菜的分解。
取适量样品于125ml三角瓶中,各加5ml硝酸和硫酸,在电热板上低温加热分解,直至硫酸冒烟,取下,冷却后加5ml过氧化氢,再缓慢加热分解,直至溶液呈透明或淡黄色。
如呈黑色或黑褐色,可反复加硝酸和过氧化氢再次分解。
分解完全后加热至硫酸冒烟消失。
冷却后加1~5mlHCl(1:1)或HNO3(1:1)溶液,水浴上或电炉上加热彻底溶解,以纯水洗至25~50ml容量瓶中,定容后即成测试溶液。
在湿消化法中,通常采用的电炉或沙浴电炉进行加热,温度不易准确控制,劳动强度大,效率低。
自控电热消化器,温度可自行设定,自动控制恒温,保温性好,一批可同时消化40~60个样品,对消化有机试样效果较理想。
高氯酸的使用及注意事项:
应用浓HClO4消化试样时,只有在浓酸和加热条件下,HClO4才具有强氧化作用,可以破坏大多数有机物。
冷却的浓HClO4则无氧化作用。
(1)使用HClO4消化时,应在开启的通风柜中进行。
(2)不能直接将未消化的有机物加入到已加热的浓HClO4中,以免发生着火和爆炸。
(3)为防止剧烈反应,可先用浓HNO3对有机试样预消化,使有机物变成易于消化的化合物后再用浓HClO4消化。
(4)不能将浓HClO4蒸干,如果消化过程中不易观察,可先加入少量H2SO4,这样当浓HClO4蒸干时,还剩有H2SO4于烧杯内,可防止爆炸。
(5)当见到有碳化现象时,应立即冷却。
(6)如果加热的浓HClO4溢出,应立即用大量水以稀释和冷却,从而达到降低酸度,停止氧化的作用。
样品前处理分为有机处理和无机处理。
本文的两种方法可以说是有机试样zui常用的前处理方法了。
你是否想过,有机分析室和无机分析室为同一个前处理室,究竟好不好?是否有必要把有机项目和无机项目前处理分开?
无机前处理设备:烘箱、酸缸、(干样和湿样)研磨机、控温摇床、超声清洗器、台式离心机、电加热板、微波消解仪等等;
有机前处理的设备:超声器、摇床、(快速溶剂、快速索氏、微波)萃取仪、固相萃取仪、(全自动或半自动,带浓缩定容或不带)凝胶渗透色谱GPC、旋转蒸发仪、氮吹浓缩仪等等。
我们都知道,无机前处理中会使用很多酸液,产生大量酸雾,对有机前处理的设备造成严重腐蚀,特别是对萃取仪、GPC等设备的危害严重。
而有机前处理中会产生有机蒸气,如果有机蒸气跟无机分析设备长期接触,则有可能损害塑料气管或蠕动泵管。
另外,有机蒸气会提高AFS的背景,而且还可能导致荧光猝灭;增感的有机溶剂蒸气可能导致AAS的测定值偏高;有机蒸气的污染还会引起ICPMS过多的积炭问题。
说到这里,至于是否分开有机和无机,你心里应该也有答案了。