(完整版)苏教版化学选修3物质结构与性质专题3知识点
- 格式:doc
- 大小:1.79 MB
- 文档页数:29
温馨提示:此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。
考点23 物质结构与性质(选修3)非选择题1.(2014·新课标全国卷Ⅰ·37)[化学——选修3:物质结构与性质]早期发现的一种天然二十面体准晶颗粒由Al、Cu、Fe三种金属元素组成。
回答下列问题: (1)准晶是一种无平移周期序,但有严格准周期位置序的独特晶体,可通过方法区分晶体、准晶体和非晶体。
(2)基态铁原子有个未成对电子,Fe3+的电子排布式为,可用硫氰化钾检验Fe3+,形成配合物的颜色为。
(3)新制备的Cu(OH)2可将乙醛(CH3CHO)氧化成乙酸,而自身还原成Cu2O,乙醛中碳原子的杂化轨道类型为;1 mol乙醛分子中含有的σ键的数目为。
乙酸的沸点明显高于乙醛,其主要原因是。
Cu2O为半导体材料,在其立方晶胞内部有4个氧原子,其余氧原子位于面心和顶点,则该晶胞中有个铜原子。
(4)铝单质为面心立方晶体,其晶胞参数a=0.405 nm,晶胞中铝原子的配位数为。
列式表示铝单质的密度 g·cm-3(不必计算出结果)。
【解题指南】解答本题要注意以下3点:(1)核外电子在排布时应遵循洪特规则特例;(2)分子间氢键能够使物质的沸点升高;(3)取1 mol晶体计算出该晶体一个晶胞的质量,再计算出一个晶胞的体积,然后根据公式计算晶体的密度。
【解析】(1)区别晶体、准晶体与非晶体最可靠的方法是X-射线衍射。
(2)26号元素铁的核外电子排布式为1s22s22p63s23p63d64s2,由此可知基态铁原子的3d轨道上有4个未成对电子,当铁原子失去4s轨道上的两个电子和3d轨道上的一个电子时形成三价铁离子,因此三价铁离子的核外电子排布式为1s22s22p63s23p63d5,三价铁离子遇硫氰酸根离子变成红色。
(3)乙醛中甲基上的碳为sp3杂化,醛基上的碳原子为sp2杂化;乙醛分子中有5个单键、一个双键,其中五个单键全是σ键,双键中一个是σ键,一个是π键;乙酸分子间存在分子间氢键,因此沸点较高;氧化亚铜晶胞中含有氧原子个数为4+8×1/8+6×1/2=8,根据氧化亚铜的化学式可知,晶胞中铜原子和氧原子的个数之比为2∶1,所以晶胞中铜原子个数为16个。
高中化学选修3第三章晶体结构与性质知识汇总高中化学选修三的第三章知识汇总,晶体结构这部分知识经常出现在推断题中【课标要求】1.了解化学键和分子间作用力的区别。
2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。
3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。
5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。
【要点精讲】一.晶体常识1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3.晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
常见的晶胞为立方晶胞。
立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。
如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
高中化学选修3物质结构与性质全册知识点总结一、物态变化1.固体、液体和气体的特点和微观结构。
2.相变的概念及其条件。
3.气体的压力、体积和温度的关系(气体状态方程)。
4.确定气体的压强、体积和温度的实验方法。
二、物质的分子结构1.分子的结构和性质的关系。
2.分子的极性与非极性。
3.分子的键型及其特点。
4.共价键的键能和键长的关系。
三、化学键的性质1.同种键和异种键的定义和举例。
2.键能的概念及其在化学反应中的表现。
3.键长的测定方法及其在化学反应中的影响。
4.共价键的极性和电性的概念及其与键型的关系。
四、物质的热稳定性1.温度和物质的热稳定性的关系。
2.物质的热分解与热合成的条件和特点。
3.确定物质的热分解和热合成的方法。
五、物质的电解性1.电解质和非电解质的区别和举例。
2.电解质的导电性及其与离子的浓度和动力学的关系。
3.强电解质和弱电解质的区别和举例。
六、分子与离子的形成1.分子化合物和离子化合物的区别和举例。
2.确定分子和离子的产生与存在的条件。
七、氢键和离子键1.氢键的特点和举例。
2.氢键的性质和应用。
3.离子键的特点和举例。
4.离子键的性质和应用。
八、离子晶体和共价晶体1.离子晶体的特点和举例。
2.确定离子晶体的特性和存在的条件。
3.共价晶体的特点和举例。
4.确定共价晶体的特性和存在的条件。
九、化学键的杂化1.杂化的概念和种类。
2.方向性杂化的概念和应用。
3.确定方向性杂化的条件和特点。
十、分子结构的测定1.确定分子结构的方法。
2.确定分子结构的仪器。
3.确定分子结构的实验步骤和原理。
综上所述,以上是高中化学选修3《物质结构与性质》全册的知识点总结。
通过对这些知识点的学习,我们可以了解物质的分子结构和性质的关系,从而深入理解化学反应的本质和原理。
希望对你的学习有所帮助!。
高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
物质结构与性质知识点大全原子核外电子排布原理1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。
这种电子云轮廓图称为原子轨道。
【特别提示】(1)任一能层的能级总是从s能级开始,而且能级数等于该能层序数。
(2)以s、p、d、f……排序的各能级可容纳的最多电子数依次为1、3、5、7……的二倍。
(3)构造原理中存在着能级交错现象。
由于能级交错,3d轨道的能量比4s轨道的能量高,排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。
(4)前四周期的能级排布(1s、2s、2p、3s、3p、4s、3d、4p)。
第一能层(K),只有s能级;第二能层(L),有s、p两种能级,p能级上有三个原子轨道p x、p y、p z,它们具有相同的能量;第三能层(M),有s、p、d三种能级。
(5)当出现d轨道时,虽然电子按ns,(n-1)d,np顺序填充,但在书写电子排布式时,仍把(n-1)d放在ns前。
(6)在书写简化的电子排布式时,并不是所有的都是[X]+价电子排布式(注:X 代表上一周期稀有气体元素符号)。
2.基态原子的核外电子排布(1)能量最低原理电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。
如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图。
注意:所有电子排布规则都需要满足能量最低原理。
(2)泡利原理每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
(3)洪特规则。
高中化学选修三知识点总结:原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。
能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。
说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。
也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。
(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则。
洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中,全空状态的有4Be2s22p0、12Mg3s23p0、20Ca4s23d0;半充满状态的有:7N2s22p3、15P3s23p3、24Cr3d54s1、25Mn3d54s2、33As4s24p3;全充满状态的有10Ne2s22p6、18Ar3s23p6、29Cu3d104s1、30Zn3d104s2、36Kr4s24p6。
4.基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。
高中化学选修3物质结构与性质重点知识归纳及易错点归纳第一章重点知识归纳一、原子结构1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域,这种电子云轮廓图称为原子轨道。
同一能层内形状相同而伸展方向不同的原子轨道的能量相等,如n p x、n p y、n p z轨道的能量相等。
2.原子核外电子的排布规律(1)能量最低原理:即电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态,所有电子排布规则都需要满足能量最低原理。
下图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图,由构造原理可知,从第三能层开始各能级不完全遵循能层顺序,产生了能级交错排列,即产生“能级交错”现象,能级交错指电子层数较大的某些能级的能量反而低于电子层数较小的某些能级的能量的现象,如:4s<3d、6s<4f <5d,一般规律为n s<(n-2)f<(n-1)d<n p。
注意排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。
(2)泡利原理:每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
如2s轨道上的电子排布为,不能表示为。
因为每个原子轨道最多只能容纳2个电子且自旋方向相反,所以从能层、能级、原子轨道、自旋方向四个方面来说明电子的运动状态是不可能有两个完全相同的电子的。
如氟原子的电子排布可表示为1s22s22p2x2p2y2p1z,由于各原子轨道中的电子自旋方向相反,所以9个电子的运动状态互不相同。
(3)洪特规则:当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据一个轨道,且自旋状态相同。
[温故知新必修2 专题1] 微观结构与物质的多样性部分内容元素周期表(the periodic table of elements)中,将原子核外电子层数相同的元素列为同一周期(period),将原子最外层电子数相同的元素列为同一族(group)。
元素周期表中共有7个周期,1~3周期为短周期,4~7周期为长周期,第7周期又称为不完全周期;元素周期表中共有18个族,ⅠA~ⅦA族为主族,主族与0族由短周期、长周期共同构成,ⅠB~ⅦB 族为副族,副族与Ⅷ族完全由长周期构成。
元素周期律(the periodic law of elements)的主得的加权平均数。
通常地,主族元素的最高正化合价在数值上等于其最外层电子数,最低负化合价与其最高正化合价绝对值之和等于8,金属元素没有负化合价。
以下是短周期元素的最高正化合价及最低负化合价:同种元素的原子或离子,随核外电子数的递增半径递增;同周期的主族元素的原子,随核电荷数的递增半径递减;同主族的元素原子或带相同电荷的离子,随核电荷数的递增半径递增;核外电子排布相同的离子,随核电荷数的递增半径递减。
以下是短周期元素的原子半径(单位:pm):元素周期表中,位置相近的元素性质相似,且在金属和非金属分界线附近的元素既表现出一定的金属性,又表现出一定的非金属性。
*一些元素的性质呈现出“对角线”相似性,如元素周期表中的Li与Mg、Be与Al及B与Si。
同种元素形成不同单质的现象称为同素异形现象(allotropism),这些单质互称为该元素的同素异形体(allotrope)。
相同分子式的化合物结构不同的现象称为同分异构现象(isomerism),这些化合物互称为同分异构体(isomer)。
[新知] 选修3 物质结构与性质1913年,丹麦物理学家N. Bohr在Rutherford行星式原子模型的基础上,提出了新的原子结构理论:(1)原子核外电子在有确定半径和能量的特定的原子轨道上运动,电子在运动时并不辐射能量;(2)不同的原子轨道能量不同,原子轨道的能量变化不连续;(3)电子可在能量不同的轨道上发生跃迁。
(完整版)苏教版化学选修3物质结构与性质专题3知识点第⼀单元⾦属键⾦属晶体⾦属键与⾦属特性[基础·初探]1.⾦属键(1)概念:⾦属离⼦与⾃由电⼦之间强烈的相互作⽤称为⾦属键。
(2)特征:⽆饱和性也⽆⽅向性。
(3)⾦属键的强弱①主要影响因素:⾦属元素的原⼦半径、单位体积内⾃由电⼦的数⽬等。
②与⾦属键强弱有关的性质:⾦属的硬度、熔点、沸点等(⾄少列举三种物理性质)。
2.⾦属特性特性解释导电性在外电场作⽤下,⾃由电⼦在⾦属内部发⽣定向移动,形成电流导热性通过⾃由电⼦的运动把能量从温度⾼的区域传到温度低的区域,从⽽使整块⾦属达到同样的温度延展性由于⾦属键⽆⽅向性,在外⼒作⽤下,⾦属原⼦之间发⽣相对滑动时,各层⾦属原⼦之间仍保持⾦属键的作⽤[核⼼·突破]1.⾦属键成键粒⼦:⾦属离⼦和⾃由电⼦成键本质:⾦属离⼦和⾃由电⼦间的静电作⽤成键特征:没有饱和性和⽅向性存在于:⾦属和合⾦中2.⾦属晶体的性质3.⾦属键的强弱对⾦属物理性质的影响(1)⾦属键的强弱⽐较:⾦属键的强度主要取决于⾦属元素的原⼦半径和外围电⼦数,原⼦半径越⼤,外围电⼦数越少,⾦属键越弱。
(2)⾦属键对⾦属性质的影响①⾦属键越强,⾦属熔、沸点越⾼。
②⾦属键越强,⾦属硬度越⼤。
③⾦属键越强,⾦属越难失电⼦。
如Na的⾦属键强于K,则Na⽐K难失电⼦,⾦属性Na⽐K弱。
【温馨提醒】1.并⾮所有⾦属的熔点都较⾼,如汞在常温下为液体,熔点很低,为-38.9 ℃;碱⾦属元素的熔点都较低,K-Na合⾦在常温下为液态。
2.合⾦的熔点低于其成分⾦属。
3.⾦属晶体中有阳离⼦,⽆阴离⼦。
4.主族⾦属元素原⼦单位体积内⾃由电⼦数多少,可通过价电⼦数的多少进⾏⽐较。
⾦属晶体[基础·初探]1.晶胞:反映晶体结构特征的基本重复单位。
2.⾦属晶体(1)概念:⾦属阳离⼦和⾃由电⼦之间通过⾦属键结合⽽形成的晶体叫⾦属晶体。
(2)构成微粒:⾦属阳离⼦和⾃由电⼦。
第一单元 金属键 金属晶体金 属 键 与 金 属 特 性[基础·初探]1.金属键(1)概念:金属离子与自由电子之间强烈的相互作用称为金属键。
(2)特征:无饱和性也无方向性。
(3)金属键的强弱①主要影响因素:金属元素的原子半径、单位体积内自由电子的数目等。
②与金属键强弱有关的性质:金属的硬度、熔点、沸点等(至少列举三种物理性质)。
2.金属特性[核心·突破]1.金属键⎩⎪⎨⎪⎧成键粒子:金属离子和自由电子成键本质:金属离子和自由电子间的静电作用成键特征:没有饱和性和方向性存在于:金属和合金中2.金属晶体的性质3.金属键的强弱对金属物理性质的影响(1)金属键的强弱比较:金属键的强度主要取决于金属元素的原子半径和外围电子数,原子半径越大,外围电子数越少,金属键越弱。
(2)金属键对金属性质的影响①金属键越强,金属熔、沸点越高。
②金属键越强,金属硬度越大。
③金属键越强,金属越难失电子。
如Na的金属键强于K,则Na比K难失电子,金属性Na比K弱。
【温馨提醒】1.并非所有金属的熔点都较高,如汞在常温下为液体,熔点很低,为-38.9 ℃;碱金属元素的熔点都较低,K-Na合金在常温下为液态。
2.合金的熔点低于其成分金属。
3.金属晶体中有阳离子,无阴离子。
4.主族金属元素原子单位体积内自由电子数多少,可通过价电子数的多少进行比较。
金属晶体[基础·初探]1.晶胞:反映晶体结构特征的基本重复单位。
2.金属晶体(1)概念:金属阳离子和自由电子之间通过金属键结合而形成的晶体叫金属晶体。
(2)构成微粒:金属阳离子和自由电子。
(3)微粒间的作用:金属键。
(4)常见堆积方式①平面内金属原子在平面上(二维空间)紧密放置,可有两种排列方式。
其中方式a称为非密置层,方式b称为密置层。
②三维空间内金属原子在三维空间按一定的规律堆积,有4种基本堆积方式。
(1)定义一种金属与另一种或几种金属(或非金属)的融合体。
高中化学选修3知识点全部归纳(物质的结构与性质)第一章原子结构与性质.一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
高中化学选修3知识点图示大全第一章原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律(1)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(2)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。
(3)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则。
比如,p3的轨道式为或,而不是。
洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。
4.基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。
②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:[Ar]4s1。
(2)电子排布图(轨道表示式)每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。
如基态硫原子的轨道表示式为二.原子结构与元素周期表1.原子的电子构型与周期的关系(1)每周期第一种元素的最外层电子的排布式为ns1。
第一单元 金属键 金属晶体金 属 键 与 金 属 特 性[基础·初探]1.金属键(1)概念:金属离子与自由电子之间强烈的相互作用称为金属键。
(2)特征:无饱和性也无方向性。
(3)金属键的强弱①主要影响因素:金属元素的原子半径、单位体积内自由电子的数目等。
②与金属键强弱有关的性质:金属的硬度、熔点、沸点等(至少列举三种物理性质)。
2.金属特性特性 解释导电性在外电场作用下,自由电子在金属内部发生定向移动,形成电流导热性 通过自由电子的运动把能量从温度高的区域传到温度低的区域,从而使整块金属达到同样的温度延展性 由于金属键无方向性,在外力作用下,金属原子之间发生相对滑动时,各层金属原子之间仍保持金属键的作用[核心·突破]1.金属键⎩⎪⎨⎪⎧成键粒子:金属离子和自由电子成键本质:金属离子和自由电子间的静电作用成键特征:没有饱和性和方向性存在于:金属和合金中2.金属晶体的性质3.金属键的强弱对金属物理性质的影响(1)金属键的强弱比较:金属键的强度主要取决于金属元素的原子半径和外围电子数,原子半径越大,外围电子数越少,金属键越弱。
(2)金属键对金属性质的影响①金属键越强,金属熔、沸点越高。
②金属键越强,金属硬度越大。
③金属键越强,金属越难失电子。
如Na的金属键强于K,则Na比K难失电子,金属性Na比K弱。
【温馨提醒】1.并非所有金属的熔点都较高,如汞在常温下为液体,熔点很低,为-38.9 ℃;碱金属元素的熔点都较低,K-Na合金在常温下为液态。
2.合金的熔点低于其成分金属。
3.金属晶体中有阳离子,无阴离子。
4.主族金属元素原子单位体积内自由电子数多少,可通过价电子数的多少进行比较。
金属晶体[基础·初探]1.晶胞:反映晶体结构特征的基本重复单位。
2.金属晶体(1)概念:金属阳离子和自由电子之间通过金属键结合而形成的晶体叫金属晶体。
(2)构成微粒:金属阳离子和自由电子。
(3)微粒间的作用:金属键。
(4)常见堆积方式①平面内金属原子在平面上(二维空间)紧密放置,可有两种排列方式。
其中方式a称为非密置层,方式b称为密置层。
②三维空间内金属原子在三维空间按一定的规律堆积,有4种基本堆积方式。
堆积方式图式实例简单立方堆积钋体心立方堆积钠、钾、铬、钼、钨等面心立方堆积金、银、铜、铅等六方堆积镁、锌、钛等(1)定义一种金属与另一种或几种金属(或非金属)的融合体。
(2)性能①合金的熔点比各成分金属都要低;②合金比各成分金属具有更好的硬度、强度和机械加工性能。
晶胞中粒子数目的计算方法探究——均摊法1.长方体(正方体)晶胞中不同位置的粒子数的计算[核心·突破]1.晶胞的特点(1)习惯采用的晶胞是平行六面体,其三条边的长度不一定相等,也不一定互相垂直。
晶胞的形状和大小由具体晶体的结构所决定。
(2)整个晶体就是晶胞按其周期性在三维空间重复排列而成。
每个晶胞上下左右前后无隙并置地排列着与其一样的无数晶胞,决定了晶胞的8个顶角、平行的面以及平行的棱完全相同。
2.晶胞粒子数计算的原则(1)对于平行六面体晶胞;每个晶胞的上、下、左、右、前、后共有六个与之共面的晶胞。
如某个粒子为n个晶胞所共有,则该粒子有1n属于这个晶胞。
(2)非长方体(正方体)晶胞中粒子视具体情况而定,如石墨晶胞每一层内碳原子排成六边形,其顶点(1个碳原子)被三个六边形共有,则每个六边形占1 3。
【规律方法】晶胞的一般计算公式已知:晶体密度(ρ)、晶胞体积(V)、晶胞含有的组成个数(n)和N A的有关计算公式:ρ·Vn N A=M如NaCl晶体:ρ·V4N A=58.5。
第二单元离子键离子晶体离子键的形成[基础·初探]1.形成过程离子化合物中,阴、阳离子之间的静电引力使阴、阳离子相互吸引,而阴、阳离子的核外电子之间,阴、阳离子的原子核之间的静电斥力使阴、阳离子相互排斥。
当阴、阳离子之间的静电引力和静电斥力达到平衡时,阴、阳离子保持一定的平衡核间距,形成稳定的离子键,整个体系达到能量最低状态。
2.定义阴、阳离子之间通过静电作用形成的化学键。
3.特征[核心·突破]1.离子键(1)成键微粒:带正电荷的阳离子和带负电荷的阴离子。
(2)离子键的存在:离子晶体中。
(3)成键的本质:阴、阳离子之间的静电作用。
2.离子化合物的形成条件(1)活泼金属(指第ⅠA和ⅡA族的金属元素)与活泼的非金属元素(指第ⅥA和ⅦA族的元素)之间形成的化合物。
(2)金属元素与酸根离子之间形成的化合物(酸根离子如硫酸根离子、硝酸根离子、碳酸根离子等)。
(3)铵根离子(NH+4)和酸根离子之间,或铵根离子与非金属元素之间形成的盐。
【温馨提醒】1.离子晶体不一定都含有金属元素,如NH4Cl。
2.离子晶体中除含离子键外,还可能含有其他化学键,如NaOH、Na2O2中均含有共价键。
3.金属元素与非金属元素构成的键不一定是离子键,如AlCl3含有共价键。
4.熔化后能导电的化合物不一定是离子化合物,如金属等。
离子晶体[基础·初探]1.概念:由阴、阳离子通过离子键结合成的晶体。
2.物理性质(1)离子晶体具有较高的熔、沸点,难挥发。
(2)离子晶体硬而脆,离子晶体中,阴、阳离子间有较强的离子键,离子晶体表现了较强的硬度。
(3)离子晶体在固态时不导电,熔融状态或溶于水后能导电。
(4)大多数离子晶体易溶于极性溶剂(如水)中,难溶于非极性溶剂(如汽油、煤油)中。
3.晶格能(1)定义:拆开1_mol离子晶体使之形成气态阴离子和气态阳离子时所吸收的能量。
用符号U表示,单位为kJ·mol-1。
4.常见的两种结构类型氯化钠型氯化铯型晶体结构模型配位数 6 8 每个晶胞的组成4个Na+和4个Cl-1个Cs+和1个Cl-相应离子化合物KCl、NaBr、LiF、CaO、MgO、NiO等CsBr、CsI、NH4Cl等5.影响离子晶体配位数的因素离子晶体中离子配位数的多少与阴、阳离子的半径比r+r-有关。
[合作·探究]两种常见离子晶体的阴、阳离子的空间排列探究1.NaCl型(如图)(1)Na+和Cl-的配位数(一种离子周围紧邻的带相反电荷的离子数目)分别为多少?【提示】6,6。
(2)NaCl晶胞包含的Na+和Cl-分别为多少?【提示】4,4。
(3)NaCl晶体中每个Na+周围等距离最近的Na+有几个?【提示】12。
(4)Na+周围的6个Cl-围成的几何构型是什么?【提示】正八面体。
2.CsCl型(如图)(1)Cs+和Cl-的配位数分别为多少?为什么与NaCl的离子配位数不同。
【提示】8,8;Cs+的半径比Na+的半径大,可吸引较多的Cl-。
(2)CsCl晶胞含有的Cs+和Cl-分别有几个?【提示】1,1。
(3)Cs+周围的8个Cl-构成的几何构型是什么?【提示】立方体。
(4)CsCl晶体中每个Cs+周围最近等距离的Cs+有几个?【提示】6。
[核心·突破]1.离子晶体的性质(1)熔、沸点①离子晶体中,阴、阳离子间有强烈的相互作用(离子键),要克服离子间的相互作用使物质熔化和沸腾,就需要较多的能量。
因此,离子晶体具有较高的熔、沸点和难挥发的性质。
②一般来说,阴、阳离子的电荷数越多,离子半径越小,离子键越强,晶格能越大,离子晶体的熔、沸点越高,如Al2O3>MgO,NaCl>CsCl等。
(2)硬度离子晶体中,阴、阳离子间有较强的离子键,离子晶体表现出较高的硬度。
当晶体受到冲击力作用时,部分离子键发生断裂,导致晶体破碎。
(3)导电性离子晶体中,离子键较强,离子不能自由移动,即晶体中无自由移动离子,因此,离子晶体不导电。
当升高温度时,阴、阳离子获得足够能量克服离子间的相互作用,成为自由移动的离子,在外界电场作用下,离子定向移动而导电。
离子化合物溶于水时,阴、阳离子受到水分子作用变成了自由移动的离子(或水合离子),在外界电场作用下,阴、阳离子定向移动而导电。
难溶于水的强电解质如BaSO4、CaCO3等溶于水,由于浓度极小,故导电性极差,通常情况下,我们说它们的水溶液不导电。
(4)溶解性大多数离子晶体易溶于极性溶剂(如水)中,难溶于非极性溶剂(如苯、CCl4)中。
当把离子晶体放在水中时,极性水分子对离子晶体中的离子产生吸引,使晶体中的离子克服离子间的相互作用而离开晶体,变成在水中自由移动的离子。
【注意】具有导电性的晶体不一定是离子晶体,如石墨为混合晶体;溶于水能导电的晶体也不一定是离子晶体,如HCl、CO2。
2.离子晶体的判断方法(1)依据晶体微粒判断:由阴、阳离子构成的晶体,一定是离子晶体。
(2)依据物质类别判断:金属氧化物、强碱和大部分盐类,是离子晶体。
(3)依据导电性判断:离子晶体在固体状态下不导电,而熔融状态下可以导电。
(4)依据熔点判断:离子晶体熔点较高,常在数百至一千摄氏度。
(5)依据硬度和机械性能判断:离子晶体硬度较大,但较脆。
第三单元共价键原子晶体第1课时共价键[基础·初探]教材整理共价键的形成与特征1.共价键的定义原子之间通过共用电子对形成的强烈的相互作用,叫做共价键。
共价键的成键微粒是原子。
2.共价键的形成过程(1)形成共价键的条件同种(电负性相同)或不同种非金属元素(电负性相差较小),且原子的最外层电子未达饱和状态,当它们的距离适当,引力和斥力达到平衡时,则原子间通过共用电子对形成共价键。
(2)用电子式表示共价键的形成过程(以HCl为例)3.共价键的本质当成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间的电子密度增加,体系的能量降低。
4.共价键的特征(1)饱和性成键过程中,每种元素的原子有几个未成对电子,通常就只能和几个自旋方向相反的电子形成共价键。
故在共价分子中,每个原子形成共价键的数目是一定的。
(2)方向性成键时,两个参与成键的原子轨道总是尽可能沿着电子出现机会最大的方向重叠成键,且原子轨道重叠越多,电子在两核间出现的机会越多,体系的能量就下降越多,形成的共价键越牢固。
[核心·突破]1.共价键的饱和性因为每个原子所能提供的未成对电子的数目是一定的,因此在共价键的形成过程中,一个原子中的一个未成对电子与另一个原子中的一个未成对电子配对成键后,一般来说就不能再与其他原子的未成对电子配对成键了,即每个原子所能形成共价键的总数或以单键连接的原子数目是一定的,所以共价键具有饱和性。
2.共价键的方向性除s轨道是球形对称的外,其他的原子轨道在空间上都具有一定的分布特点。
在形成共价键时,原子轨道重叠的愈多,电子在核间出现的概率越大,所形成的共价键就越牢固,因此共价键将尽可能沿着电子出现概率最大的方向形成,所以共价键具有方向性。