线性代数的MATLAB求解
- 格式:ppt
- 大小:732.00 KB
- 文档页数:30
MATLAB中的线性代数运算方法详述导言:线性代数是数学中的一个重要分支,它研究向量空间及其线性变换、线性方程组和矩阵等概念。
在科学计算与工程实践中,线性代数的应用十分广泛。
MATLAB作为一种强大的数值计算软件,提供了丰富的线性代数运算方法,能够帮助用户高效地解决各种与矩阵、向量相关的问题。
本文将详细介绍MATLAB中常用的线性代数运算方法,并且从算法原理到具体函数的使用进行详细说明。
一、矩阵运算在MATLAB中,矩阵是一种重要的数据类型,它可以表示线性系统、图像等多种实际问题。
矩阵的加法和乘法是线性代数运算中最基本的运算,MATLAB提供了相应的函数来进行矩阵的加法和乘法运算。
1.1 矩阵加法MATLAB中的矩阵加法使用“+”操作符进行操作,可以直接对两个矩阵进行加法运算。
例如,给定两个矩阵A和B,可以使用"A + B"来进行矩阵加法运算。
1.2 矩阵乘法MATLAB中的矩阵乘法使用"*"操作符进行操作,可以直接对两个矩阵进行乘法运算。
需要注意的是,矩阵相乘的维度要满足匹配规则,即乘法前一个矩阵的列数要等于后一个矩阵的行数。
例如,给定两个矩阵A和B,可以使用"A * B"来进行矩阵乘法运算。
二、向量运算向量是线性代数中常用的数据结构,它可以表示方向和大小。
在MATLAB中,向量是一种特殊的矩阵,可以使用矩阵运算中的方法进行计算。
2.1 向量点乘向量的点乘是指两个向量对应位置上元素的乘积之和。
MATLAB中可以使用“.*”操作符进行向量的点乘运算。
例如,给定两个向量A和B,可以使用"A .* B"来进行向量点乘运算。
2.2 向量叉乘向量的叉乘是指两个三维向量的运算结果,它得到一个新的向量,该向量与两个原始向量都垂直。
MATLAB中可以使用叉乘函数cross()进行向量的叉乘运算。
例如,给定两个向量A和B,可以使用"cross(A, B)"来进行向量叉乘运算。
关于MATLAB软件在线性代数教学中的应用探讨一、引言线性代数作为数学的一个重要分支,在各个领域都有广泛的应用。
线性代数的教学过程中,理论与实践相结合,能够更好地培育同砚的分析和解决问题的能力。
而MATLAB软件作为数学建模、仿真和计算的工具,能够为线性代数的教学提供有力的支持。
本文将探讨MATLAB软件在线性代数教学中的应用。
二、MATLAB软件的介绍MATLAB是一种强大的高级计算机语言和交互式环境,该软件提供了丰富的数学、图形和数据分析工具,适用于各种科学与工程计算。
MATLAB在科研领域有广泛的应用,尤其在线性代数、信号处理和图像处理方面具有突出的优势。
三、MATLAB在线性代数教学中的应用1. 线性方程组的求解线性方程组是线性代数的基本内容之一,而MATLAB提供了直接求解线性方程组的工具。
同砚可以通过编程的方式输入线性方程组,使用MATLAB求解方程组,并将结果可视化展示。
这样不仅可以加深同砚对线性方程组求解方法的理解,还能提高他们的编程能力。
2. 矩阵运算与特征值分解矩阵运算是线性代数的重要内容,而MATLAB提供了丰富的矩阵运算函数。
同砚可以通过编写MATLAB程序,实现矩阵的加减乘除、转置和求逆等操作,并进行相应的结果验证。
此外,MATLAB还能够进行特征值分解,对于矩阵的特征向量和特征值进行计算。
通过这些实践操作,同砚可以更好地理解矩阵运算的观点和原理,提高解决实际问题的能力。
3. 图形绘制与可视化MATLAB具备强大的图形功能,能够进行二维和三维图形的绘制。
在线性代数教学中,同砚可以通过编写MATLAB程序,将矩阵、向量或线性方程组的解表示为图形,从而更直观地展示线性代数的观点和应用。
这种图形化的可视化方式有助于同砚理解和记忆线性代数的重要观点,提高他们的进修爱好和乐观性。
四、MATLAB在线性代数教学中的优势1. 提高同砚的编程能力MATLAB作为一种编程语言,可以提高同砚的编程能力。
如何使用Matlab解决数学问题使用Matlab解决数学问题引言:数学作为一门基础学科,广泛应用于各个学科领域。
而Matlab作为一款数学软件,拥有强大的计算能力和丰富的函数库,成为了数学问题解决的得力工具。
本文将介绍如何使用Matlab解决数学问题,并通过实例来展示其强大的功能和灵活性。
一、Matlab的基本使用方法1. 安装和启动Matlab首先,我们需要从官方网站下载并安装Matlab软件。
安装完成后,打开软件即可启动Matlab的工作环境。
2. 变量和运算符在Matlab中,变量可以用来存储数据。
我们可以通过赋值运算符“=”将数值赋给一个变量。
例如,可以使用“a=5”将数值5赋给变量a。
Matlab支持常见的运算符,如加、减、乘、除等,可以通过在命令行输入相应的表达式进行计算。
3. Matirx和向量的操作Matlab中,Matrix和向量(Vector)是常用的数据结构。
我们可以使用方括号将数值组成的矩阵或向量输入Matlab,比如“A=[1 2; 3 4]”可以创建一个2x2的矩阵。
4. 函数和脚本Matlab提供了丰富的内置函数和函数库,可以通过函数来解决各种数学问题。
同时,我们还可以自己编写函数和脚本。
函数用于封装一段可复用的代码,而脚本则是按照特定的顺序执行一系列的命令。
二、解决线性代数问题1. 线性方程组求解Matlab提供了“solve”函数用于求解线性方程组。
例如,我们可以使用“solve([2*x + y = 1, x + 3*y = 1], [x, y])”来求解方程组2x + y = 1和x + 3y = 1的解。
2. 矩阵运算Matlab提供了丰富的矩阵运算函数,如矩阵的加法、乘法、转置等。
通过这些函数,我们可以快速进行矩阵运算,解决线性代数问题。
三、解决数值计算问题1. 数值积分对于某些无法解析求解的积分问题,Matlab可以通过数值积分方法求得近似解。
Matlab提供了“integral”函数用于数值积分,我们只需要给出被积函数和积分区间即可。
利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。
本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。
一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。
Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。
下面通过一个实例来说明Matlab的线性方程组求解功能。
案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。
这表明在满足以上方程组的条件下,x=1,y=-2,z=3。
可以看出,Matlab在求解线性方程组时,使用简单且高效。
二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。
利用特征值和特征向量可以得到矩阵的许多性质和信息。
在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。
案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。
在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。
具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。
MATLAB软件在线性代数教学中的应用
MATLAB是一个具有强大计算和图形处理功能的数学软件,它广泛应用于各个领域,包括线性代数教学。
在线性代数教学中,MATLAB可以帮助学生更好地理解和应用矩阵和线性方程组等基础概念。
首先,在矩阵的操作方面,MATLAB可以用来进行矩阵的创建、转置、逆矩阵计算、乘法运算、矩阵方程求解等操作。
例如,通过输入命令行“A=[1 2;3 4]”创建一个
$2\times 2$矩阵,通过输入命令行“B=A'”可以得到A的转置矩阵,通过输入命令行
“inv(A)”可以得到A的逆矩阵,通过输入命令行“C=A*B”可以得到A和B的乘积矩阵,在输入命令行“x=A\b”可以求解矩阵方程$Ax=b$。
其次,在解决线性方程组的问题上,MATLAB可以用来求解线性方程组、得到线性方程组解的唯一性和存在性,并且可以比较不同求解方法的效率。
例如,通过输入命令行
“x=A\b”就可以得到线性方程组$Ax=b$的解,通过输入命令行“rank(A)”可以得到矩阵
A的秩,通过输入命令行“cond(A)”可以得到矩阵A的条件数。
此外,在线性代数的复杂问题求解上,MATLAB可以用来进行特征值和特征向量的计算、矩阵的奇异值分解等问题的求解。
例如,通过输入命令行“[V,D]=eig(A)”可以得到矩阵
A的特征值和特征向量,通过输入命令行“[U,S,V]=svd(A)”可以得到矩阵A的奇异值分解。
总之,MATLAB的强大计算和图形处理功能,可以为线性代数教学的理解和应用提供很好的帮助。
通过学生编写MATLAB程序,实现矩阵和线性方程组的数值求解,可以加深对
线性代数基础概念的理解,提高线性代数教学的效果。
《MATLAB语言》课成论文利用MATLAB求线性方程组姓名:郭亚兰学号:12010245331专业:通信工程班级:2010级通信工程一班指导老师:汤全武学院:物电学院完成日期:2011年12月17日利用MATLAB求解线性方程组(郭亚兰 12010245331 2010 级通信一班)【摘要】在高等数学及线性代数中涉及许多的数值问题,未知数的求解,微积分,不定积分,线性方程组的求解等对其手工求解都是比较复杂,而MATLAB语言正是处理线性方程组的求解的很好工具。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
【关键字】线性代数MATLAB语言秩矩阵解一、基本概念1、N级行列式A:A等于所有取自不同性不同列的n个元素的积的代数和。
2、矩阵B:矩阵的概念是很直观的,可以说是一张表。
3、线性无关:一向量组(a1,a2,…,an)不线性相关,既没有不全为零的数k1,k2,………kn使得:k1*a1+k2*a2+………+kn*an=04、秩:向量组的极在线性无关组所含向量的个数成为这个向量组的秩。
5、矩阵B的秩:行秩,指矩阵的行向量组的秩;列秩类似。
记:R(B)6、一般线性方程组是指形式:⎪⎪⎩⎪⎪⎨⎧=+++=+++=*+++ssn s s n n n n b a x a x a b x a x a x a b x a x a x n 22112222212111212111x ********a 二、基本理论三种基本变换:1,用一非零的数乘某一方程;2,把一个方程的倍数加到另一方程;3,互换两个方程的位置。
线性代数的MATLAB 软件实验一、实验目的1.熟悉矩阵代数主要MATLAB 指令。
2.掌握矩阵的转置、加、减、乘、除、乘方、除法等MATLAB 运算。
3.掌握特殊矩阵的MATLAB 生成。
4.掌握MATLAB 的矩阵处理方法。
5.掌握MATLAB 的矩阵分析方法。
6.掌握矩阵的特征值与标准形的MATLAB 验算。
7.掌握线性方程组的MATLAB 求解算法。
二、实验原理1.线性方程组 【基本观点】自然科学和工程实践很多问题的解决都涉及线性代数方程组的求解和矩阵运算.一方面,许多问题的数学模型本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题和投入产出分析问题;另一方面,有些数值计算方法导致线性方程组求解,如数据拟合,非线性方程组求解和偏微分方程组数值解等.n 个未知量m 个方程的线性方程组一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (3.1) 令,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x x a a a a a aa a a A则得矩阵形式Ax=b. (3.2)若右端b=0,即Ax=0, (3.3)则称方程组为齐次的.方程组(3.1)可能有唯一解,可能有无穷多解,也可能无解,主要取决于系数矩阵A 及增广矩阵(A,b )的秩.若秩(A )=秩(A,b )=n,存在唯一解,其解理论上用Cramer 法则求出,但由于这种方法要计算n+1个n 阶行列式,计算量太大通常并不采用;若秩(A )=秩(A,b )<n,存在无穷多解,其通解可表示为对应齐次方程组(3.3)的一个基础解系与(3.2)的一个特解的叠加;若秩(A )≠秩(A,b ),则无解,这时一般寻求最小二乘近似解,即求x 使向量Ax-b 模最小.P50矩阵左除的数学思维:恒等变形Ax=b 方程两边的左边同时除以A ,得:b AAx A11=,即:b A b Ax 11-==MATLAB 的实现(左除):x=A\b 2.逆矩阵 【基本观点】方阵A 称为可逆的,如果存在方阵B ,使 AB=BA=E,这里E 表示单位阵.并称B 为A 的逆矩阵,记B=1-A .方阵A 可逆的充分必要条件是A 的行列式det A ≠0.求逆矩阵理论上的公式为*1det 1A AA =-, (3.4)这里*A 为A 的伴随矩阵.利用逆矩阵,当A 可逆时,(3.2)的解可表示为b A x 1-=.由于公式(3.4)涉及大量行列式计算,数值计算不采用.求逆矩阵的数值算法一般是基于矩阵分解的方法.3.特征值与特征向量 【基本观点】对于方阵A ,若存在数λ和非零向量x ,使,x Ax λ= (3.5) 则称λ为A 的一个特征值,x 为A 的一个对应于特征值λ的特征向量.特征值计算归结为特征多项式的求根.对于n 阶实数方阵,特征多项式在复数范围内总有n 个根。
Matlab方程组解1. 引言方程组是数学中一个重要的概念,它描述了多个未知数之间的关系。
解方程组的过程在科学、工程和计算机科学等领域中有着广泛的应用。
Matlab作为一种高级数值计算环境,提供了丰富的工具和函数来解决方程组的求解问题。
本文将介绍如何使用Matlab解方程组,包括线性方程组和非线性方程组的求解方法。
2. 线性方程组的求解2.1 利用矩阵求解线性方程组可以表示为矩阵形式,例如:Ax = b,其中A是系数矩阵,x是未知数向量,b是常数向量。
在Matlab中,可以使用线性代数工具箱中的函数来求解线性方程组。
2.1.1 使用inv函数求解如果系数矩阵A是可逆的,可以使用inv函数求解线性方程组。
具体步骤如下: 1. 计算A的逆矩阵:A_inv = inv(A) 2. 计算解向量:x = A_inv * b2.1.2 使用linsolve函数求解linsolve函数可以直接求解线性方程组,无需计算逆矩阵。
具体步骤如下: 1. 调用linsolve函数:x = linsolve(A, b)2.2 利用高斯消元法求解高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵的行变换将方程组转化为上三角矩阵,然后通过回代得到解。
在Matlab中,可以使用lu函数来进行高斯消元法求解。
2.2.1 使用lu函数求解lu函数可以将方程组的系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U,即A = LU。
具体步骤如下: 1. 调用lu函数:[L, U] = lu(A) 2. 解得方程组:x = U \ (L \ b)3. 非线性方程组的求解非线性方程组是指未知数与其函数之间存在非线性关系的方程组。
与线性方程组不同,非线性方程组的求解通常需要借助数值方法。
Matlab提供了多种函数和工具箱来解决非线性方程组的求解问题。
3.1 利用fsolve函数求解fsolve函数是Matlab中用于求解非线性方程组的函数,它通过迭代的方式逼近方程组的解。
Matlab中的矩阵操作与线性代数计算Matlab是一种广泛应用于科学计算和工程领域的编程语言和环境,它提供了丰富的数学函数和工具箱,方便进行矩阵操作和线性代数计算。
在本文中,我们将探讨Matlab中常用的矩阵操作和线性代数计算的一些技巧和应用。
1. 矩阵的创建和初始化在Matlab中,我们可以使用不同的方法来创建和初始化矩阵。
最常见的方法是使用方括号来定义一个矩阵,例如:A = [1 2 3; 4 5 6; 7 8 9];这样就创建了一个3x3的矩阵A,其中每个元素的值依次为1到9。
我们还可以使用特殊的矩阵函数来创建特定类型的矩阵,如单位矩阵(eye)、全零矩阵(zeros)和全一矩阵(ones)等,例如:B = eye(4); % 创建一个4x4的单位矩阵C = zeros(2,3); % 创建一个2x3的全零矩阵D = ones(3,2); % 创建一个3x2的全一矩阵通过这种方式,我们可以方便地创建各种形状和类型的矩阵。
2. 矩阵的基本操作在Matlab中,我们可以对矩阵进行基本的操作,如矩阵的加法、减法、乘法和转置等。
这些操作可以通过运算符来实现,例如:E = A + B; % 矩阵的加法F = A - B; % 矩阵的减法G = A * B; % 矩阵的乘法H = A'; % 矩阵的转置使用这些操作,我们可以方便地进行矩阵的运算和变换。
此外,Matlab还提供了一些特殊的矩阵函数,如矩阵的逆(inv)和矩阵的行列式(det)等,以支持更复杂的线性代数计算。
3. 矩阵的索引和切片在Matlab中,我们可以通过索引和切片来访问矩阵的特定元素或子矩阵。
矩阵的索引从1开始,可以使用括号和下标来指定所需的元素或子矩阵。
例如:a = A(2,3); % 访问矩阵A的第2行第3列的元素b = A(1:2,2:3); % 获取矩阵A的前两行和第2、3列的子矩阵c = A(:,1); % 获取矩阵A的第一列的所有元素通过这种方式,我们可以方便地对矩阵的特定部分进行操作和分析,从而提高计算效率和精度。
matlab求解线性⽅程组之LU分解线性代数中的⼀个核⼼思想就是矩阵分解,既将⼀个复杂的矩阵分解为更简单的矩阵的乘积。
常见的有如下分解:LU分解:A=LU,A是m×n矩阵,L是m×m下三⾓矩阵,U是m×n阶梯形矩阵QR分解:秩分解:A=CD , A是m×n矩阵,C是m×4矩阵,D是4×n矩阵。
奇异值分解:A=UDV T谱分解:在求解线性⽅程组中,⼀个核⼼的问题就是矩阵的LU分解,我们将⼀个矩阵A分解为两个更加简单的矩阵的复合LU,其中L是下三⾓矩阵,U是阶梯形矩阵。
下三⾓矩阵和上三⾓矩阵具有⾮常良好的性质:Lx=y 或者Ux=y 很容易求解。
问题1.对于任意的矩阵A,是否存在LU分解?定理:如果A⾏等价于阶梯形矩阵U,那么(E n E n-1......E1)A=U,其中的E i,i=1,2,.....,n是⾼斯消去矩阵,他们都是下三⾓矩阵,并且都可逆。
这个定理告诉我们三件事:1.并不是所有的矩阵都有LU分解的。
2.A=LU=(E n E n-1......E1)-1U=(E1-1E2-1.....E n-1)U。
3.这个定理还给出了求解矩阵A-1的⼀种⽅法。
数值算法1.Gauss消去⽤Gauss消去法将矩阵A⾏变换为U:⽤Gauss消去矩阵将A⾏变换为U:数值算法2.Gauss-jardon过程和Gauss-jardon基本⼀致,之不多在选择完最⼤元之后,将其化为1,这样就可以通过乘以⼀个倍数来消去其他⾏了。
选择主元当对某⼀列进⾏Gauss消去时,⼀般都是选择这⼀列中绝对值最⼤的⼀个元素作为主元,当然这会进⾏⾏交换。
其好处有⼀下⼏点:1.在Gauss会代的过程中,不会出现除数为0的情况。
2.减少误差传播,这主要是因为乘数⼩于等于1.(为何乘数⼩于等于1,如果选择这⼀列中绝对值最⼤的⼀个元素作为主元,我们假设这个元素是a,那么乘数等于-b/a,此时|b/a|<=1)。
线性代数方程组数值解法及MATLAB 实现综述廖淑芳 20122090 数计学院 12计算机科学与技术1班(职教本科) 一、分析课题随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。
其数值计算中线性代数方程的求解问题就广泛应用于各种工程技术方面。
因此在各种数据处理中,线性代数方程组的求解是最常见的问题之一。
关于线性代数方程组的数值解法一般分为两大类:直接法和迭代法。
直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。
直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。
迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。
迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。
迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。
迭代法包括Jacobi 法SOR 法、SSOR 法等多种方法。
二、研究课题-线性代数方程组数值解法 一、 直接法 1、 Gauss 消元法通过一系列的加减消元运算,也就是代数中的加减消去法,以使A 对角线以下的元素化为零,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。
1.1消元过程1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。
11121121222212n n n n nn n a a a b a a a b a a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M O M M L (1)(1)(1)(1)(1)11121311(2)(2)(2)(2)222322(3)(3)(3)3333()()000000nn n n n nn n a a a a b a a a b a a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭L L L M M M OM M L 步骤如下:第一步:1111,2,,i a i i n a -⨯+=L 第行第行 11121121222212n nn n nn n a a a b a a a b a a a b ⎛⎫⎪ ⎪ ⎪⎪⎝⎭L L M M O M M L111211(2)(2)(2)2222(2)(2)(2)200n nn nn n a a a b a a b a a b ⎛⎫⎪⎪ ⎪ ⎪⎝⎭LL M M O M M L第二步:(2)2(2)222,3,,i a i i n a -⨯+=L 第行第行111211(2)(2)(2)2222(2)(2)(2)200nnn nn n a a a b a a b a a b ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭L L M M O M M L11121311(2)(2)(2)(2)222322(3)(3)(3)3333(3)(3)(3)300000n n nn nn n a a a a b a a a b a a b a a b ⎛⎫⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭LL LM M M O M M L 类似的做下去,我们有:第k 步:()()k ,1,,k ikk kka i i k n a -⨯+=+L 第行第行。