水泥搅拌桩地基处理试验分析
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
一、水泥搅拌桩试验检测方案(1)水泥土试验为确立该工程深层搅拌桩采纳哪一种水泥掺入比适合,要在工程现场钻孔取土样到有相应资质的实验室做搅拌桩掺入比室内强度试验(保养室的温度为20±2℃,湿度大于 90%,试验所用的水泥与试桩所用水泥一致。
所取土样主要为③层的淤泥质土,分别采纳水泥掺入比12%、 15%, 18%,分别查验了龄期为7 天、 14 天、 28 天、 60 天、 90 天的水泥试块抗压强度,每组试验 6 个试块,共 90 个试块。
按×× 70.7 的水泥沙浆试模进行水泥土的强度试验。
水泥土强度试验的试件编号表 1:试件组号土样水灰比水泥掺入量 % 龄期(天)A1-6 ③层的淤泥质土 1 : 1 12 7B1-6 ③层的淤泥质土1:1 12 14C1-6 ③层的淤泥质土1:1 12 28D1-6 ③层的淤泥质土 1 : 1 12 60E1-6 ③层的淤泥质土1:1 12 90F ③层的淤泥质土1:1 15 71-6G1-6 ③层的淤泥质土 1 : 1 15 14H1-6 ③层的淤泥质土1:1 15 28I1-6 ③层的淤泥质土1:1 15 60J1-6 ③层的淤泥质土1:1 15 90K1-6 ③层的淤泥质土1:1 18 7L1-6 ③层的淤泥质土1:1 18 14M 1-6 ③层的淤泥质土 1 : 1 18 28N1-6 ③层的淤泥质土1:1 18 60O1-6 ③层的淤泥质土1:1 18 90日期试块编号试块强度实验数据记录表实验温度仪器水泥龄期单轴极限抗压强均匀值备注掺量度( kpa)A1A2A3A 组试块12% 7天A4A5A6B组试块C组试块O组试块实验员记录员校核员(2)试桩工艺参数确立试验为了确立深层水泥土搅拌桩的施工工艺,特要求做深层水泥土搅拌变径桩试桩,该桩拥有提高地基承载力、控制地基沉降、降低地基办理花费等长处。
试桩按湿法成桩进行试验。
桩排成 10 行,每行 3 根桩,桩与桩成正方形部署,间距分三组×,××,呈每三个一组;1)水泥土搅拌桩的主桩直径Φ 500,扩大的支盘桩径Φ 1000;水泥掺入比为15%,水泥采纳 32.5R 一般硅酸盐水泥。
水泥土搅拌桩检测报告1. 引言水泥土搅拌桩是一种常用的地基处理方法,在建筑工程中具有重要作用。
为确保搅拌桩的质量和稳定性,需要进行全面的检测和评估。
本报告旨在通过对水泥土搅拌桩的检测结果进行分析,评估其质量和稳定性。
2. 数据采集2.1 选择检测点位根据设计要求和实际情况,我们在施工现场选择了若干个典型的检测点位进行测试。
2.2 检测仪器我们使用了XXX型号的检测仪器,该仪器可以对水泥土搅拌桩进行多项参数的测量,包括桩身直径、强度、含水率等。
3. 检测过程3.1 检测前准备工作在进行具体的检测之前,我们首先清理了检测点位周围的杂物,并确定了检测仪器的测量范围和准确度。
3.2 检测参数我们按照设定的要求,对水泥土搅拌桩的直径、强度和含水率等参数进行了测量。
具体测量方法如下:•直径测量:使用测量仪器对搅拌桩的直径进行测量,并记录下来。
•强度测量:采用XXX方法对搅拌桩的强度进行测量,并记录下来。
•含水率测量:通过重量法或电阻法测量水泥土搅拌桩的含水率,并记录下来。
4. 检测结果分析4.1 直径测量结果根据我们的测量数据,我们可以得出水泥土搅拌桩的平均直径为XX cm,最小直径为XX cm,最大直径为XX cm。
这些数据表明搅拌桩的直径符合设计要求,并且变化范围在合理的范围内。
4.2 强度测量结果我们的测量结果显示水泥土搅拌桩的强度符合设计要求,达到了预期的标准。
具体的强度数值为XX MPa,满足了工程的需求。
4.3 含水率测量结果通过测量,我们得知水泥土搅拌桩的含水率为XX%,这个数值与设计要求相符合,并且在合理的范围内。
5. 结论通过对水泥土搅拌桩的全面检测和分析,我们得出以下结论:•水泥土搅拌桩的直径、强度和含水率等参数符合设计要求,并且在合理的范围内。
•水泥土搅拌桩的质量和稳定性良好,能够满足工程的需求。
6. 建议基于我们的检测结果和分析,我们提出以下建议:•继续进行定期的监测和检测,以确保水泥土搅拌桩的长期稳定性。
水泥搅拌桩在处理地基液化土中的应用探究摘要:某工程主泵室建基面在粉质土液化土层上,须用双排水泥搅拌桩套打技术做地基处理,以便水泥桩形成连续壁状墙体,对泵站底板下液化土层进行围封,加固效果较好。
关键词:水泥搅拌桩;地基处理;液化砂土液化是轻亚粘土或饱水粉细砂在地震力作用下在瞬间发生强度失掉,固态变液态的力学过程。
砂土液化危害性极大,喷水冒砂使地下砂层砂颗粒及孔隙水被搬到地表,使地基原有功效消失。
地下土层液态、固态物质缺失,导致沉陷不同程度的出现,使地面建筑物开裂、倾斜、下沉、倾倒等,造成损失严重。
因此必须处理液化土层,而水泥搅拌桩则是一种加固软土地基常用措施之一。
水泥搅拌桩以水泥作固化剂,运用深层搅拌机械,边钻边往软土喷射雾状粉体或浆液,将水泥浆与软土地基深处强制拌和、固化,增强抗压强度,形成水稳性、整体性和一定强度的水泥加固土桩柱体,提高地基稳定性。
某工程地基采用双排水泥搅拌桩套打,水泥桩形成连续壁状墙体,对泵站底板液化土层作围封处理,加固效果较好。
一、工程概述该工程位于京杭运河东侧,与一协同船行站共同运作抽取运河水来灌溉26.63万亩耕地。
工程拆建为提高工程设计标准,增强灌溉能力。
该船行站设计流量20m3/s,总装机2400kW。
主泵室布置8台900ZLB-+2°单机2.86m3/s的立式轴流泵,底板长14.70m×2m,宽(顺水流)9.70m。
泵室布置四机一缝,底板分二块,单块底板长14.70m。
泵室底板底面高程14.30m,厚0.8m。
二、工程地质条件图1 工程地质剖面图根据工程所在地岩土工程勘察设计研究院提供的《岩土工程勘察报告》,勘探孔揭露范围内,据其成因、年代及物理性质,该内岩土层分4层:①素填土(Qml4):黄褐色,松散,粉质黏土为其主要组成成分,含植物根系。
厚度在0.5-4.1m。
②粉质粘土夹粉土(Qal4):灰黄色,粉质土为软塑局部流;粉土稍湿,稍密,可见云母。
水泥土搅拌桩实践报告
一、工程概况
本工程位于市区,为某某小区地下室工程。
工程地处黄土台地,地下水位较高。
根据地质勘察报告,地基土为粉质黏土,不良土层较厚,承载力较差。
为满足工程要求,设计采用φ600水泥土搅拌桩加固地基。
二、施工准备
1. 搅拌桩机选用300型旋挖搅拌机,额定转矩30·,最大振动力30,搅拌深度可达18。
2. 水泥选用普通硅酸盐水泥,强度等级为·32.5,水灰比取0.8。
3. 加固土回填采用河砂,粒径0.5~2,含泥量<3%。
4. 桩体设计强度取=0.8。
三、施工过程
1. 先进行预钻,孔径比设计桩径小100~150。
预钻深度为设计桩长的80%。
2. 搅拌桩施工采用湿法,在预钻孔内先注入少量水,然后投入水泥,回填河砂,同时对混合料进行搅拌。
3. 搅拌时间不少于90,确保水泥、砂充分混合均匀。
搅拌完成后进行
整体养生24。
四、质量检测
采用现场打入静力触探针检测桩身强度。
测试结果表明,所有桩身强度指标均满足设计要求。
五、经验总结
1. 预钻孔径过大会导致桩周土夹卷入,影响桩身强度。
2. 搅拌时间过短、养生不足会造成桩身强度不均匀。
3. 施工中应严格控制各材料的质量和用量。
通过此次施工实践,丰富了水泥土搅拌桩的施工经验,为后续工程的开展奠定了基础。
目录一、工程概况 (2)二、实验目的 (2)三、试验依据 (2)四、试验用料、检测标准及方法 (2)五、施工操作工艺 (3)六、质量保证体系及控制措施 (8)七、安全、文明、环保措施 (9)水泥搅拌桩试桩实验方案一、工程概况水泥搅拌桩地基处理:采用水泥搅拌桩地基处理,按梅花形布置,桩径50cm,桩间距分别为1.5*1.5m,搅拌桩长度根据设计要求并结合现场地质情况实际确定。
水泥搅拌桩所用水泥标号为P.O.425普通硅酸盐水泥,水泥建议含量不小于15%,水灰比取0.5~0.6。
桩体28天无侧限抗压强度≥1.5MPa。
二、实验目的水泥搅拌桩施工前必须进行成桩试验,成桩试验应达到下列要求并取得以下技术参数。
2.1满足设计水泥用量的各种技术参数,如钻进速度、提升速度、搅拌速度、喷浆压力、单位时间喷入量等。
2.2检验桩身的无侧限抗压强度是否满足设计要求,即28d天龄期的强度不低于1.0MPa。
2.3检验单桩允许承载力(28d)能否达到设计要求。
2.5掌握下钻和提升的阻力情况,选择合理的技术措施。
2.6根据地层、地质情况确定水灰比及水泥掺量。
三、试验依据1、《水电水利工程土工试验规程》(DL/T 5355-2006);2、《电力工程地基处理技术规程》(DLT5024-2005)3、《建筑地基处理技术规范》(JGJ79-2002)四、试验用料、检测标准及方法1、机具准备水泥搅拌桩的施工必须配备性能可靠、符合标准、种类齐全的施工机械和设备,在施工前做好机械设备的保养、试机工作,确保在施工期间正常作业。
机械和设备如下:深层搅拌机、灰浆拌制机、集料斗、灰浆泵、控制柜、自动记录喷浆量设备及其他辅助设备等。
2、材料准备2.1水泥: 采用42.5水泥,严禁使用过期、受潮、结块、变质的劣质水泥。
2.2配合比:深层搅拌的浆液以42.5级普通硅酸盐水泥为主配制水泥用量为水泥湿土重的15%、16%、17%,水灰比分别用0.50、0.55、0.60。
水泥搅拌桩试桩总结报告东塘大道(元华路至北江滨路)道路工程水泥搅拌桩试桩总结报告一、前言本次试桩是为了保证东塘大道工程的施工质量,确保道路的安全通行而进行的。
试桩过程中,我们严格按照相关规定进行操作,取得了较好的效果,现将试桩总结报告如下。
二、试桩情况本次试桩共进行了30根,试桩深度为12米。
试桩过程中,我们使用了水泥搅拌桩进行施工,保证了桩身的密实性和强度。
试桩结果显示,所有的试桩均符合设计要求,达到了预期效果。
三、存在的问题及解决方法在试桩过程中,我们发现有部分桩身出现了微小的裂缝,经过专业人员的检查,发现是由于施工过程中水泥搅拌不均匀所致。
为了解决这个问题,我们采取了加强水泥搅拌的措施,确保了后续施工的质量。
四、结论通过本次试桩,我们对东塘大道工程的施工质量有了更加深入的了解,同时也发现了存在的问题并采取了相应的措施进行解决。
我们将继续严格按照相关规定进行施工,确保道路的安全通行。
工程概况本工程为某高层建筑的地基基础工程,包括水泥搅拌桩、钢管混凝土桩等多种桩基础形式。
为保证基础的安全可靠,需要进行试桩工作。
编写依据本试桩方案编制依据相关标准和规范,包括《建筑地基基础试验规程》、《桩基础设计规范》等。
试桩目的本次试桩的目的是为了探明地基的承载力、变形特性和土层情况,为后续的基础设计提供可靠的数据支持。
试桩点和时间试桩点选取在建筑主体结构的四周,共设立12个试桩点。
试桩时间为每天的工作时间内进行,预计需要7天时间完成。
试桩准备试桩前需要做好现场勘察、土样采集和试验等工作,同时准备好试桩的施工设备和工具。
试桩施工组织试桩施工需要按照相关标准和规范进行,同时要做好施工现场的安全管理和环保工作。
施工过程中需要配合试验人员进行数据采集和记录。
试桩施工工艺试桩施工采用水泥搅拌桩工艺,具体包括孔洞开挖、配筋、灌浆、振捣等工序。
每个试桩点需要进行多次灌浆,确保桩身的质量。
试桩检测标准试桩的检测标准包括桩身的直径、长度、强度、变形等指标。
水泥搅拌桩地基处理试验分析
摘要:水泥搅拌桩复合地基是高速公路软基处理中常用的一种地基处理方法,它具有工期短、工后沉降小等优点,本文以阳江到云浮高速公路阳江至阳春段第A2合同段1号试验典型断面为例,对水泥搅拌桩处理桥头路基的效果进行了分析。
关键词:高速公路;水泥搅拌桩;地基处理
随着我国高速公路建设的迅猛发展,水泥搅拌桩处理软基的方法将具有更加广阔的应用前景。
文中通过阳江到云浮高速公路阳江至阳春段第A2合同段1号试验典型断面,对水泥搅拌桩处理桥头路基效果进行分析,以引起设计人员在中薄层桥头路基或箱通涵路基中较多的优先采用水泥搅拌桩。
1号试验典型断面为桥头路基,软土厚度为9.2 m,路基填高为4.92 m, 搅拌桩处理深度为13m。
1 。
试验断面概况
1. 1 土的物理力学性质
1号试验断面是本线路搅拌桩处理的软土厚度最厚的桥头地段。
在2.80m 厚的硬壳层下面,淤泥质粘土的厚度达到了9.2m。
1号试验断面地层按照其物理力学性质从上到下依次分为九层:
①亚粘土,厚度为2.80m;
②淤泥质粘土,厚度为9.20m;
③亚粘土,厚度为2.40m;
④亚粘土,厚度为6.50m;
⑤亚粘土,厚度为6.00m;
⑥亚粘土,厚度为3.70m;
⑦亚粘土,厚度为9.40m;
⑧亚粘土,厚度为1.90m;
⑨亚粘土,厚度为3.10m。
其中第②层的淤泥质粘土是软弱层,其具体的物理力学性质:天然含水量为31.2% ,天然湿密度为1.79g/m3,孔隙比为1.24%,饱和度为99%,土粒比重为2.74,
液限为39.5%,塑限为22.5%,压缩系数为0.83MP-1a,压缩模量为2.53MPa,固结快剪C=19kPa,Φ= 10.f,快剪C= 11.33kPa,Φ=2.23°
1.2 路基横断面设计及观测仪器布置
路堤设计填高4.92 m,路基顶面宽28m,边坡坡度1:1.5。
水泥搅拌桩处理深度13m,采用梅花形布置,间距1.3m,土工格栅宽34m。
本线水泥搅拌桩施工,水泥用量为45kg/m;材料采用425号普通硅酸盐水泥,设计直径为50cm,要求28d 无侧限抗压强度的平均值大于0. 6MPa, 最低值不小于0.2MPa, 90d无侧限抗压强度的平均值大于0.9MPa。
根据室内试验资料,水泥土试块28d无侧向抗压强度的范围为0.31MPa~3.27MPa,平均值为1.2MPa。
1号断面埋设的土工观测仪器,有4块沉降板( B1,B2,B3,B4),4个边桩,5个钢弦式孔隙水压力测试计, 6个深层沉降磁环以及2根测斜管。
深层沉降磁环从原地面算起每隔3m埋设一个。
2.沉降分析
2. 1 最终沉降分析
复合地基的沉降取决于加固区沉降量和下卧层沉降量的和,加固区沉降量(s1)采用复合模量法计算:
其中, oi为第i层平均附加应力;Hi为第i层土层厚度;Eci为第i层复合压缩模量, Eci = mEp+(1-m)Es,其中,Ep为桩体压缩模量;Es为桩间土压缩模量;m为置换率。
下卧层沉降量(s2)采用应力扩散法后利用分层总和法计算如下:
采用上述方法计算的1号断面的路中总沉降量为320mm,根据实测资料的预压阶段资料用双曲线法推算的路中最终沉降量分别为350mm,沉降修正系数Ms=1. 09。
实测值较理论值大,是由于理论值没有考虑地基土的侧向变形。
2. 2 差异沉降分析
如图2所示为1号断面的沉降盆图,可以看出:当填土高度小于1.5 m时,路堤的横向差异沉降很小,填高1.5m时横向差异沉降率ii- 3只有0.14%,说明亚粘土硬壳层及土工格栅的力学作用明显;地基土的塑性变形阶段为横向差异沉降的主要产生阶段,至底基层施工前ii- 3为0. 58%。
总体来说,本断面的差异沉降比较小,至2001年7月13日,差异沉降总量约为15cm,而同样地质条件的塑排板处理断面的差异沉降总量达到了80cm。
可见水泥搅拌桩将上部的荷载向地基深处传递,改变了路基下的应力分布,能有效地减小地基的差异沉降。
2. 3 分层沉降分析
1号断面的分层沉降过程如图3所示。
可以看出:随着深度的增加,沉降出现有规律的递减。
根据地质情况,基本可以分为上下两层,都呈线性变化。
第二个磁环可以作为分层点。
在填土初期,上层斜率比下层的斜率大一些,说明上层沉降比下层更大,此时荷载主要由硬壳层承担,硬壳层也处于弹性状态。
随着荷载的增大,上下层的斜率基本相等,此时硬壳层已经进入塑性变形阶段。
荷载进一步加大,在第二个磁环和第三个磁环之间,线型出现了弯曲,并出现了一个拐点。
此拐点位于地表硬壳层与软土层的分界面上。
出现弯曲,可能是由于软土层上部的侧向变形增大造成的。
截至2002年9月17日,第一个磁环测得的压缩量为380mm,而下卧层的压缩量为180mm,可见加固区桩间土的压缩量为200mm。
此时,断面表面附加应力约为110kN,桩体的压缩量为10 mm,为桩间土变形的1/20。
由沉降板的P+T+S 曲线分析可知,在加固区的上部,搅拌桩与桩间土的变形是协调的,那么搅拌桩的下部变形肯定是不协调的。
可能是桩体发生了相对下卧层的刺入变形,也可能是因为桩体的下部质量较差,变形较大。
3.稳定性分析
加载部分没有呈现出塑排板处理断面加载曲线的阶梯形。
2000年12月15日~2001年1月12日这一个月是最主要的加载阶段,填筑高度增加了2.23 m,荷载由38.18kPa 增加到了82. 09kPa,平均加载速率达到了1.57kPa/d。
在这么高的加载速率下,路基没有出现失稳现象。
由此可见,采用水泥搅拌桩处理软土路基桥头路段可以增强路基的强度,提高稳定性,加快路基填筑速度,缩短工期。
4.孔隙水压力分析
随着荷载的增加、停歇,孔隙水压力很有规律的变化。
深度越浅的地方,孔压随荷载的变化越灵敏,并且随深度的增加,出现滞后效应。
在填土过程中,各测头孔压峰值的到达时间是随深度的增加而延迟的,最大相差一个月,这说明上部荷载对地基土孔压的影响需要一个时间过程。
搅拌桩处理断面孔压的消散比较慢。
根据实测资料,1号断面至2002年10月通车前的固结度为65%,至2005年1月,固结度也只有85%。
主要原因有两个(1)搅拌桩分担了大部分的荷载,是作用在土体上的应力不是很大,因此孔压的增量不如塑排板处理断面的明显;(2)搅拌桩处
理断面没有好的排水管道,使得孔压消散缓慢,土体固结缓慢。
5.结束语
通过试验断面的观测结果,可以得1号断面施工期沉降量为260mm,只占相同地质条件塑排板处理断面的一半不到,说明水泥搅拌桩有效地减小了软土路基桥头路段的总沉降。
水泥搅拌桩有效地减小了差异沉降,如果再配合土工格栅,能起到更好的效果。
搅拌桩处理路段, 抗剪切变形能力强,稳定性好,减少了施工中加载的间歇时间,可以很好地提前工期。
因此在中薄层桥头路基或箱通涵路基中,应较多的优先采用水泥搅拌桩。
参考文献:
[1] 侯常欣, 陈泽楚.水泥搅拌桩加固处理软弱地基[J].建筑技术开发,2001,07
[2]李相龙.中山220kV浪网变电站软土地基处理实例[J].广东土木与建筑,2004,06
注:文章内所有公式及图表请以PDF形式查看。