数据挖掘概述
- 格式:docx
- 大小:139.86 KB
- 文档页数:6
数据挖掘技术在客户关系管理中的应用在当今竞争激烈的商业环境中,企业要想取得成功,与客户建立和保持良好的关系至关重要。
客户关系管理(CRM)已经成为企业战略的重要组成部分,而数据挖掘技术的出现为客户关系管理带来了新的机遇和挑战。
本文将探讨数据挖掘技术在客户关系管理中的应用,帮助企业更好地理解客户需求,提高客户满意度和忠诚度。
一、数据挖掘技术概述数据挖掘是从大量的数据中提取出有价值的信息和知识的过程。
它涉及到统计学、机器学习、数据库技术等多个领域的知识和技术。
数据挖掘的主要任务包括数据预处理、分类、聚类、关联分析、预测等。
通过这些任务,数据挖掘可以帮助企业发现隐藏在数据中的模式、趋势和关系,为企业的决策提供支持。
二、客户关系管理中的数据来源在客户关系管理中,数据的来源非常广泛。
企业内部的数据源包括客户的基本信息、购买记录、投诉记录、服务记录等。
此外,企业还可以从外部获取数据,如市场调研数据、社交媒体数据、竞争对手数据等。
这些数据通常是异构的、分散的,需要进行整合和预处理,以便进行数据挖掘。
三、数据挖掘技术在客户细分中的应用客户细分是客户关系管理的重要环节,它可以帮助企业将客户分为不同的群体,针对不同群体制定个性化的营销策略。
数据挖掘技术中的聚类分析可以用于客户细分。
通过对客户的属性、行为等数据进行聚类分析,企业可以将客户分为不同的细分群体,如高价值客户、潜在客户、流失客户等。
然后,企业可以针对不同细分群体的特点和需求,制定相应的营销和服务策略,提高客户满意度和忠诚度。
例如,一家电商企业通过聚类分析发现,有一部分客户购买频率高、购买金额大,属于高价值客户群体;另一部分客户购买频率低、购买金额小,但对价格比较敏感,属于价格敏感型客户群体。
针对高价值客户群体,企业可以提供专属的客服服务、优先配送等特权,以提高他们的满意度和忠诚度;针对价格敏感型客户群体,企业可以定期推出促销活动、发放优惠券等,以吸引他们购买更多的商品。
计算机科学中的数据挖掘技术应用计算机科学作为现代科技的代表之一,早已成为办公、娱乐、交流等方方面面的支持者。
数据挖掘技术则是计算机科学的一个重要分支,其对于人们实现智能化决策、认知模式的建立等方面都有着不可替代的作用。
下文将就数据挖掘技术在计算机科学中的应用进行深入探讨。
1. 数据挖掘技术概述数据挖掘技术是指从海量、复杂、不规则的数据中,分析出有用信息、发现潜在关联、确定达到预期目标所需的数据模式和规律的技术。
计算机科学中的数据挖掘技术主要包括分类、聚类、关联规则等几种方法。
分类是指根据已知数据属性,将数据分为不同的类别,从而实现对数据的有效分析和处理。
经过分类处理后,用户可以更好地理解数据,同时也可以制定更好的决策方案。
聚类则是以相似性为基础,将同类数据分组,形成“簇”,从而更好地对数据进行处理。
聚类算法主要有K-Means、层次聚类等多种方法。
关联规则则是指根据数据集合中的已知规则,发掘未知的关联规律,从而生成新数据。
关联规则算法主要有Apriori、FP-Growth 等多种方法。
2. 在计算机科学中的应用数据挖掘技术在计算机科学中的应用范围非常广泛,包括财务管理、市场调研、医学、生命科学、环境保护、网站评估等方面。
2.1 财务管理在现代的企业管理中,对数据的分析和处理已经越来越受到重视。
众所周知,财务数据是企业发展中最为重要的数据之一。
计算机科学中的数据挖掘技术能够对企业的财务数据进行深入分析和处理,帮助企业更好地了解自身的经济状况,制定正确的决策方案。
2.2 市场调研市场调研是企业中非常重要的一个环节,它能够让企业更好地了解市场需求、竞争情况等信息。
计算机科学中的数据挖掘技术可以对市场调研数据进行深度挖掘,从中发掘出有用的信息,制定更切实可行的市场营销策略。
2.3 医学在医学领域中,利用计算机科学中的数据挖掘技术来进行疾病分析和治疗方案设计已经成为趋势。
例如,根据病人的医疗记录和检查数据,对病人进行分类,可以更加准确地进行诊断和治疗。
数据挖掘与机器学习算法数据挖掘和机器学习算法是现代科技领域中十分重要且受瞩目的研究方向。
数据挖掘利用统计学、数学和计算机科学等领域的知识和技术,从大量数据中发现隐藏的、有用的信息。
而机器学习算法则是指让计算机自动从数据中学习和改进的一类算法。
本文将介绍数据挖掘和机器学习算法的基本概念、分类和应用。
一、数据挖掘概述数据挖掘是指从大量数据中发现潜在的、有用的模式和知识的过程。
其目标是利用计算机技术自动地从数据中提取出有意义的信息,以便支持决策和预测。
数据挖掘可以理解为一个从数据中挖掘宝藏的过程,通过分析数据中的模式、趋势和规律,帮助人们做出更加合理的决策。
二、机器学习算法概述机器学习算法是让计算机系统从经验中自动学习和改进的一种算法。
这些算法通过分析和解释数据,构建一个模型来理解和预测未知数据。
机器学习包括监督学习、无监督学习和增强学习等不同的学习方式。
监督学习是通过对已知数据进行标记来训练模型,无监督学习则是在没有标记的数据中寻找隐藏的结构和模式,增强学习通过试错过程来优化模型的行为。
三、数据挖掘与机器学习算法分类基于不同的任务和数据类型,数据挖掘和机器学习算法可以分为多种类型。
常见的算法包括决策树算法、贝叶斯算法、支持向量机算法、聚类算法、关联规则挖掘算法等。
决策树算法利用树形结构进行分类和回归分析,贝叶斯算法根据贝叶斯定理进行概率推断,支持向量机算法通过定义线性或非线性边界进行分类,聚类算法通过将相似的数据分组以发现数据内在的结构,关联规则挖掘算法用于发现数据项之间的关联关系。
四、数据挖掘与机器学习算法应用数据挖掘和机器学习算法在各个领域都有广泛的应用。
在金融领域,可以通过数据挖掘算法进行风险管理、信用评估和交易预测等;在医疗领域,可以使用机器学习算法进行疾病诊断、药物研发和基因分析等;在推荐系统中,可以利用协同过滤算法和关联规则挖掘算法为用户提供个性化的推荐服务;在图像处理和语音识别领域,可以应用深度学习算法进行目标检测和语音识别等。
实际应用价值和现实指导意义一、引言在当今信息化时代,数据已成为企业决策中不可或缺的一部分。
而数据挖掘技术则是从大量数据中发现有用信息的一种方法。
本文将介绍数据挖掘技术的实际应用价值和现实指导意义。
二、数据挖掘技术概述1. 数据挖掘技术定义数据挖掘技术是指运用统计学、人工智能和机器学习等方法,从大量的数据中发现规律和模式,并利用这些规律和模式进行预测或分类。
2. 数据挖掘技术流程(1)问题定义:明确需要解决的问题。
(2)数据采集:收集相关的数据。
(3)数据预处理:对采集到的原始数据进行清理、去噪、缺失值填充等操作。
(4)特征选择:选择与问题相关性高的特征。
(5)模型构建:选择合适的算法构建模型。
(6)模型评估:对构建好的模型进行评估。
(7)模型应用:将构建好的模型应用到实际问题中。
三、数据挖掘技术在实际应用中的价值1. 商业领域(1)市场营销:通过对客户消费行为的分析,制定个性化的营销策略,提高客户满意度和忠诚度。
(2)金融风控:通过对客户信用评级、欺诈检测等方面进行数据挖掘,提高金融机构风险控制能力。
(3)供应链管理:通过对供应链中的物流、库存等数据进行分析,优化供应链管理。
2. 医疗领域(1)疾病预测:通过对患者历史病例、生理指标等数据进行分析,预测患者未来可能出现的疾病。
(2)药物研发:通过对药物分子结构、作用机制等数据进行分析,提高新药开发效率和成功率。
(3)医院管理:通过对医院人员、资源等数据进行分析,优化医院管理和资源配置。
四、数据挖掘技术在现实中的指导意义1. 指导企业决策企业可以通过数据挖掘技术获取客户需求、市场趋势等信息,从而制定更加科学合理的决策。
2. 提升工作效率在日常工作中,人们可以利用数据挖掘技术快速地从大量信息中获取有用的信息,提高工作效率。
3. 推动社会进步数据挖掘技术可以帮助医疗机构提高诊疗水平、减少医疗事故,从而推动社会进步。
五、总结数据挖掘技术在商业、医疗等领域的应用已经取得了显著成果。
计算机数据挖掘技术及其在档案信息开发中的运用
一、数据挖掘技术概述数据挖掘是指从大量的数据中发现隐藏在其中的有价值信息和知识的过程。
它涉及到多个学科领域,如统计学、机器学习、人工智能等。
常用的数据挖掘技术包括分类、聚类、关联规则挖掘等。
二、档案信息开发中的应用1. 档案数字化处理:将纸质档案转换为电子格式,并利用文本识别技术提取文字内容,方便后续分析和搜索。
2. 数据清洗与预处理:对采集到的档案信息进行去重、缺失值填充等操作,以保证后续分析结果准确可靠。
3. 文本分类与聚类:对大量文献资料进行自动分类或聚类,以便于管理和检索。
4. 关联规则挖掘:通过分析不同档案之间存在的关系,找出其中蕴含着的有价值信息和知识。
5. 时间序列分析:对历史档案记录进行时间序列分析,了解某一事件或事物在不同时期内变化趋势及其原因。
6. 预测模型建立:根据历史数据建立模型并预测未来可能出现的情况,在制定政策或决策时提供参考意见。
三、运用效果与展望通过运用数据挖掘技术,在档案信息开发中可以更加高效地获取有价值信息和知识,并且可以帮助我们更好地理解历史事件背景及其演变过程。
未来随着人工智能技术不断进步,相信这些应用场景还会得到进一步扩展和深入研究。
大数据挖掘技术与应用随着信息技术的快速发展和数字化时代的到来,大数据挖掘技术逐渐成为了信息处理和决策分析的重要手段。
在各个领域中,大数据挖掘技术的应用已经成为了提高效率、优化业务以及发现隐藏信息的关键方法。
本文将介绍大数据挖掘技术的概念、特点以及在实际应用中的几个案例。
一、大数据挖掘技术概述大数据挖掘技术是指通过运用机器学习、统计学和数据库技术等方法,从庞大的数据集中提取出有价值的信息,为决策提供支持的过程。
它通过发掘数据集中的关联规则、聚类、分类、预测等方法,实现对数据的深入分析和理解。
大数据挖掘技术具有以下几个特点:1. 数据量大:大数据挖掘技术处理的数据规模通常是传统数据挖掘技术无法比拟的。
大数据挖掘技术的出现,为我们提供了处理大数据集的能力。
2. 数据维度高:大数据挖掘技术处理的数据维度通常很高,这意味着数据集中的特征非常复杂。
传统的数据挖掘技术可能无法处理这种多维数据。
3. 数据流动性:大数据挖掘技术可以从多个来源获取数据,并对这些数据进行实时分析。
它可以对数据集进行动态更新和增量分析,提供及时的决策支持。
二、大数据挖掘技术的应用案例1. 电子商务在电子商务行业中,大数据挖掘技术的应用非常广泛。
通过对用户的购买记录、浏览记录、搜索记录等进行分析,可以识别用户的需求、偏好和行为模式。
基于这些分析结果,电子商务企业可以个性化推荐商品、提供优惠券,并优化营销策略。
2. 金融风险管理在金融行业中,大数据挖掘技术可以用于风险管理。
通过对客户的交易记录、信用评级、行为模式等进行分析,可以识别出潜在的风险。
利用这些分析结果,金融机构可以制定相应的风险控制策略,减少不良资产的风险。
3. 医疗保健在医疗保健领域中,大数据挖掘技术可以用于病人的诊断和治疗。
通过对大量患者的病历、医疗报告和基因组数据进行分析,可以挖掘出潜在的疾病模式和基因突变。
这有助于医生进行早期诊断和个性化治疗,提高医疗服务的效果和效率。
数据挖掘是20世纪90年代中期兴起的决策支持新技术,是基于大规模数据库的决策支持系统的核心,它是从数据库中发现知识的核心技术。
数据挖掘能够对数据库中的数据进行分析,以获得对数据更加深入的了解。
数据挖掘技术经历了三个演变时期。
第一时期称为机器学习时期,在这时期人们将已知的并且已经成功解决的事例输入计算机,由计算机对输入的事例进行总结产生相应的规则,在把总结出来的这些规则应用于实践;第二时期称为神经网络技术时期,这一时期人们关注的重点主要是在知识工程领域,向计算机输入代码是知识工程的重要特征,然而,专家们在这方面取得的成果并不理想,因为它投资大、效果差。
第三时期称为KDD时期,即数据挖掘现阶段所处的时期。
它是在20世纪80年代神经网络理论和机器学习理论指导下进一步发展的成果。
当时的KDD全称为数据库知识发现。
它一般是指从样本数据中寻找有用信息或联系的全部方法,如今人们已经接受这个名称,并用KDD这个词来代替数据挖掘的全部过程。
这里我们需要指出的是数据挖掘只是整个KDD过程中的一个重要过程。
数据仓库技术的发展促进了数据挖掘的发展,因为数据仓库技术为数据挖掘提供了原动力。
但是,数据仓库并不是数据挖掘的唯一源泉,数据挖掘不但可以从数据库中提取有用的信息,而且还可以从其它许多源数据中挖掘有价值的信息。
数据挖掘(Data Mining,DM),也称数据库中知识发现(knowlegde discovery in database,KDD),就是从大量的、不完全的、有噪声的、模糊的及随机的实际数据中提取隐含在其中的、未知的、但又是潜在有用的信息和知识的过程。
现在与之相应的有很多术语,如数据分析、模式分析、数据考古等。
我们从数据挖掘的定义中可以看出它包含了有几层意义:所使用的样本数据一般要求是有代表性的、典型的、可靠的;在样本数据中发现的规律是我们需要的;在样本数据中发现的规律能够被我们理解、接受、运用。
数据挖掘过程从数据库中发现知识,简称KDD,是20世纪80年代末开始的,现在人们把KDD 过程可定义为从数据集中识别出有效的、新颖的、潜在有用的,以及最终可以理解的模式的高级处理过程[14]。
数据挖掘与机器学习复习资料数据挖掘和机器学习是当今信息技术领域中极为重要的两个分支,它们在处理和分析大量数据、发现隐藏模式、做出预测和决策等方面发挥着关键作用。
对于学习者来说,掌握这两个领域的知识至关重要。
以下是为大家整理的一份关于数据挖掘与机器学习的复习资料。
一、数据挖掘概述数据挖掘,简单来说,就是从大量的数据中提取出有用的信息和知识的过程。
它不仅仅是数据的收集和存储,更重要的是通过一系列的技术和方法,对数据进行深入分析和挖掘,以发现潜在的规律和趋势。
数据挖掘的主要任务包括数据分类、聚类、关联规则挖掘、异常检测等。
在数据分类中,我们根据已知的类别标签,将新的数据划分到相应的类别中。
聚类则是将数据按照相似性进行分组,而无需事先知道类别信息。
关联规则挖掘用于发现数据中不同属性之间的关联关系,例如购买了商品 A 的顾客往往也会购买商品 B。
异常检测则是识别出与大多数数据不同的异常值。
数据挖掘的过程通常包括数据准备、数据探索、模型建立、模型评估和模型部署等阶段。
在数据准备阶段,需要对原始数据进行清理、转换和集成,以确保数据的质量和一致性。
数据探索阶段则通过可视化和统计分析等方法,对数据的特征和分布有一个初步的了解。
模型建立阶段选择合适的算法和模型,并使用训练数据进行训练。
模型评估通过使用测试数据来评估模型的性能,如准确率、召回率、F1 值等。
最后,将性能良好的模型部署到实际应用中。
二、机器学习基础机器学习是让计算机通过数据自动学习和改进的一种方法。
它可以分为监督学习、无监督学习和强化学习三大类。
监督学习是在有标记的数据集上进行学习,常见的算法包括线性回归、逻辑回归、决策树、支持向量机等。
线性回归用于预测连续值,逻辑回归用于分类问题,决策树可以生成易于理解的规则,支持向量机在处理高维数据和非线性问题上有较好的表现。
无监督学习是在无标记的数据集中寻找模式和结构,例如聚类算法(如 KMeans 聚类、层次聚类)和主成分分析(PCA)等。
数据挖掘教学大纲一、课程简介数据挖掘是指从大量数据中发现潜在的、先前未知的,且实际上有用的信息的过程。
本课程旨在帮助学生掌握数据挖掘的基本概念、技术和工具,培养学生分析和处理大数据的能力,为他们未来的职业发展打下坚实基础。
二、教学目标1. 理解数据挖掘的基本概念和原理;2. 掌握数据挖掘的常用算法和工具;3. 能够运用数据挖掘技术解决实际问题;4. 培养学生的数据分析和挖掘能力,提高其在职场上的竞争力。
三、教学内容1. 数据挖掘概述- 数据挖掘的定义和分类- 数据挖掘的应用领域和重要性2. 数据预处理- 数据清洗- 数据集成- 数据转换- 数据规约3. 数据挖掘算法- 分类算法:决策树、朴素贝叶斯、支持向量机等- 聚类算法:K-means、DBSCAN、层次聚类等- 关联规则挖掘:Apriori算法、FP-Growth算法等4. 模型评估- 准确率、召回率、F1值等评价指标- 交叉验证、ROC曲线等评估方法5. 实战项目- 基于真实数据集进行数据挖掘实践- 学生小组合作完成数据挖掘项目,并撰写报告四、教学方法1. 理论讲解:老师通过课堂讲解和案例分析,介绍数据挖掘的相关知识和算法;2. 实践操作:学生通过实际操作软件工具,进行数据挖掘算法的实现和调试;3. 课外作业:学生需要完成课后作业,巩固所学知识,培养独立分析和解决问题的能力;4. 项目实践:学生以小组形式参与项目实践,锻炼团队协作和沟通能力;5. 期末考核:学生需要进行期末考试或提交项目报告,检验所学知识和技能。
五、教学资源1. 教材:《数据挖掘导论》2. 软件:R、Python、Weka等数据挖掘工具3. 数据集:UCI机器学习数据集、Kaggle等公开数据集资源六、考核要求1. 平时成绩占比:30%2. 期中考试占比:20%3. 期末项目占比:30%4. 课堂表现和作业占比:20%七、教学评价通过学生的理论学习、实际操作、项目实践和考核成绩,全面评估学生对数据挖掘知识和技能的掌握程度,为学生未来的学习和工作提供有力支持。
数据挖掘技术AI如何从海量数据中发现价值随着互联网技术和大数据的快速发展,海量数据已成为了当今社会不可或缺的一部分。
然而,仅仅拥有大量的数据还不足以为企业或个人带来实质性的利益,如何从这些海量数据中发现价值成为了当前亟需解决的问题。
数据挖掘技术AI应运而生,可以帮助我们从海量数据中发掘出隐藏的信息和规律,为决策提供有力支持。
一、数据挖掘概述数据挖掘是从大量的数据中提取出有用信息的过程。
AI技术的应用使得数据挖掘更加高效和准确。
数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测等。
分类是将数据按照某种属性划分为不同类别的过程,通过 AI技术训练模型,将新的数据自动分类到已有类别中,从而对大量的数据进行有效管理。
聚类是将数据按照相似性进行分组,通过AI技术可以自动识别潜在的聚类模式,对数据进行合理的分类,有助于发现数据之间的联系和规律。
关联规则挖掘是发现数据集中的项集之间的关联规则。
通过AI技术,可以自动发现数据之间的共现性和相关性,帮助企业或个人发现市场需求,改进营销策略。
异常检测是找出数据集中与众不同的数据点。
通过AI技术的辅助,可以快速准确地发现数据中的异常点,对风险管控和错误排查具有重要作用。
二、数据挖掘技术AI的优势数据挖掘技术结合AI具有以下优势:1. 自动化处理:AI技术可以自动识别海量数据中的信息和规律,无需人工干预,大大提高了数据处理的效率。
2. 高效准确:AI技术能够处理复杂的计算和分析任务,在短时间内完成对海量数据的挖掘和分析,准确性更高。
3. 发现隐藏规律:AI技术能够识别数据中的潜在规律和趋势,发现数据背后的价值和需求。
4. 实时性:AI技术可以对数据进行实时处理,及时发现数据中的变化和趋势,为决策提供及时准确的信息。
三、数据挖掘技术在实际应用中的价值数据挖掘技术AI在实际应用中有广泛的价值。
1. 商业智能:通过数据挖掘技术AI,企业可以从大量的市场数据中挖掘出消费者的需求、喜好和行为,为企业决策提供科学依据,指导产品研发和市场推广。
1 数据挖掘概述1.1 背景1.2 数据挖掘定义1.3 基本概念1.4 主要功能1.5 数据挖掘模型1.6 实现流程1.7 数据挖掘的应用1.8 未来趋势1.1背景二十世纪末以来,全球信息量以惊人的速度急剧增长——据估计,每二十个月将增加一倍。
许多组织机构的IT系统中都收集了大量的数据(信息)。
目前的数据库系统虽然可以高效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势,从而导致“数据爆炸但知识贫乏”的现象。
为了充分利用现有信息资源,从海量数据中找出隐藏的知识,数据挖掘技术应运而生并显示出强大的生命力。
1989年8月,在美国底特律召开的第11届国际人工智能联合会议(AAAI)的专题讨论会上首次出现数据库中的知识发现(Knowledge Discovery in Database,KDD)这一术语。
随后,在1991年、1993年和1994年都举行KDD专题讨论会,汇集来自各个领域的研究人员和应用开发者,集中讨论数据统计、海量数据分析算法、知识表示、知识运用等问题。
1995年在加拿大蒙特利尔召开了第一届KDD国际学术会议(KDD’95)。
由Kluwer Academic Publisher出版,1997年创刊的《Knowledge Discovery and Data Mining》是该领域中的第一本学术刊物。
最初,数据挖掘是作为KDD中利用算法处理数据的一个步骤,其后逐渐演变成KDD的同义词。
现在,人们往往不加区别地使用两者。
KDD常常被称为数据挖掘(Data Mining),实际两者是有区别的。
一般将KDD中进行知识学习的阶段称为数据挖掘(Data Mining),数据挖掘是KDD中一个非常重要的处理步骤,是KDD的核心过程。
数据挖掘是近年来出现的客户关系管理(Customer Relationship Management,CRM)、商业智能(Business Intelligence,BI)等热点领域的核心技术之一。
数据挖掘介绍范文
一、数据挖掘的定义
数据挖掘,又称数据深度挖掘,是一种基于大数据的分析与挖掘的技术,通过使用复杂的算法从海量数据中挖掘出有价值的信息,并将这些信
息用于决策、建模等多种用途。
数据挖掘可以说是一种从大量数据中发现
隐藏知识、发掘隐藏关联的一种数据分析技术。
可以将数据挖掘看作是从
巨量数据中挖出更好知识的一种工具,它能够帮助挖掘更多有价值的信息,包括数据的潜在规律和趋势等。
二、数据挖掘技术
数据挖掘技术通常可以概括分为四大部分:
1、描述性分析:通过计算不同的指标来对数据做描述性分析,以深
入了解数据的特征、变化、分布、分类等,从而发掘出特定的知识。
2、聚类分析:聚类分析是一种基于聚类技术的数据挖掘方法,它可
以将同一类数据集中聚合,从而挖掘潜在的关系,以提高数据分析的准确性。
3、预测分析:预测分析是一种针对未来趋势预测的数据挖掘方法,
它可以通过分析当前数据和历史资料,预测未来可能发生的现象,从而帮
助管理者做出决策。
4、关联分析:关联分析是利用数据挖掘技术挖掘大数据集中的相关
数据关系,以便找出影响因素。
数据挖掘概述
阅读目录
∙何为数据挖掘?
∙数据挖掘背后的哲学思想
∙数据挖掘的起源
∙数据挖掘的基本任务
∙数据挖掘的基本流程
∙数据挖掘的工程架构
∙小结
回到顶部何为数据挖掘?
数据挖掘就是指从数据中获取知识。
好吧,这样的定义方式比较抽象,但这也是业界认可度最高的一种解释了。
对于如何开发一个大数据环境下完整的数据挖掘项目,业界至今仍没有统一的规范。
说白了,大家都听说过大数据、数据挖掘等概念,然而真正能做而且做好的公司并不是很多。
笔者本人曾任职于A公司云计算事业群的数据引擎团队,有幸参与过几个比较大型的数据挖掘项目,因此对于如何实施大数据场景下的数据挖掘工程有一些小小的心得。
但由于本系列博文主要是结合传统数据挖掘理论和笔者自身在A云的一些实践经历,因此部分观点会有较强主观性,也欢迎大家来跟我探讨。
回到顶部数据挖掘背后的哲学思想
在过去很多年,首要原则模型(first-principle models)是科学工程领域最为经典的模型。
比如你要想知道某辆车从启动到速度稳定行驶的距离,那么你会先统计从启动到稳定耗费的时间、稳定后的速度、加速度等参数;然后运用牛顿第二定律(或者其他物理学公式)建立模型;最后根据该车多次实验的结果列出方程组从而计算出模型的各个参数。
通过该过程,你就相当于学习到了一个知识--- 某辆车从启动到速度稳定行驶的具体模型。
此后往该模型输入车的启动参数便可自动计算出该车达到稳定速度前行驶的距离。
然而,在数据挖掘的思想中,知识的学习是不需要通过具体问题的专业知识建模。
如果之前已经记录下了100辆型号性能相似的车从启动到速度稳定行驶的距离,那么我就能够对这100个数据求均值,从而得到结果。
显然,这一过程是是直接面向数据的,或者说我们是直接从数据开发模型的。
这其实是模拟了人的原始学习过程 --- 比如你要预测一个人跑100米要多久时间,你肯定是根据之前了解的他(研究对象)这样体型的人跑100米用的多少时间做一个估计,而不会使用牛顿定律来算。
回到顶部数据挖掘的起源
由于数据挖掘理论涉及到的面很广,它实际上起源于多个学科。
如建模部分主要起源于统计学和机器学习。
统计学方法以模型为驱动,常常建立一个能够产生数据的模型;而机器学习则以算法为驱动,让计算机通过执行算法来发现知识。
仔细想想,"学习"本身就有算法的意思在里面嘛。
然而数据挖掘除了建模外,还有不少其他要做的工作(本文后面会一一讲到),因此涉及到不少其他知识,如下图所示:
回到顶部数据挖掘的基本任务
数据挖掘的两大基本目标是预测和描述数据。
其中前者的计算机建模及实现过程通常被称为监督学习(supervised learning),后者的则通常被称为无监督学习(supervised learning)。
往更细分,数据挖掘的目标可以划分为以下这些:
预测主要包括分类- 将样本划分到几个预定义类之一,回归- 将样本映射到一个真实值预测变量上;描述主要包括聚类- 将样本划分为不同类(无预定义类),关联规则发现- 发现数据集中不同特征的相关性。
本系列其他文章将会分别对这些工作深入进行讲解,如果读者是第一次接触这些概念请不要纠结。
回到顶部数据挖掘的基本流程
从形式上来说,数据挖掘的开发流程是迭代式的。
开发人员通过如下几个阶段对数据进行迭代式处理:
其中,
1. 解读需求
绝大多数的数据挖掘工程都是针对具体领域的,因此数据挖掘工作人员不应该沉浸在自己的世界里YY算法模型,而应该多和具体领域的专家交流合作以正确的解读出项目需求。
这种合作应当贯穿整个项目生命周期。
2. 搜集数据
在大型公司,数据搜集大都是从其他业务系统数据库提取。
很多时候我们是对数据进行抽样,在这种情况下必须理解数据的抽样过程是如何影响取样分布,以确保评估模型环节中用于训练(train)和检验(test)模型的数据来自同一个分布。
3. 预处理数据
预处理数据可主要分为数据准备和数据归约两部分。
其中前者包含了缺失值处理、异常值处理、归一化、平整化、时间序列加权等;而后者主要包含维度归约、值归约、以及案例归约。
后面两篇博文将分别讲解数据准备和数据归约。
4. 评估模型
确切来说,这一步就是在不同的模型之间做出选择,找到最优模型。
很多人认为这一步是数据挖掘的全部,但显然这是以偏概全的,甚至绝大多数情况下这一步耗费的时间和精力在整个流程里是最少的。
5. 解释模型
数据挖掘模型在大多数情况下是用来辅助决策的,人们显然不会根据"黑箱模型"来制定决策。
如何针对具体环境对模型做出合理解释也是一项非常重要的任务。
回到顶部数据挖掘的工程架构
回到本文开头提到的那个问题,“如何开发一个大数据环境下完整的数据挖掘项目?”。
这个问题每个公司有自己的答案,这里仅以A公司的情况进行介绍。
在A公司的数据引擎团队中,主要人员分成A、B、C、D四个大组。
这四个大组的分工非常明确,如下图所示:
图中的这些个数据引擎架构在一个基于维度建模的云数据仓库之上,并对上层应用提供算法支撑、推荐支撑、可视化支撑等等。
这里也能看出A公司的数据挖掘工程架构主要由三大块组成:底层数据仓库、中间数据引擎、高层可视化/前端输出。
很多小伙伴问我,你是一名数据挖掘工程师呀,可为什么你前面的博文都是数据仓库和数据可视化呢?我想如果他们看到这里想必不会有此疑问了:)。
至于这些引擎的具体作用、开发方法,体系结构等则由于涉及公司秘密不能深入细说,请各位读者见谅。