量子化学课件--第四章算符
- 格式:ppt
- 大小:1.61 MB
- 文档页数:30
第四章 密度矩阵与密度泛函上一章,我们介绍了多电子体系波函数 12(,,,)N x x x ψ⋅⋅⋅,一般说来求力学量的平均值,我们总是将其对应的算符作用在波函数上,再求积分,即A A ψψ∧=,所以利用*ψψ,我们可以定义密度函数和密度矩阵,全对称坐标函数及力学量平均值可以用密度函数或密度矩阵直接写出。
§4.1密度函数和密度矩阵§4.1.1密度函数四维(三维坐标+自旋)中某一电子i ,当不考虑其他所有电子处于任何可能位置时,它出现在x处的小体积元d τ中的机率为:111111111(,,,,,,)(,,,,,,)i i i N i i i N i i Nd x x x x x x x x x x d d d d τψψττττ*-+-+-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎰(4.1)注意到*1Nd ψψτ=⎰看出(4.1)式只不过去掉i τ的积分符号,是i x的函数。
因N 个电子是不可分辨的,所以电子中的任一个出现在x处的d τ中的几率相同,由此定义电子的密度函数:11121223()(,,,)(,,,)N N N x N x x x x x x d d d ρψψτττ*=⋅⋅⋅⋅⋅⋅⋅⋅⋅⎰11()x ρ 表示的是1x处的小体积元中出现任何一个(以前的是电子i ,所以差N )电子而不管其它电子出现在何处时的几率密度。
同样,任何两个给定的电子当不考虑其余电子出现在任何处时,它们在所给定的 1x 和2x处的小体积元1d τ和2d τ中同时出现的几率也是相同的。
(如(1,2),(3,4)但电子不可辨,几率相同)因此也可以定义两个电子的密度函数212121234(,)(,,,)(,,,)2N N NN x x x x x x x x d d dρψψτττ*⎛⎫=⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪⎝⎭⎰推而广之,q 个电子的密度函数为:12121212(,,,)(,,,)(,,,)q q N N q q N N x x x x x x x x x d d dq ρψψτττ*++⎛⎫⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪⎝⎭⎰它表示在四维空间中,任意q 个电子在12,,,q x x x ⋅⋅⋅处的q 个小体积元12,,,qd d d τττ⋅⋅⋅中,各有一个电子同时出现而不管其它N-q 个电子在何处出现时的几率密度。