半导体热敏电阻 的特性研究.ppt
- 格式:ppt
- 大小:742.01 KB
- 文档页数:5
∞ 半导体热敏电阻的电阻—温度特性实验原理1. 半导体热敏电阻的电阻—温度特性某些金属氧化物半导体(如:Fe3O4、MgCr2O 4 等)的电阻与温度的关系满足式(1):B R = R e T (1) T ∞式中 R T 是温度为T 时的热敏电阻阻值,R ∞ 是T 趋于无穷时热敏电阻的阻值阻的材料常数,T 为热力学温度。
①,B 是热敏电热敏电阻对温度变化反应的灵敏度一般由电阻温度系数α来表示。
根据定义,电阻温 度系数可由式(2)来决定:α = 1 R T dR TdT (2)由于这类热敏电阻的α 值为负,因此被称为负温度系数(NTC )热敏电阻,这也是最 常见的一类热敏电阻。
2. 惠斯通电桥的工作原理半导体热敏电阻的工作阻值范围一般在 1~106Ω,需要较精确测量时常用电桥法,惠斯 通电桥是一种应用很广泛的仪器。
惠斯通电桥的原理如图 1 所示。
四个电阻 R 0 、R 1 、R 2 和 R x 组成一个四边形,其中 R x就是待测电阻。
在四边形的一对对角 A 和 C 之间连接电源;而在另一对对角 B 和D 之间接 入检流计 G 。
当 B 和 D 两点电势相等时,G 中无电流通过,电桥便达到了平衡。
平衡时必CR b 图 1 惠斯通电桥原理图 图 2 惠斯通电桥面板图① 由于(1)式只在某一温度范围内才适用,所以更确切的说 R 仅是公式的一个系数,而并非实际 T 趋于无穷时热敏电阻的阻值。
R R 1 有 R x = R 2 R 1 R 0 , 2 和 R 0 都已知, R x 即可求出。
R 0 为标准可变电阻,由有四个旋钮的电R 阻箱组成,最小改变量为 1Ω。
1 R2 称电桥的比率臂,由一个旋钮调节,它采用十进制固定值,共分 0.001,0.01,0.1,1,10,100,1000 七挡。
半导体热敏电阻特性研究【实验简介】热敏电阻是由半导体材料制成的一种电阻对温度变化非常敏感的热敏元件,利用这一特性可以将它作为感温元件制成热敏电阻温度计、温度传感器,实现测温、控温等功能。
热敏电阻作为感温元件具有灵敏度高、体积小、热惯性小等特点,在自动控温、测温等方面应用很广。
热敏电阻的温度特性曲线是热敏电阻的基本特性,本实验主要测量负温度系数、正温度系数热敏电阻的温度特性曲线,了解其测温原理实验原理【实验目的】1. 了解热敏电阻的温度特性及其测温、控温原理。
2. 测量热敏电阻的温度特性曲线。
3. 掌握作图法和最小二乘法(曲线拟合法)处理实验数据。
【预习思考题】1. 负温度系数(NTC)热敏电阻的特性是什么?2. 怎样用电桥测电阻?3.如何用作图法和最小二乘法(曲线拟合法)处理实验数据?【实验仪器】QJ-23型单臂电桥,DHT-2型热学实验仪。
【实验原理】1. 热敏电阻温度特性热敏电阻是其电阻值随温度显著变化的一种热敏元件,按照电阻随温度变化特性可以分为负温度系数热敏电阻(NTC)、正温度系数热敏电阻(PTC)、临界温度系数热敏电阻(CTC)。
负温度系数热敏电阻其电阻随着温度的升高而降低,主要用于测温和控温;正温度系数热敏电阻其电阻在达到某一温度后随着温度的升高而升高,在这一温度之前有一很小的负温度系数,在某一温度范围内,其电阻值会产生急剧变化。
适用于某些狭窄温度范围内的一些特殊应用;临界温度系数热敏电阻其电阻在达到临界温度点时急剧变化,主要用作开关。
热敏电阻的电阻-温度特性曲线如图4.10.1所示。
图4.10.1温度系数是反映热敏电阻对温度的敏感程度,是热敏电阻作为感温元件的一个重要参数,用表示,其定义为温度升高1ºC,热敏电阻的相对变化量,即(4.10.1)2. NTC型热敏电阻温度特性及其温度系数测量NTC半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。
实验半导体热敏电阻特性的研究
半导体热敏电阻是一种用于测量温度变化的电子元件,其电阻值会随着温度的变化而
发生改变。
因此,研究其特性对于热敏测温技术的应用以及半导体材料的研究都具有重要
意义。
本文对半导体热敏电阻特性进行了实验研究。
实验使用了一块样品,通过搭建电路系
统测量了其在不同温度下的电阻变化以及热敏电压的变化。
实验中控制了样品的温度变化,得到了一系列数据,进一步分析和研究了半导体热敏电阻的特性。
实验结果表明,当样品温度升高时,其电阻值呈现出单调递减的趋势。
相应地,热敏
电压也呈现出单调递减的趋势。
同时,研究还发现,样品的电阻值变化与温度之间存在着
一种明显的非线性关系。
当温度较低时,电阻的变化比较缓慢;而随着温度升高,电阻值
的变化速率则逐渐加快,最终呈现出了急剧下降的趋势。
通过对实验结果的进一步分析,我们得出了如下结论:半导体热敏电阻的特性主要受
到两个因素的影响,即样品的温度以及载流子浓度。
当样品温度升高时,载流子的浓度也
会随之上升,这将导致电阻值的降低。
此外,半导体热敏电阻的特性还受到其他因素的影响,例如半导体材料的化学成分、掺杂方式以及结构等因素都可能对其特性产生影响。
综上所述,本文通过实验研究了半导体热敏电阻的特性。
实验结果显示,其电阻值与
温度之间存在着非线性关系。
这项研究对于半导体材料的应用以及热敏测温技术的发展都
具有一定的借鉴意义。
未来,我们可以在此基础上进一步探索该元件的特性,并拓展其在
实际应用中的应用范围。
半导体热敏电阻特性的研究实验目的1.研究热敏电阻的温度特性。
2.进一步掌握惠斯通电桥的原理和应用。
实验仪器箱式惠斯通电桥,控温仪,热敏电阻,直流电稳压电源等。
实验原理半导体材料做成的热敏电阻是对温度变化表现出非常敏感的电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单。
因此,它在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用。
半导体热敏电阻的基本特性是它的温度特性,而这种特性又是与半导体材料的导电机制密切相关的。
由于半导体中的载流子数目随温度升高而按指数规律迅速增加。
温度越高,载流子的数目越多,导电能力越强,电阻率也就越小。
因此热敏电阻随着温度的升高,它的电阻将按指数规律迅速减小。
实验表明,在一定温度范围内,半导体材料的电阻RT和绝对温度T的关系可表示为RT?ae (4-6-1)其中常数a不仅与半导体材料的性质而且与它的尺寸均有关系,而常数b仅与材料的性质有关。
常数a、b可通过实验方法测得。
例如,在温度T1时测得其电阻为RT1 RT1?aeb1(4-6-2)在温度T2时测得其阻值为RT2RT2?aeb2 (4-6-3)b(?)RT1?eT1T2RT211将以上两式相除,消去a得再取对数,有b?lnRT1?lnRT2 (4-6-4)11(?)T1T2把由此得出的b代入(4-6-2)或(4-6-3)式中,又可算出常数a,由这种方法确定的常数a和b误差较大,为减少误差,常利用多个T和RT的组合测量值,通过作图的方法(或用回归法最好)来确定常数a、b,为此取(4-6-1)式两边的对数。
变换成直线方程:lnRT?lna?b(4-6-5)T或写作Y?A?BX (4-6-6)式中Y?lnRT,A?lna,B?b,X?,然后取X、Y分别为横、纵坐标,对不同的温度T测得对应的RT值,经过变换后作X~Y曲线,它应当是一条截距为A、斜率为B的直线。
根据斜率求出b,又由截距可求出a=e。
确定了半导体材料的常数a和b后,便可计算出这种材料的激活能E =bK(K为玻耳兹曼常数,其值见附录)以及它的电阻温度系数??1dRT??b?100% (4-6-7)RTdTT2显然,半导体热敏电阻的温度系数是负的,并与温度有关。
半导体热敏电阻特性的研究
半导体热敏电阻作为一种新型传感器,在微机控制中发挥了重要作用。
它在多个应用
中具有广泛的使用价值。
考虑到该类器件的特殊性,有必要了解其特性,以便更好地掌握
其使用情况。
半导体热敏电阻是基于原理研究的。
它的工作原理是基于电阻的变化,即加热时电阻
的变化。
当半导体热敏电阻的温度升高时,其电阻值也会随之变化。
这是因为半导体材料
本身含有自溶物,这些自溶物会随着外界环境温度的变化而换热,从而造成电子空间精度、晶间距和晶粒尺寸的改变。
经过改变,电子传导性能下降,从而使电阻值增大,相应温度
升高。
半导体热敏电阻可用于温度测量和控制,可以获得精确的测量结果。
此外,半导体热敏电阻具有抗干扰能力和灵敏度较高的优点。
首先,它具有良好的抗
干扰性能,它能有效抑制非温度信号对测量结果的干扰,这对精确测量温度非常重要。
另外,半导体热敏电阻具有较高的灵敏度,它能够检测微小的温度变化,可以检测到温度变
化小于0.01℃的信号。
另外,半导体热敏电阻的使用应注意其耐电压。
耐电压指的是在应用半导体热敏电阻时,介质中被容许的最大电压,如果电压超出设计要求,可能会使半导体热敏电阻的性能指
标下降,从而影响测量精度。
因此,使用半导体热敏电阻时,应注意其耐电压。
总之,半导体热敏电阻是一种重要的传感器,具有抗干扰性能好、灵敏度高及耐电压
高等特点。
它是目前温度测量和控制应用中理想的解决方案,是未来发展的趋势。