《位似图形》练习及答案
- 格式:doc
- 大小:549.50 KB
- 文档页数:25
专题27.3 位似(5个考点)【考点1 位似图形的识别】【考点2 位似图形性质】【考点3 位似图形的点坐标】【考点4 判定位似中心】【考点5 画已知图形放大或缩小n倍后的位似图形】【考点1 位似图形的识别】1.已知:△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′不存在位似关系的是()A.B.C.D.【答案】D【分析】此题主要考查了位似变换,正确把握位似图形的定义是解题关键.根据位似图形的定义,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,进而判断得出答案.【详解】解:A、△ABC与△A′B′C′是位似关系,故此选项不合题意;B、△ABC与△A′B′C′是位似关系,故此选项不合题意;C、△ABC与△A′B′C′是位似关系,故此选项不合题意;D、△ABC与△A′B′C′对应边BC和B′C′不平行,故不存在位似关系,故此选项符合题意;故选:D.2.如图,在正方形网格中,△ABC的位似图形可以是()A.△BDE B.△FDE C.△DGF D.△BGF3.如图,线段AB∥CD∥EF,AD、BC相交于点O,点E、F分别在线段OC、OD上,则图中与△AOB位似的三角形是().A.△AOB B.△COD C.△EOF D.△EOF与△COD【答案】D【分析】本题考查位似图形.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,(对应边互相平行(或共线)),那么这样的两个图形叫做位似图形.根据位似图形的定义,判定即可.【详解】解:∵AB∥CD∴△AOB∽△DOC,∵AB∥EF∴△AOB∽△FOE,∵AD、BC相交于点O,点E、F分别在线段OC、OD上,∴与△AOB位似的三角形有△DOC和△FOE.故选:D.4.如图,在菱形ABCD中,对角线AC,BD相交于点O,M,N分别是边AB,AD的中点,连接OM,ON,MN,则下列叙述不正确的是()A.△AMO与△ABC位似B.△AMN与△BCO位似C.△ABO与△CDO位似D.△AMN与△ABD位似【答案】B【分析】本题主要考查了位似三角形,菱形的性质,三角形中位线定理根据位似三角形的概念:如果两个相似三角形的每组对应点所在的直线相交于一点,那么这两个三角形叫做位似三角形,结合菱形的性质逐项判断即可.【详解】解:∵四边形ABCD是菱形,对角线AC,BD相交于点O,∴点O是线段AC、BD的中点,AB∥CD,∴△AOB∽△COD,∴△ABO与△CDO位似,故C不符合题意;∵M是边AB的中点,∴OM是△ABC的中位线,∴OM∥BC,同理可得MN∥BD,ON∥AB,∴△AMO∽△ABC,△AMN∽△ABD,∴△AMO与△ABC位似,△AMN与△ABD位似,故A、D不符合题意;∵△AMN与△BCO每组对应点所在的直线没有相交于一点,∴△AMN与△BCO不位似,故B符合题意.故选B.5.下列各组图形中的两个三角形均满足△ABC∽△DEF,这两个三角形不是位似图形的是()A.B.C.D.【答案】B【分析】根据位似图形的概念和性质,对应顶点的连线相交于一点的两个相似多边形叫位似图形.性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行,对各选项逐一分析,即可得出答案.【详解】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、C、D三个图形中的两个图形都是位似图形;B中的两个图形不符合位似图形的概念,对应边不平行,故不是位似图形.故选:B.【点睛】本题主要考查了位似变换,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.6.如图是与△ABC位似的三角形的几种画法,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【分析】根据位似图形的性质判断即可.【详解】解:由位似图形的画法可得:4个图形都是△ABC的位似图形.故选:D.【点睛】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.7.下列语句中,不正确的是()A.位似的图形都是相似的图形B.相似的图形都是位似的图形C.位似图形的位似比等于相似比D.位似中心可以在两个图形外部,也可以在两个图形内部【答案】B【分析】利用位似图形的性质分别判断得出即可.【详解】A、位似的图形都是相似的图形,正确,不合题意;B、相似的图形不一定是位似的图形,错误,符合题意;C、位似图形的位似比等于相似比,正确,不合题意;D、位似中心可以在两个图形外部,也可以在两个图形内部,正确,不合题意.故选:B.【点睛】此题主要考查了位似图形的性质,正确掌握位似图形的相关性质是解题关键.8.下列每组的两个图形,是位似图形的是()A.B.C.D.【答案】D【分析】根据位似图形的概念对各选项逐一判断,即可得出答案.【详解】对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A. B.C. 三个图形中的两个图形都不是位似图形;而D.的对应顶点的连线能相交于一点,故是位似图形故选D.【点睛】本题考查了位似变换,熟练掌握位似图形的概念是解题的关键.【考点2 位似图形性质】9.如图,△ABC与△DEF位似,点O为位似中心,若OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:4C.4:1D.2:1【答案】B【分析】根据位似图形的概念求出△ABC 与△DEF 的相似比,根据相似三角形的性质计算即可.本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.【详解】解:∵△ABC 与△DEF 是位似图形,OA:OD =1:2,∴△ABC 与△DEF 的位似比是1:2.∴△ABC 与△DEF 的相似比为1:2,∴△ABC 与△DEF 的面积比为1:4,故选:B .10.如图,四边形ABCD 与四边形EFGH 位似,位似中心点是O ,OE EA =32,则S 四边形EFGH S 四边形ABCD 等于( )A .94B .925C .32D .3511.如图,△ABC与△DEF是以点O为位似中心的位似图形,若△ABC与△DEF的面积比为4:9,则OA:OD 为()A.4:9B.2:3C.2:1D.3:112.如图,已知△ABC与△DEF位似,位似中心为点O,若OD:OA=2:3,则△DEF与△ABC的周长之比为().A.2:3B.4:9C.9:4D.3:2【答案】A【分析】本题考查的是位似图形的概念,掌握位似图形的对应边平行、相似三角形的性质是解题的关13.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若O B′:B′B=3:2,则△A′B′C′的面积与△ABC的面积之比为( )A.3:5B.4:9C.4:25D.9:2514.如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA=AD,则△ABC与△DEF的面积比是A.1:1B.1:2C.1:4D.1:915.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:A A′=1:2,则△ABC与△A′B′C′的面积之比为()A.1:2B.1:4C.1:9D.4:9【答案】C【分析】本题考查了位似的性质和相似三角形的性质,得到△ABC和△A′B′C′的相似比是解题的关键.根据位似的性质得到△ABC∽△A′B′C′,相似比为OA:O A′=1:3,再根据相似三角形的性质得△ABC和△A′B′C′的面积之比即为相似比的平方.【详解】解:∵△ABC和△A′B′C′是以点O为位似中心的位似图形,OA:A A′=1:2,∴OA:O A′=1:3,∴S△ABC :S△A′B′C′=12:32=1:9,故选:C.16.如图,点O为四边形ABCD内的一点,连结OA,OB,OC,OD,若OA′OA =OB′OB=OC′OC=OD′OD=14,则四边形A′B′C′D′的面积与四边形ABCD的面积比为()A.1:2B.1:4C.1:8D.1:1617.如图,△ABC和△DEF是位似图形,位似中心是O,若OA:OD=1:2,S△ABC =3,那么S△DEF=()A.6B.9C.12D.18【答案】C18.如图,△ABC与△DEF是以点O为位似中心的位似图形,AC:DF=2:3,若OC=8,则CF的长为()A.12B.8C.6D.419.如图,点O是两个位似图形的位似中心,若O A′=A′A,则△ABC与△A′B′C′的周长之比等于.20.如图,△ABC与△DEF位似,点O为位似中心,已知OA:AD=3:2,则△ABC与△DEF的面积比为.【答案】9:25【分析】本题考查位似图形的概念,相似三角形的性质,难度较易,掌握相关知识是解题关键.先根据位似图形的概念求出△ABC与△DEF的相似比,再根据相似的性质,面积比等于相似比的平方解题即可.【详解】解:∵OA:AD=3:2,∴OA:OD=3:5,∵△ABC与△DEF位似,∴△ABC与△DEF的位似比为3:5,∴△ABC与△DEF的相似比为3:5,∴△ABC与△DEF的面积比为9:25,故答案为:9:25.【考点3 位似图形的点坐标】21.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,3),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2:1的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4)B.(6,8)C.(4,2)D.(6,6)【答案】D【分析】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.直接根据位似图形的性质即可得.【详解】解:∵△ABC的位似比为2:1的位似图形是△A′B′C′,且C(3,3),∴C′(2×3,2×3),即C′(6,6),故选:D.22.如图,在平面直角坐标系中,△ABC和△A′B′C′是以原点O为位似中心的位似图形,点A在线段O A′上,A A′=2OA.若点B的坐标为(2,1),则点B′的坐标为()A.(4,2)B.(6,3)C.(8,4)D.(1,0.5)【答案】B【分析】本题考查的是位似变换.根据位似图形的概念得到△ABC∽△A′B′C′,且相似比为1:3,再根据位似变换的性质计算即可.【详解】解:∵△ABC和△A′B′C′是以原点为位似中心的位似图形,A A′=2OA,∴△ABC∽△A′B′C′,且相似比为1:3,∵点B的坐标为(2,1),∴点B′的横坐标为2×3=6,点B′的纵坐标为1×3=3,∴点B′的坐标为(6,3),故选:B.23.如图,△AOB与△A1O B1是以点O为位似中心的位似图形,且相似比为12,若点B的坐标为(−1,3),则点B1的坐标为( )A.(2,−6)B.(1,−6)C.(−1,6)D.(−6,2)24.如图,△AOB与△CDB位似,点B为位似中心,△AOB与△CDB的周长之比为1:2,若点B坐标为(1,1),则点D的坐标是()A.(3,3)B.(4,4)C.(5,5)D.(6,6)25.如图,在直角坐标系中,先以原点为位似中心,将△ABC在第一象限内放大2倍得到△AB1C1,再将1△AB1C1绕着原点逆时针旋转90°,得到的△A2B2C2,若点C、C1、C2是对应点,则C2的坐标是()1A .(−5,2)B .(−6,3)C .(6,−4)D .(−6,4)【答案】D 【分析】本题考查位似,旋转变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.根据位似,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 2即为所求.观察图象可知:C 2(−6,4)故选D .26.已知关于原点位似的两个图形中,一组对应点的坐标为(2,4)和(−1,x ),则x 的值为( )A .-2B .2C .12D .−12【答案】A【分析】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .27.如图,在直角坐标系中,△OAB的顶点分别为O(0,0),A(3,0),B(6,2).以点O为位似中心,在第三象限内作位似图形△OCD,与△OAB的位似比为1:3,则点D的坐标为()A.(−1,−2)B.−2,−2C.(−2,−1)D.−2,−328.如图,在平面直角坐标系中,A,B两点的坐标分别为(−3,−1),(−1,−2).以原点O为位似中心,把线段AB放大,得到线段A′B′,点A的对应点A′的坐标是(6,2),则点B′的坐标是.【答案】(2,4)【分析】本题考查了位似图形的性质,由以原点O为位似中心,相似比为−2,根据位似图形的性质即29.如图,在平面直角坐标系内,某图象上的点A、B为整数点,以点O为位似中心将该图像扩大为原的2倍,则点A的坐标为.【答案】(−2,2)或(2,−2)/(2,−2)或(−2,2)【分析】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.根据位似变换的性质计算即可.【详解】解:由题意得:A的坐标为(−1×2,1×2)或(−1×(−2),1×(−2)),∴A的坐标为(−2,2)或(2,−2),故答案为:(−2,2)或(2,−2).30.如图,△ABO与△A′B′O是以原点O为位似中心的位似图形,且相似比为2:1,点A′的坐标为(5,−2),则点A的坐标为.【答案】(−10,4)【分析】本题考查位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可.【详解】解:由题意得:△ABO与△A′B′O是以原点O为位似中心的位似图形,且相似比为2:1,又∵A′(5,−2),且原图形与位似图形是异侧,∴点A的坐标是(5×(−2),−2×(−2)),即点A的坐标是(−10,4).故答案为:(−10,4).31.如图,在平面直角坐标系中,阴影所示的两个正方形是位似图形,若位似中心在两个正方形之间,则位似中心的坐标为.【答案】(2,1)【分析】连接各组对应点,它们在两个正方形之间相交于点P,则P点为位似中心,然后写出P点坐标即可.【详解】解:如图,点P为位似中心,P(2,1).故答案为:(2,1).【点睛】本题考查位似变换:位似的两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行(或共线),掌握位似变换的性质是解题的关键.【考点4 判定位似中心】32.如图,在平面直角坐标系中的两个矩形OEFG和矩形ABCD是位似图形,对应点C和F的坐标分别为(−4,4),(2,1),则位似中心的坐标是()A.(0,2)B.(0,2.5)C.(0,3)D.(0,4)∵∴GF//CD,CD=4,GF=∴∠PCD=∠PFG,∠DPC=∴△PFG∽△PCD,∴CD=PD,33.把△ABC放大为原图形的2倍得到△A′B′C′,则位似中心可以是()A.D点B.E点C.F点D.G点【答案】C【分析】本题考查了位似中心,解决本题的关键是熟练掌握位似中心的定义.如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,这个点叫做位似中心,据此解答即可.【详解】解:如图,连接A A′、BB′、CC′,交于点F,由位似中心的定义可知,此位似中心可以是点F,故选:C34.如图,正方形网格图中的△ABC与△A′B′C′是位似关系图,则位似中心是()A.点O B.点P C.点Q D.点R【答案】A【分析】连接A A′,C C′交于点O,即可.【详解】解:如图,连接A A′,C C′交于点O,∴位似中心是点O.故选:A.【点睛】本题主要考查了位似图形的性质,熟练掌握位似图形的性质是解题的关键.35.已知△ABC与△DEF是一对位似三角形,则位似中心最有可能的是()A.O1B.O2C.O3D.O4【答案】A【分析】根据位似中心的定义判断即可.【详解】∵△ABC与△DEF是一对位似三角形,∴对应顶点的连线相交于一点,如图,位似中心是O1.故选:A.【点睛】本题考查位似图形的概念,掌握位似中心是对应点连线的交点是解题关键.36.下列图形中位似中心在图形上的是( )A.B.C.D.【答案】B【分析】直接利用位似图形的性质分别得出位似中心位置即可.【详解】A、,位似中点在图形内部,不合题意;B、,位似中点在图形上,符合题意;C、,位似中点在图形外部,不合题意;D、,位似中点在图形外部,不合题意;故选:B.【点睛】本题考查了位似变换,正确掌握位似图形的性质是解题关键.37.如图,在方格图中,△ABC的顶点与线段A′C′的端点都在小正方形的顶点上,且△A′B′C′与△ABC是关于点O为位似中心的位似图形,点A,C的对应点分别为点A′,C′.按下列要求完成画图,并保留画图痕迹.(1)请在方格图中画出位似中心O;(2)请在方格图中将△A′B′C′补画完整.【答案】(1)见解析(2)见解析【分析】本题考查了位似图形的性质,找位似中心.(1)连接对应点并延长,交点即为位似中心;(2)由(1)可知,OC:O C′=1:2,则连接OB并延长,使O B′=2OB,再连接A B′、B′C即可.【详解】(1)解:如图所示:点O即为位似中心;(2)解:补全△A′B′C′如图所示:38.如图,△DEF是△ABC经过位似变换得到的(点A、B、C的对应点分别为点D、E、F),位似中心是点O.(1)请在图中画出点O的位置;(2)若AB=2DE=36,BC=20,求EF的长.【答案】(1)作图见解析(2)10【分析】本题主要考查位似变换,熟知位似图形性质是解题的关键.(1)根据位似图形的对应顶点的连线过位似中心,即可确定点O的位置;(2)根据位似性质即可求得答案.【详解】(1)解:根据点O的位置如图所示.经过位似变换得到的,【考点6 画已知图形放大或缩小n 倍后的位似图形】39.如图,△ABC 在平面直角坐标系内,顶点坐标分别为A (−1,2),B (−3,3),C (−3,1).(1)画出△ABC 绕O 点逆时针旋转90°的△A 1B 1C 1;(2)以A 为位似中心,在网格中画出△ADE ,使△ADE 与△ABC 位似且面积比为4:1.【答案】(1)见解析(2)见解析【分析】本题主要考查了中心对称作图和位似作图,解题的关键是作出对应点.(1)根据旋转的性质作出点A 、B 、C 的对称点A 1、B 1、C 1,然后顺次连接即可;(2)以A 为位似中心,作出点A 、B 、C 的位似点,然后顺次连接即可.【详解】(1)解:如图,△A 1B 1C 1即为所求作的三角形.;(2)解:如图,△A DE1与△A D2E2即为所求作的三角形.140.如图,在正方形网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:3.(2)证明△A′B′C′和△ABC相似.【答案】(1)作图见解析(2)证明见解析【分析】本题考查作图−位似变换、相似三角形的判定,勾股定理等知识点,理解题意、灵活运用所学知识是解答本题的关键.(1)根据△A′B′C′和△ABC位似,且位似比为1:3作出图形即可;(2)利用相似三角形的判定定理证明即可.【详解】(1)解:如图所示:△A′B′C′即为所求,;41.如图,△ABC 在平面直角坐标系内三个顶点的坐标分别为A (−1,2),B (−3,3),C (−3,1).(1)以点B 为位似中心,在点B 的下方画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似且相似比为3:1;(2)点A 1的坐标为______,点C 1的坐标为______.【答案】(1)见解析(2)(3,0),(−3,−3)【分析】本题考查了位似作图,图形与坐标,掌握位似的性质是解题的关键.(1)在网格中作出A 1、C 1,连接A 1C 1、BC 1、BA 1即可得到△A 1B 1C 1;(2)根据点的位置写出A 1、A 1、C 1的坐标即可.【详解】(1)△A 1B 1C 1即为所作;(2)点A 1的坐标为(3,0),点C 1的坐标为(−3,−3),故答案为:(3,0),(−3,−3).42.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,−4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请画出△A 2B 2C 2【答案】(1)见解析(2)见解析【分析】(1)根据平移的性质作图即可.(2)根据位似的性质作图即可.【详解】(1)解:如图,△A 1B 1C 1即为所求.B2C2即为所求.2【点睛】本题考查作图−平移变换、位似变换,熟练掌握平移和位似的性质是解答本题的关键.。
《位似图形》配套练习一、选择题: 1.用作位似形的方法,可以将一个图形放大或缩小,位似中心( ) A.只能选在原图形的外部; B.只能选在原图形的内部;C.只能选在原图形的边上;D.可以选择任意位置。
2.已知:E (-4,2),F(-1,-1),以O 为位似中心,按比例尺1∶2,把△EOF 缩小,则点E的对应点E′ 的坐标为( )A .(2,-1)或(-2,1) B.(8,-4)或(-8,4)C .(2,-1) ﻩD .(8,-4)3.如图,△DEF是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E,F 分别是OA ,OB,O C的中点,则△DEF 与△AB C的面积比是( )A.1︰2B.1︰4C.1︰5D.1︰64.如图,五边形ABCDE 与五边形A ′B ′C′D ′E′是位似图形,O 为位似中心,O D=12OD ′,则A ′B ′:AB 为( )A .2:3 B.3:2 C.1:2 D.2:1(第3题图) (第4题图)5.图中的两个三角形是位似图形,它们的位似中心是( )A .P B.O C.M D .N6. 如图,以某点为位似中心,将△AO B进行位似变换得到△CDE,记△AO B与△CDE 对应边的比为k,则位似中心 的坐标和k 的值分别为( )A . (00),,2 B. (22),,12C . (22),,2 D. (22),,37. 如图,△ABC中,A,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0)。
以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B′C 。
设点B 的对应点B ′的横坐标是a,则点B 的横坐标是( ) A.12a -ﻩﻩ B.1(1)2a -+ C .1(1)2a --ﻩ D .1(3)2a -+O P M NA B C E D O B / A /C /D /E /(第5题图) (第6题图) (第7题图)二、填空题:1.关于对位似图形的表述,下列命题正确的是 。
《位似》习题一、选择题(每小题5分,共25分)1.下列每组的两个图形不是位似图形的是()A.B.C.D.2.如图所示的两个三角形是位似图形,它们的位似中心是( )A.点O B.点P C.点M D.点N第2题图第3题图3.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A 的坐标为(1,0),则E点的坐标为( )A.(2,0) B.(0,2) C.(2,2) D.(2,2)4.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.125.关于对位似图形的表述,下列命题正确的是( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.A.①②B.①④C.②③D .③④二、填空题(每小题5分,共25分)6.下列四幅图中的两个图形属于位似图形的是__________.(将序号填入横线上)B DCAEB①②③④7.如图所示,DC∥AB,OA=2OC,则OCD△与OAB△的位似比是__________.8.如图所示,△ABC与△A′B′C′是位似图形,且位似比是1:2,若AB=2cm,则A′B ′=_________cm.第7题图第8题图第10题图9.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是__________.10.如图,将△DE F缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP、FP,取它们的中点B、C,得到△ABC,则下列说法正确的有________ __个.①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1:2;④△ABC与△DEF的面积比是1:2.三、解答题(共50分)11.(10分)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出位似中心.12.(10分)如图,在方格纸上,与是关于点O为位似中心的位似图形,他ABC∆111CBA∆们的顶点都在格点上.(1)画出位似中心O;(2)求出与的位似比;ABC∆111CBA∆CABD E(2)(1)O(4)(5)(3)以O 点为位似中心,再画一个使它与的位似比等于3222C B A∆13.(10分)如图,△ABC 在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的位似图形;A B C '''△(3)计算的面积S .A B C '''△14.(10分)如图,已知矩形ABCD 与矩形AB C D '''是位似图形,A 为位似中心,已知矩形ABCD 的周长为24,4,2BB DD ''==.求AB 与AD 的长.15.(10分)如图,在平面直角坐标系中,△AOB 的顶点坐标分别为A (2,1)、O (0,0)、B (1,-2).(1)P (a ,b )是△AOB 的边AB 上一点,△AOB 经平移后点P 的对应点为P 1(a -3,b +1),请画出上述平移后的△A 1O 1B 1,并写出点A 1的坐标;DB 'C 'D(2)以点O为位似中心,在y轴的右侧画出△AOB的一个位似△A2OB2,使它与△AOB的相似比为2:1,并分别写出点A、P的对应点A2、P2的坐标;(3)判断△A2OB2与△A1O1B1能否是关于某一点Q为位似中心的位似图形,若是,请在图中标出位似中心Q,并写出点Q的坐标.参考答案1.B【解析】根据位似图形的概念对各选项逐一判断,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形;据此可得A、C、D三个图形中的两个图形都是位似图形;而B的对应顶点的连线不能相交于一点,故不是位似图形.故选B.2.B.【解析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.点P在对应点M和点N所在直线上,故选B.3.C【解析】由题意可得OA:OD=1:2,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(1,0),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选C.4.D.【解析】∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.5.C【解析】如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,这个点是位似中心,但不是所有的相似图形都是位似图形,并且位似图形上对应点与位似中心的距离之比等于位似比.解:①相似图形不一定是位似图形,位似图形一定是相似图形,错误;②位似图形一定有位似中心,是对应点连线的交点,正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,正确;④位似图形上对应点与位似中心的距离之比等于位似比,错误.故选C.6.①②③【解析】根据位似图形的定义分析各图,对各选项逐一分析,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,①②③三个图形中的两个图形都是位似图形;④中的两个图形是相似三角形,但不符合概念,故不是位似图形.故填①②③.7.1︰2【解析】先证明△OAB∽△OCD,△OCD与OAB的对应点的连线都过点O,所以可得△OC D与△OAB的位似,即可求得△OCD与△OAB的位似比为OC:OA=1:2.解:∵DC∥AB∴△OAB∽△OCD∵△OCD与OAB的对应点的连线都过点O∴△OCD与△OAB的位似∴△OCD与△OAB的位似比为OC:OA=1:2.8.4.【解析】根据△ABC与△A′B′C′是位似图形,可知△ABC∽△A′B′C′,利用位似比是1:2,即可求得A′B′=4cm.解:∵△ABC与△A′B′C′是位似图形∴△ABC ∽△A ′B ′C ′∵位似比是1:2∴AB :A ′B ′=1:2∵AB =2cm ∴A ′B ′=4cm .9.(﹣2,1)或(2,﹣1)【解析】根据题意得:则点E 的对应点E ′的坐标是(﹣2,1)或(2,﹣1).10.3【解析】位似图形同时也是相似图形,位似比等于其相似比,等于其对应边的比,对应周长的比,面积比等于位似比的平方.解:由于△ABC 是由△DEF 缩小一半得到,所以△ABC 与△DEF 是位似图形,①正确;位似图形也是相似图形,②正确;将△DEF 缩小为原来的一半,得到△ABC ,所以△ABC 与△DEF 的位似比为1:2,所以其周长比也为1:2,③正确;所以其面积比为1:4,④错误.题中共有3个结论正确.11.答案见解析【解析】根据位似图形的定义及位似中心分析各图,即可得出答案.解:图(1)(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点P ,图(2)中的点A ,图(4)中的点O .12. 答案见解析【解析】(1)如下图所示;(2)与的位似比是2;ABC ∆111C B A ∆(3)如下图所示.e 【解析】(1)根据A (2,3),C (6,2),找出原点,求出点B 的坐标即可;(2)根据位似比为2,得出三角形各顶点坐标即可得出答案;(3)利用所画图形得出三角形的底与高求出即可.解:(1)B 点:(2,1)(2)(3)的面积S =16A B C '''△14. 答案见解析【解析】解:∵矩形ABCD 的周长为24∴12AB AD +=设,12AB x AD x==-则 ∴4,14AB AB BB x AD AD DD x ''''=+=+=+=- ∵矩形ABCD 与矩形AB C D '''是位似图形 ∴AB ADAB AD ='' 即12414x x x x-=+- 解得8x =∴8,4AB AD ==15.(1)作图见解析,A 1(﹣1,2);(2)作图见解析,A 2(4,2),P 2 (2a ,2b );(3)是,Q (﹣6,2).【解析】(1)如图所示,画出平移后的△A1O1B1,找出A1的坐标即可;(2)如图所示,画出位似图形△A2OB2,求出A2、P2的坐标即可;(3)根据题意得到△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形,找出Q坐标即可.解:(1)如图所示,A1(﹣1,2);(2)如图所示,A2(4,2),P2 (2a,2b);(3)如图所示,△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形.此时Q(﹣6,2).。
图形的位似--巩固练习【巩固练习】一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有().A.2个 B.3个 C.4个 D.5个2.下列说法错误的是().A.位似图形一定是相似图形.B.相似图形不一定是位似图形.C.位似图形上任意一对对应点到位似中心的距离之比等于相似比.D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是() .A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE是ABC放大后的图形.B.两位似图形的面积之比等于相似比.C.位似多边形中对应对角线之比等于相似比.D.位似图形的周长之比等于相似比的平方.4.(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()A.(4,2)B.(4,1)C.(5,2)D.(5,1)5. 下列命题:①两个正方形是位似图形;②两个等边三角形是位似图形;③两个同心圆是位似图形;④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形.其中正确的有( ).A.1个B.2个C.3个D.4个6.如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是().A. AB:AC=AC:BCB. AC=512AB-C.AB=512AC+D.BC≈0.618AB7.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=().A. 512-B.512+C.3D.2二.填空题8. 如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为__________.9.已知ABC,以点A为位似中心,作出ADE,使ADE是ABC放大2倍的图形,则这样的图形可以作出______个,它们之间的关系是__________.''''',已知OA=10cm,OA′10.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A B C D E'''''的周长的比值是__________.=20cm,则五边形ABCDE的周长与五边形A B C D E11. △ABC中,D、E分别在AB、AC上,DE∥BC,△ADE是△ABC缩小后的图形.若DE把△ABC的面积分成相等的两部分,则AD:AB=________.12. 把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为____________________.13.(2015•钦州)如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第,三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OA n B n C n的边长为正方形OABC边长的倒数,则n=.14. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三.综合题15.如图,D、E分别AB、AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?16.(2014秋•海陵区校级月考)如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB=2,CD=3,求EF的长.17. 如图1,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1:4,矩形ABCO的边AB=4,BC=43.(1)求矩形ODEF的面积;(2)将图1中的矩形ODEF绕点O逆时针旋转一周,连接EC、EA,△ACE的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】B【解析】(1)菱形的角不一定对应相等,故错误;(2)(3)(5)符合相似的定义,故正确;(4)对应边的比不一定相等.故错误.故正确的是:(2)(3)(5).故选B.2.【答案】D.3.【答案】C.4.【答案】C.【解析】设点B的坐标为(x,y),∵△ABE和△CDE是以点E为位似中心的位似图形,∴=,=,解得x=5,y=2,所以,点B的坐标为(5,2).故选C.5.【答案】B【解析】由位似图形的概念可知③和④对,故选B. 6.【答案】D.【解析】∵AC >BC,∴AC是较长的线段,根据黄金分割的定义可知:AB :AC=AC:BC,AC=512AB-, AB=512AC+AC≈0.618AB.故选D.7.【答案】B.【解析】∵AB=1,设AD=x,则FD=x-1,FE=1,∵四边形EFDC与矩形ABCD相似,∴EF AD FD AB=,111xx=-,解得11+5 =2x,21-5 =2x,(负值舍去),经检验11+5 =2x是原方程的解.故选B.二、填空题8.【答案】50cm.9.【答案】2个;全等.10.【答案】1:2.【解析】∵五边形ABCDE与五边形A′B′C′D′E′位似,OA=10cm,OA′=20cm,∴五边形ABCDE∽五边形A′B′C′D′E′,且相似比为:OA:OA′=10:20=1:2,∴五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比为:OA:OA′=1:2.故答案为:1:2.11.【答案】 .【解析】由BC∥DE可得△ADE∽△ABC,所以,故.12.【答案】2:1.【解析】矩形ABCD对折后所得矩形与原矩形相似,则矩形ABCD∽矩形BFEA,设矩形的长为a,宽为b.则AB=CD=b ,AD=BC=a ,BF=AE=2a ,根据矩形相似,对应边的比相等得到:,BF EF AB BC 即:2=ab b a,则b 2=22a ∴22=2,a b∴2=1a b13. 【答案】16.【解析】由图形的变化规律可得 ×256=, 解得n=16.14. 【答案】25-2.【解析】∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°,又BD 平分∠ABC ,∴∠ABD=∠CBD=36°,∴∠BDC=72°,∴BC=BD=AD ,∵D 点是AC 的黄金分割点,∴BC=AD=4×5-12=25-2.三.解答题15.【答案与解析】(1)△ADE 和 △ABC 是位似图形.理由是:DE ∥BC ,所以∠ADE=∠B , ∠AED=∠C.所以△ADE ∽△ABC ,所以. 又因为 点A 是△ADE 和 △ABC 的公共点,点D 和点B 是对应点,点E 和点C是对应点,直线BD 与CE 交于点A ,所以△ADE 和 △ABC 是位似图形.(2)DE ∥BC.理由是:因为△ADE 和△ABC 是位似图形,所以△ADE ∽△ABC所以∠ADE=∠B所以DE ∥BC.16.【答案与解析】解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形, 理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点, ∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB=2,CD=3, ∴==, ∴==,解得:EF=. 17.【答案与解析】(1)∵矩形ODEF ∽矩形ABCO ,其相似比为1:4,∴S 矩形ODEF =116S 矩形ABCO =116×4×43=3; (2)存在. ∵OE=2222312OF OD +=+= 所以点E 的轨迹为以点O 为圆心,以2为半径的圆, 设点O 到AC 的距离为h , AC=()22224438AB BC +=+=∴8h=4×43,解得h=23,∴当点E 到AC 的距离为23+2时,△ACE 的面积有最大值,当点E 到AC 的距离为23-2时,△ACE 的面积有最小值, S 最大=()182328382⨯+=+ S 最小=()182328382⨯-=- ; .。
图形的位似基础训练含答案一.选择题(共19小题)1.下列关于比例线段和相似的叙述,不正确的是()A.若a:b=c:d,则ac=bdB.相似三角形的面积比等于相似比的平方C.点C是线段AB的黄金分割点,且AC>BC,则D.经过位似多边形对应顶点的直线一定交于同一点2.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,把这个三角形放大为原来的2倍,得到△CDO,则点A的对应点C的坐标为()A.(﹣4,8)B.(4,﹣8)C.(﹣4,8)或(4,﹣8)D.(﹣1,2)或(1,﹣2)3.等边三角形OAB在平面直角坐标系中的位置如图所示,已知△OAB边长为6,且△OAB 与△OA′B′关点O成位似图形,且位似比为1:2,则点A′的坐标可能是()A.(﹣6,6)B.(6,6)C.(﹣3,﹣3)D.(6,﹣6)4.如图,△ABC与△DEF位似,其位似中心为点O,且OD=AD,则△ABC与△DEF的位似比是()A.2:1B.4:1C.D.5.如图,在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,2),以原点O为位似中心,相似比为2,把△ABO放大,则点B的对应点B′的坐标是()A.(﹣4,2)B.(﹣2,4)C.(﹣4,2)或(﹣2,4)D.(﹣2,4)或(2,﹣4)6.在平面直角坐标系xOy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(4,2)C.(2,4)或(﹣2,﹣4)D.(4,2)或(﹣4,﹣2)7.已知,△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,)C.(,)D.(m,n)8.如图,已知△ABC和△A1B1C1是位似图形,其中点P为位似中心,且AP:A1P=3:2,则BC:B1C1等于()A.2:3B.3:2C.5:3D.2:59.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=4,则S△A′B′C′等于()A.6B.8C.9D.1210.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=()A.B.C.D.11.如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.4912.如图,两个三角形是以点P为位似中心的位似图形,则点P的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,﹣3)D.(﹣2,3)13.如图,△ABC和△ADE是以点A为位似中心的位似图形,已知点A(1,0),B(﹣1,4),D(0,2),E(﹣,),则点E的对应点点C的坐标是()A.(﹣1,2)B.(﹣1,3)C.(﹣2,1)D.(﹣2,2)14.如图,在平面直角坐标系中,已知点A(﹣3,﹣1),B(0,﹣2),P(1,1)以点P 为位似中心,把△P AB扩大为原来的2倍,得到△P A'B',则A'的坐标为()A.(6,2)B.(6,5)C.(9,3)D.(9,5)15.如图,△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,若线段AC=6,则线段DE为()A.2B.4C.6D.316.如图,以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,若点B的横坐标是﹣2,点B的对应点B'的横坐标是2,则△ABC与△A'B'C的周长之比为()A.1:2B.1:3C.2:3D.2:117.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR18.已知点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,其中点C与点A对应,点D与点B对应.则点D的横坐标为()A.1B.C.1或﹣1D.或﹣19.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.B.2C.4D.2二.填空题(共6小题)20.如图,正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,且点A',E'分别在OA,OE上,点C,C'在x轴正半轴上.已知AB=4,则点C'的坐标为.21.如图,在平面直角坐标系中,△ABC与△DOE是位似图形.若A(0,3)、B(﹣2,0)、C(1,0)、E(6,0),△ABC与△DOE的位似中心是点M,则M点的坐标为.22.如图,在平面直角坐标系中,以原点O为位似中心,将ΔABO扩大到原来的2倍,得到ΔA'B'O.若点A的坐标是(1,2),则点A'的坐标是.23.如图,已知▱ABCD,以B为位似中心,作▱ABCD的位似图形▱EBFG,位似图形与原图形的位似比为,连结AG,DG.若▱ABCD的面积为24,则△ADG的面积为.24.如图,四边形ABCD与四边形A′B′C′D′位似,位似中心为点O,OC=6,CC′=4,AB=3,则A′B′=.25.如图,在平面直角坐标系中,以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,已知,则点F的坐标为.三.解答题(共5小题)26.如图,在矩形ABCD中,AB=10,四边形EFCD是正方形,若矩形ABFE和矩形ABCD的宽与长的比都是黄金比,求BC的长.27.△ABC在边长为1的正方形网格中如图所示.(1)以点C为位似中心,作出△ABC的位似图形△A1B1C1,使其位似比为1:2.且△A1B1C1位于点C的异侧,并表示出A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C2.28.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出将△ABC绕点A逆时针旋转90°的△AB1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格纸中画出△A2B2C2,并写出点C2的坐标.29.如图,在平面直角坐标系中,△OAB的三个顶点都在格点上,其中点A的坐标为(2,1).请在y轴的左侧,以原点O为位似中心,作△OAB的位似图形(△OA'B'),并使△OA'B'与△OAB的相似比为2.30.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,2),B(﹣6,4),C (﹣4,8).(1)以坐标原点O为位似中心,位似比为,将△ABC缩小得到△A′B′C′,请在平面直角坐标系中画岀△A′B′C′;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=.图形的位似基础训练含答案参考答案与试题解析一.选择题(共19小题)1.下列关于比例线段和相似的叙述,不正确的是()A.若a:b=c:d,则ac=bdB.相似三角形的面积比等于相似比的平方C.点C是线段AB的黄金分割点,且AC>BC,则D.经过位似多边形对应顶点的直线一定交于同一点【答案】A【解答】解:若a:b=c:d,则ad=bc,A不正确;相似三角形的面积比等于相似比的平方,B正确;点C是线段AB的黄金分割点,且AC>BC,则,C正确;经过位似多边形对应顶点的直线一定交于同一点,D正确.故选:A.2.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,把这个三角形放大为原来的2倍,得到△CDO,则点A的对应点C的坐标为()A.(﹣4,8)B.(4,﹣8)C.(﹣4,8)或(4,﹣8)D.(﹣1,2)或(1,﹣2)【答案】C【解答】解:∵△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点为位似中心,将这个三角形放大为原来的2倍,得到△CDO,∴点A的对应点C的坐标为:(﹣4,8)或(4,﹣8).故选:C.3.等边三角形OAB在平面直角坐标系中的位置如图所示,已知△OAB边长为6,且△OAB 与△OA′B′关点O成位似图形,且位似比为1:2,则点A′的坐标可能是()A.(﹣6,6)B.(6,6)C.(﹣3,﹣3)D.(6,﹣6)【答案】B【解答】解:作AC⊥OB于C,∵△OAB为等边三角形,AC⊥OB,∴OC=OB=3,∴AC==3,∴点A的坐标为(3,3),∵△OAB与△OA′B′关点O成位似图形,且位似比为1:2,∴点A′的坐标为(3×2,3×2)或(﹣3×2,﹣3×2),即(6,6)或(﹣6,﹣6),故选:B.4.如图,△ABC与△DEF位似,其位似中心为点O,且OD=AD,则△ABC与△DEF的位似比是()A.2:1B.4:1C.D.【答案】A【解答】解:∵△ABC与△DEF位似,∴DF∥AC,∴△ODF∽△OAC,∴==2,∴△ABC与△DEF的位似比是2:1,故选:A.5.如图,在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,2),以原点O为位似中心,相似比为2,把△ABO放大,则点B的对应点B′的坐标是()A.(﹣4,2)B.(﹣2,4)C.(﹣4,2)或(﹣2,4)D.(﹣2,4)或(2,﹣4)【答案】D【解答】解:∵以原点O为位似中心,相似比为2,将△OAB放大为△OA′B′,点B (﹣1,2),∴B′点的坐标为(﹣2,4)或(2,﹣4).故选:D.6.在平面直角坐标系xOy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(4,2)C.(2,4)或(﹣2,﹣4)D.(4,2)或(﹣4,﹣2)【答案】C【解答】解:∵O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,∴A点的对应点A′坐标为:(2,4)或(﹣2,﹣4).故选:C.7.已知,△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,)C.(,)D.(m,n)【答案】C【解答】解:∵△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),∴△ABO与△A′B′O的位似比为:,∴当线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为(,).故选:C.8.如图,已知△ABC和△A1B1C1是位似图形,其中点P为位似中心,且AP:A1P=3:2,则BC:B1C1等于()A.2:3B.3:2C.5:3D.2:5【答案】B【解答】解:∵△ABC和△A1B1C1是位似图形,∴△ABC∽△A1B1C1,AC∥A1C1,∴△APC∽△A1PC1,∴==,∵△ABC∽△A1B1C1,∴==,故选:B.9.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=4,则S△A′B′C′等于()A.6B.8C.9D.12【答案】C【解答】解:∵△ABC与△A′B′C′是位似图形,点O是位似中心,∴△ABC∽△A′B′C′,AC∥A′C′,∴△AOC∽△A′OC′,∴==,∴=()2=,∵S△ABC=4,∴S△A′B′C′=9,故选:C.10.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=()A.B.C.D.【答案】B【解答】解:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,=,∴==,则=()2=()2=,故选:B.11.如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49【答案】D【解答】解:∵ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,∴OA:OD=3:7,∴S△ABC:S△DEF=9:49,∵S△ABC=9,∴△DEF的面积为:49.故选:D.12.如图,两个三角形是以点P为位似中心的位似图形,则点P的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,﹣3)D.(﹣2,3)【答案】见试题解答内容【解答】解:如图点P为位似中心,∴=,即=,解得,PB=3,∴点P的坐标为(﹣3,2),故选:A.13.如图,△ABC和△ADE是以点A为位似中心的位似图形,已知点A(1,0),B(﹣1,4),D(0,2),E(﹣,),则点E的对应点点C的坐标是()A.(﹣1,2)B.(﹣1,3)C.(﹣2,1)D.(﹣2,2)【答案】C【解答】解:∵点A(1,0),B(﹣1,4),D(0,2),∴点D是线段AB的中点,∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,∴点E是线段AC的中点,∵点A(1,0),E(﹣,),∴点E的对应点点C的坐标为(﹣2,1),故选:C.14.如图,在平面直角坐标系中,已知点A(﹣3,﹣1),B(0,﹣2),P(1,1)以点P 为位似中心,把△P AB扩大为原来的2倍,得到△P A'B',则A'的坐标为()A.(6,2)B.(6,5)C.(9,3)D.(9,5)【答案】D【解答】解:如图所示:过点A′作A′D⊥x轴于点D,过点A作AC⊥x轴于点E,过点P作x轴的平行线,交A′D于点F,交AE延长线于点E,由题意可得:△ACP∽△A′FP,∵点A(﹣3,﹣1),P(1,1)∴CP=3+1=4,AC=1+1=2,∵以点P为位似中心,把△P AB扩大为原来的2倍,∴==,∴PF=8,A′F=4,∴A′D=5,∴A'的坐标为(9,5).故选:D.15.如图,△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,若线段AC=6,则线段DE为()A.2B.4C.6D.3【答案】D【解答】解:∵△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,线段AC=6,∴线段DE为:6×=3.故选:D.16.如图,以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,若点B的横坐标是﹣2,点B的对应点B'的横坐标是2,则△ABC与△A'B'C的周长之比为()A.1:2B.1:3C.2:3D.2:1【答案】B【解答】解:过点B作BE⊥x轴于点E,过点B′作B′F⊥x轴于点F,∵以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,点B的横坐标是﹣2,∴EC=1,∵点B的对应点B'的横坐标是2,∴CF=3,∴==,∴△ABC与△A'B'C的周长之比为:1:3.故选:B.17.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 【答案】A【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA ==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.18.已知点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,其中点C与点A对应,点D与点B对应.则点D的横坐标为()A.1B.C.1或﹣1D.或﹣【答案】C【解答】解:∵点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,点D与点B对应,∴点D的横坐标为:3×=1或3×(﹣)=﹣1.故选:C.19.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.B.2C.4D.2【答案】D【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF==2.故选:D.二.填空题(共6小题)20.如图,正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,且点A',E'分别在OA,OE上,点C,C'在x轴正半轴上.已知AB=4,则点C'的坐标为(4,0).【答案】(4,0).【解答】解:∵正六边形OABCDE的边AB=4,∴OC=8,∴C(8,0)∵正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,∴点C'的坐标为(4,0).故答案为(4,0).21.如图,在平面直角坐标系中,△ABC与△DOE是位似图形.若A(0,3)、B(﹣2,0)、C(1,0)、E(6,0),△ABC与△DOE的位似中心是点M,则M点的坐标为(﹣4,0).【答案】(﹣4,0).【解答】解:过点D作DH⊥OE于点H,由题意可得:BC=3,OE=6,△ABC∽△DOE,则位似比为:3:6=1:2,故OH=2OB=4,DH=2OA=6,则D点的坐标为:(4,6),由MO:MH=1:2,MH=MO+4,故MO:(MO+4)=1:2,解得:MO=4,则M点坐标为:(﹣4,0).故答案为:(﹣4,0).22.如图,在平面直角坐标系中,以原点O为位似中心,将ΔABO扩大到原来的2倍,得到ΔA'B'O.若点A的坐标是(1,2),则点A'的坐标是(﹣2,﹣4).【答案】(﹣2,﹣4).【解答】解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).23.如图,已知▱ABCD,以B为位似中心,作▱ABCD的位似图形▱EBFG,位似图形与原图形的位似比为,连结AG,DG.若▱ABCD的面积为24,则△ADG的面积为4.【答案】4.【解答】解:连接BG,∵▱ABCD和▱EBFG是以B为位似中心的位似图形,∴点D、G、B在同一条直线上,EG∥AD,∵四边形ABCD是平行四边形,面积为24,∴△ADB的面积为12,∵EG∥AD,∴==,∴=,∴△ADG的面积=12×=4,故答案为:4.24.如图,四边形ABCD与四边形A′B′C′D′位似,位似中心为点O,OC=6,CC′=4,AB=3,则A′B′=5.【答案】5.【解答】解:∵四边形ABCD与四边形A′B′C′D′位似,其位似中心为点O,OC=6,CC′=4,∴==,∴=,∵AB=3,∴A′B′=5.故答案为:5.25.如图,在平面直角坐标系中,以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,已知,则点F的坐标为(3,3).【答案】见试题解答内容【解答】解:∵以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,∴点F的坐标为(1×3,×3),即F(3,3).故答案为(3,3).三.解答题(共5小题)26.如图,在矩形ABCD中,AB=10,四边形EFCD是正方形,若矩形ABFE和矩形ABCD 的宽与长的比都是黄金比,求BC的长.【答案】见试题解答内容【解答】解:∵矩形ABCD的宽与长的比是黄金比,∴=,又AB=10,∴BC=5+5.27.△ABC在边长为1的正方形网格中如图所示.(1)以点C为位似中心,作出△ABC的位似图形△A1B1C1,使其位似比为1:2.且△A1B1C1位于点C的异侧,并表示出A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C2.【答案】(1)A1(3,﹣3);(2)见解答.【解答】解:(1)如图,△A1B1C1所作,点A1的坐标为(3,﹣3);(2)如图,△A2B2C2为所作.28.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出将△ABC绕点A逆时针旋转90°的△AB1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格纸中画出△A2B2C2,并写出点C2的坐标.【答案】(1)见解答;(2)C2(2,10).【解答】解:(1)如图,△AB1C1为所作;(2)如图,△A2B2C2为所作;点C2的坐标为(2,10).29.如图,在平面直角坐标系中,△OAB的三个顶点都在格点上,其中点A的坐标为(2,1).请在y轴的左侧,以原点O为位似中心,作△OAB的位似图形(△OA'B'),并使△OA'B'与△OAB的相似比为2.【答案】作图见解析部分.【解答】解:如图,△OA'B'即为所求.30.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,2),B(﹣6,4),C (﹣4,8).(1)以坐标原点O为位似中心,位似比为,将△ABC缩小得到△A′B′C′,请在平面直角坐标系中画岀△A′B′C′;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=2:1.【答案】见试题解答内容【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=2:1.故答案为:2:1.。
北师大版数学九年级上册第3章第8节图形的位似同步检测一、选择题1.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF 的面积比是()A.1:8B.1:6C.1:4D.1:2答案:C解析:解答:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC∥DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选:C.分析:先由已知条件及位似图形的性质,得AC∥DF,求得AC:DF=OA:OD=1:2,再根据相似三角形面积的比等于相似比的平方,求得△ABC与△DEF的面积比.掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.2.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(-2,0)B.(-1.5,-1.5)C.(-2,-2)D.(-2,-2)答案:C解析:解答:∵正方形OABC,点A的坐标为(1,0),∴B点坐标为:(1,1),∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴E点的坐标为:(-2,-2).故选:C.分析:首先利用正方形的性质得出B点坐标,然后利用位似图形的性质,将B点横纵坐标都乘以-2得出答案.此题主要考查了位似图形的性质以及坐标与图形的性质,得出E点与B点坐标关系是解题的关键.3.已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点'A的坐标为()A.(1,12)B.(4,2)C.(1,12)或(-1,-12)D.(4,2)或(-4,-2)答案:D解析:解答:如图,则点A 的坐标为(4,2)或(-4,-2).故选:D.分析:先由已知条件画出符合条件的两个图形,再根据图中点的位置写出坐标.此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.4.如图,在3×3正方形网格中,顶点是网格线的交点的三角形叫做格点三角形,给出下列命题:①一定存在全等的两个格点三角形②一定存在相似且不全等的两个格点三角形③一定存在两个格点三角形是位似图形④一定存在周长和面积均为无理数的格点三角形其中真命题的个数是()A.4个B.3个C.2个D.1个答案:B解析:解答:根据题意,得如图所示:△FBG≌△AFH,①正确;△ABC∽△FBC,但两者不全等,②正确;△ABC与△DBE位似,③正确;因为可以得到格点三角形两直角边长为整数,所以面积无法得到是无理数的格点三角形,④错误;故选:B.分析:根据题意,先在图中作出三角形,再分析得到答案.此题考查了位似、全等、相似的相关知识,注意三者的区别与联系.5.下列语句正确的是()A.相似图形一定是位似图形,位似图形一定是相似图形B.位似图形一定是相似图形,而且位似比等于相似比C.利用位似变换只能放大图形,不能缩小图形D.利用位似变换只能缩小图形,不能放大图形答案:B解析:解答:相似图形对应点的连线不一定都经过同一点,所以不一定是位似图形,故选项A错误;位似图形一定是相似图形,而且位似比等于相似比,故选项B正确;利用位似变换能放大图形,也能缩小图形,故C和D选项错误.故选:B.分析:如果相似图形的对应点的连线都经过同一点,那么这两个图形是位似图形,并且位似比等于相似比,也能扩大原有图形,也能缩小原有图形.相似图形不一定是位似图形,但位似图形一定是相似图形.6.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)答案:B解析:解答:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.分析:利用位似图形的性质结合对应点坐标与位似比的关系得出A点坐标.解答此题的关键是正确把握位似比与对应点坐标的关系.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(-2,-2)D.(2,1)答案:B解析:解答:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=22,∴A(12,12),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为(1,1).故选:B.分析:先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似求得答案.若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky).8.已知△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm 和4cm,则△ABC与△DEF的面积比为()A.3:4B.3:7C.9:16D.9:49答案:C解析:解答:∵△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm和4cm,∴根据位似图形的性质,得△ABC与△DEF的位似比为:3:4,△ABC∽△DEF,∴△ABC与△DEF的相似比为:3:4,∴△ABC与△DEF的面积比为9:16.故选:C.分析:由△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm 和4cm,得△ABC∽△DEF,且相似比为3:4,再由相似三角形的面积比等于相似比的平方,求得△ABC与△DEF的面积比.此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.9.如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC 的中点,则△DEF与△ABC的面积比是()A.1:6B.1:5C.1:4D.1:2答案:C解析:解答:∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,则△DEF与△ABC的面积比是1:4.故选:C.分析:根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方求出面积之比.熟练掌握:位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等答案:D解析:解答:∵位似是相似的特殊形式,∴位似图形的对应边平行但不一定相等,位似图形的位似中心只有一个,平移图形是全等图形,也没有位似中心.位似中心到对应点的距离之比都相等∴正确答案为D.故选:D.分析:根据性质可知,位似是相似的特殊形式,位似图形的对应边平行但不一定相等,位似图形的位似中心只有一个,平移图形是全等图形,也没有位似中心.位似中心到对应点的距离之比都相等,由此得到正确答案.11.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解析:解答:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.分析:位似是特殊的相似,相似图形对应边的比相等.根据相似多边形对应边成比例得出DE:MN=2:3即可求解.12.已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E'的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)答案:A解析:解答:∵E(-4,2),位似比为1:2,∴点E的对应点E'的坐标为(2,-1)或(-2,1).故选:A.分析:注意位似的两种位置关系,利用位似比为1:2,可求得点E的对应点E'的坐标为(2,-1)或(-2,1).此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.13.如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点'A,'B,'C.下列说法正确的是()A.△'''A B C与△ABC是位似图形,位似中心是点(1,0)B.△'''A B C与△ABC是位似图形,位似中心是点(0,0)C.△'''A B C与△ABC是相似图形,但不是位似图形D.△'''A B C与△ABC不是相似图形答案:B解析:解答:∵△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍∴点'A,'B,'C的坐标分别为(2,4),(-4,6),(-2,0)∴直线AA′,BB′,CC′得解析式分别为y=2x,y=-32x,y=0∴对应点的连线交于原点∴△'''A B C与△ABC是位似图形,位似中心是点(0,0)故选:B.分析:由已知条件△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,求得直线AA′,BB′,CC′得解析式分别为y=2x,y=-32x,y=0,可知△'''A B C与△ABC是位似图形,位似中心是点(0,0).此题考查了位似的相关知识,位似是相似的特殊形式,位似图形的对应点的连线交于一点.14.下列3个图形中是位似图形的有()A.0个B.1个C.2个D.3个答案:C解析:解答:根据位似图形的定义可知:两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形的是第1个和第3个.故选:C.分析:如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心.正确掌握位似图形的定义是解答此题的关键.15.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:2,点A的坐标为(0,1),则点E的坐标是()A.(-1.4,-1.4)B.(1.4,1.4)C.(-2,-2)D.(2,2)答案:D解析:解答:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(0,1),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选:D.分析:根据题意可得OA :OD =1:2,由点A 的坐标为(1,0),可求得OD 的长,再由正方形的性质,可求得E 点的坐标.此题考查了位似变换的性质与正方形的性质.二、填空题16.如图,在平面直角坐标系中,△ABC 和△A BC '''是以坐标原点O 为位似中心的位似图形,且点B (3,1),'B (6,2).若△ABC 的面积为m ,则△'''A B C 的面积(用含m 的代数式表示)是答案:4m解析:解答:∵△ABC 与△A BC '''的相似比为1:2∴'''14ABC A B C S S ∆∆=,∴'''14A B C m S ∆= ∴'''4A B C S m ∆=故答案为:4m .分析:利用位似是特殊的相似,利用面积比等于位似比的平方得出即可.此题考查位似变换;坐标与图形性质;相似三角形的性质.17.如图,已知E (-4,2),F (-1,-1),以原点O 为位似中心,按比例尺2:1把△EFO 缩小,则E 点对应点E '的坐标为答案:(2,-1)解析:解答:根据题意可知,点E 的对应点'E 的坐标是E (-4,2)的坐标同时乘以12-, 所以点E '的坐标为(2,-1).故答案为:(2,-1).分析:以O 为位似中心,按比例尺2:1,把△EFO 缩小,结合图形得出,则点E 的对应点'E 的坐标是E (-4,2)的坐标同时乘以12-,而得到的点E '的坐标为(2,-1).关于原点成位似的两个图形,若位似比是k ,则原图形上的点(x ,y ),经过位似变化得到的对应点的坐标是(kx ,ky )或(-kx ,-ky ).18.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△'''A B C 的位似比是1:2,已知△ABC 的面积是3,则△'''A B C 的面积是答案:12解析:解答:∵△ABC 与△'''A B C 是位似图形,且△ABC 与△'''A B C 的位似比是1:2,△ABC 的面积是3,∴△ABC 与△'''A B C 的面积比为:1:4,则△'''A B C 的面积是:12.故答案为:12.分析:利用位似图形的面积比等于位似比的平方得出答案.此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解答此题的关键.19.如图,在平面直角坐标系中,以P (4,6)为位似中心,把△ABC 缩小得到△DEF ,若变换后,点A 、B 的对应点分别为点D 、E ,则点C 的对应点F 的坐标应为答案:(4,4)解析:解答:∵△DEF ∽△ABC ,且F 点在CP 的连线上,∴可得F 点位置如图所示:故P 点坐标为(4,4).故答案为:(4,4)分析:根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F 点的坐标.此题考查位似的定义,注意掌握两位似图形的对应点的连线都经过同一点,这一点就是位似中心.20.如图,已知两点A (6,3),B (6,0),以原点O 为位似中心,相似比为1:3把线段AB 缩小,则点A 的对应点坐标是答案:(2,1)或(-2,-1)解析:解答:如图所示:∵A (6,3),B (6,0)两点,以坐标原点O 为位似中心,相似比为13,∴A '、A "的坐标分别是A '(2,1),A "(-2,-1).故答案为:(2,1)或(-2,-1).分析:易得线段AB 垂直于x 轴,根据所给相似比把各坐标都除以3或-3即可.此题主要考查了位似图形变换,用到的知识点为:各点到位似中心的距离比也等于相似比.三、解答题21.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,每个小正方形的边长都为1. 求△ABC 与△A ′B ′C ′的面积比.答案:14解析:解答:∵由已知条件可知ABC S ∆∽'''A B C S ∆∴'''22 211 424ABCA B CSS∆∆⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭.分析:已知△ABC与△A′B′C′是位似图形,且顶点都在格点上,每个小正方形的边长都为1,根据位似图形是相似图形,相似图形的面积比等于相似比的平方计算求解.22.一般的室外放映的电影胶片上每一个图片的规格为3.5cm×3.5cm,放映的银幕规格为2m×2m,若影机的光源距胶片20cm时,问银幕应在离镜头多远的地方,放映的图象刚好布满整个银幕?答案:807m解析:解答:如图,O为位似中心,先计算位似比K=200400=3.57.设银幕距镜头x cm,则400207x=,解得:x=80007.答:银幕应在离镜头807m,放映的图象刚好布满整个银幕.分析:由题意可知此题可以利用位似知识来解答,先根据胶片和银幕边之比,求出位似比,再借助位似比求得问题的答案.23.如图,已知△ABC的三个顶点的坐标分别为A(-1,2)、B(-3,0)、C(0,0)(1)请直接写出点A关于x轴对称的点'A的坐标;答案:(-1,-2)(2)以C 为位似中心,在x 轴下方作△ABC 的位似图形111A B C ∆,使放大前后位似比为1:2,请画出图形,并求出111A B C ∆的面积;答案:12解析:解答:(1)∵点A 的坐标为(-1,2),∴点A 关于x 轴对称的点'A 的横坐标为-1,纵坐标为-2,∴点A '的坐标为(-1,-2);(2)111A B C ∆的面积=12×6×4=12.分析:(1)已知点A 的坐标,点A 的横坐标不变,纵坐标变为原来的相反数,即得点'A 的坐标;(2)连接AC 延长到'A 使1A C =2AC ,延长BC 到1B ,使1B C =2BC ,点1C 的对应点为C ,顺次连接各点即可;111A B C ∆的面积=12×底边×高. 24.如图,四边形ABCD 和四边形A B C D ''''位似,位似比1k =2,四边形A ′B ′C ′D ′和四边形A B C D """"位似,位似比2k =1.四边形A B C D """"和四边形ABCD 是位似图形吗?位似比是多少?答案:是位似图形|位似比为12解析:解答:∵四边形ABCD 和四边形A B C D ''''位似,∴四边形ABCD ∽四边形A B C D ''''.∵四边形A B C D ''''和四边形A B C D """"位似,∴四边形A B C D ''''∽四边形A B C D """".∴四边形A B C D """"∽四边形ABCD .∵对应顶点的连线过同一点,∴四边形A B C D """"和四边形ABCD 是位似图形.∵四边形ABCD 和四边形A B C D ''''位似,位似比1k =2,四边形A B C D ''''和四边形A B C D """"位似,位似比2k =1,∴四边形A B C D """"和四边形ABCD 的位似比为12. 分析:此题考查位似图形的判定方法与性质.因为位似图形是特殊的相似图形,四边形A B C D """"和四边形ABCD 位似,所以四边形A B C D """"∽四边形ABCD ;相似具有传递性,可得四边形A B C D """"∽四边形ABCD ;因为位似比等于相似比,所以求得四边形A B C D """"和四边形ABCD 的位似比.25.如图,△ABC 中,A 、B 两点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形''A B C ∆,并把△ABC 的边长放大到原来的2倍.设点B 的对应点'B 的横坐标是2,求点B 的横坐标.答案:−2.5解析:解答:过点B 、'B 分别作BD ⊥x 轴于D ,'B E ⊥x 轴于E ,∴∠BDC =∠'B EC =90°.∵△ABC 的位似图形是''A B C ∆,∴点B 、C 、'B 在一条直线上,∴∠BCD =∠'B CE ,∴△BCD ∽△'B CE .∴CD BC CE B C'=, 又∵1=2BC B C ', ∴12CD CE =, 又∵点'B 的横坐标是2,点C 的坐标是(-1,0),∴CE=3,∴CD=1.5.∴OD=2.5,∴点B的横坐标为−2.5.分析:过B和'B向x轴引垂线,构造相似比为1:2的相似三角形,那么利用相似比和所给B 的横坐标即可求得点B的横坐标.难点是利用对应点向x轴引垂线构造相似三角形,关键是利用相似比解决问题.。
位似图形试题中考试题选位似图形试题中考试题选一.选择题(共3小题)1.(2013•孝感)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)2.(2011•六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()A.左上B.左下C.右上D.右下3.(2008•威海)如图,已知△EFH和△MNK是位似图形,那么其位似中心是点()A.A B.B C.C D.D二.填空题(共2小题)4.(2012•阜新)如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:2,已知△ABC 的面积为3,那么△A1B1C1的面积是_________.5.(2010•宁夏)关于对位似图形的表述,下列命题正确的是_________.(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.三.解答题(共5小题)6.(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.7.(2012•辽阳)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.8.(2012•常州)在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).按下列要求画图:以O为位似中心,将△ABC向y轴左侧按比例尺2:1放大得△ABC的位似图形△A1B1C1,并解决下列问题:(1)顶点A1的坐标为_________,B1的坐标为_________,C1的坐标为_________;(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼接成一个平行四边形(非正方形),写出符合要求的变换过程.9.(2011•南宁)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为_________,点C的坐标为_________.(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为_________.(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:_________.10.(2011•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.位似图形试题中考试题选参考答案与试题解析一.选择题(共3小题)1.(2013•孝感)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)考点:位似变换;坐标与图形性质.专题:作图题.分析:根据题意画出相应的图形,找出点E的对应点E′的坐标即可.解答:解:根据题意得:则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1).故选D.点评:此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.2.(2011•六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()A.左上B.左下C.右上D.右下考点:位似变换.专题:几何图形问题;压轴题.分析:开口向上的两个“E”形状相似,但大小不同,因此它们之间的变换属于位似变换,故最上面较大的“E”与左下较小的“E“是位似图形.解答:解:根据位似变换的特点可知:最上面较大的“E”与左下较小的“E“是位似图形.故选B.点评:本题考查了位似变换的相关知识,位似是相似的特殊形式,平移、旋转、对称的图形都是全等形.3.(2008•威海)如图,已知△EFH和△MNK是位似图形,那么其位似中心是点()A.A B.B C.C D.D考点:位似变换.分析:根据位似中心的概念可知位似中心是对应顶点的连线的交点.解答:解:∵位似图形对应顶点的连线交于一点,即位似中心,∴位似中心是点B.故选B.点评:本题考查了位似的相关知识,位似是相似的特殊形式,注意位似图形对应顶点的连线交于一点,即位似中心.二.填空题(共2小题)4.(2012•阜新)如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:2,已知△ABC 的面积为3,那么△A1B1C1的面积是12.考点:位似变换.分析:由△ABC与△A1B1C1为位似图形,位似比是1:2,即可得△ABC与△A1B1C1为相似三角形,且相似比为1:2,又由相似三角形面积的比等于相似比的平方,即可求得答案.解答:解:∵△ABC与△A1B1C1为位似图形,∴△ABC∽△A1B1C1,∵位似比是1:2,∴相似比是1:2,∴△ABC与△A1B1C1的面积比为:1:4,∵△ABC的面积为3,∴△A1B1C1的面积是:3×4=12.故答案为:12.点评:此题考查了位似图形的性质.注意位似图形是相似图形的特殊情况,注意相似三角形面积的比等于相似比的平方定理的应用.5.(2010•宁夏)关于对位似图形的表述,下列命题正确的是②③.(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.考点:位似变换;相似多边形的性质.专题:压轴题.分析:如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,这个点是位似中心,但不是所有的相似图形都是位似图形,并且位似图形上对应点与位似中心的距离之比等于位似比.解答:解:①相似图形不一定是位似图形,位似图形一定是相似图形,错误;②位似图形一定有位似中心,是对应点连线的交点,正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,正确;④位似图形上对应点与位似中心的距离之比等于位似比,错误;故填②③.点评:相似图形不一定是位似图形;位似图形上对应点与位似中心的距离之比等于位似比.三.解答题(共5小题)6.(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.考点:作图-位似变换;作图-旋转变换.专题:压轴题.分析:(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.解答:解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.点评:此题考查了位似变换的性质与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.7.(2012•辽阳)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.考点:作图-位似变换.专题:作图题;压轴题.分析:(1)连接CC′并延长,连接BB′并延长,两延长线交于点O;(2)由OB=2OB′,即可得出△ABC与△A′B′C′的位似比为2:1;(3),连接B′O并延长,使OB″=OB′,延长A′O并延长,使OA″=OA′,C′O并延长,使OC″=OC′,连接A″B″,A″C″,B″C″,则△A″B″C″为所求,从网格中即可得出△A″B″C″各顶点的坐标.解答:解:(1)图中点O为所求;(2)△ABC与△A′B′C′的位似比等于2:1;(3)△A″B″C″为所求;A″(6,0);B″(3,﹣2);C″(4,﹣4).点评:此题考查了作图﹣位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.8.(2012•常州)在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).按下列要求画图:以O为位似中心,将△ABC向y轴左侧按比例尺2:1放大得△ABC的位似图形△A1B1C1,并解决下列问题:(1)顶点A1的坐标为(﹣2,0),B1的坐标为(﹣6,0),C1的坐标为(﹣4,﹣2);(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼接成一个平行四边形(非正方形),写出符合要求的变换过程.考点:作图-位似变换;作图-平移变换;作图-旋转变换.专题:作图题;压轴题.分析:(1)延长AO到A1,使A1O=2AO,延长BO到B1,使B1O=2BO,连接CO并延长到C1,使C1O=2CO,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可;(2)先绕点O顺时针旋转90°,然后向右平移再向下(或向上)平移,使△A2B2C2的直角边与△DEF的直角边重合即可.解答:解:(1)如图所示,△A1B1C1即为所求作的三角形,A1(﹣2,0)B1(﹣6,0)C1(﹣4,﹣2);(2)如图,把△A1B1C1绕点O顺时针旋转90°,再向右平移6个单位,向下平移1个单位,使B2C2与DE 重合,或者:把△A1B1C1绕点O顺时针旋转90°,再向右平移6个单位,向上平移3个单位,使A2C2与EF重合,都可以拼成一个平行四边形.点评:本题考查了利用位似变换作图,利用平移变换与旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.9.(2011•南宁)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为(2,8),点C的坐标为(6,6).(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为(a﹣7,b).(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:(1,4)或(﹣1,﹣4).考点:作图-位似变换;点的坐标;坐标与图形变化-平移.专题:作图题;压轴题.分析:(1)直接根据图形即可写出点A和C的坐标;(2)找出三角形平移后各顶点的对应点,然后顺次连接即可;根据平移的规律即可写出点M平移后的坐标;(3)根据位似变换的要求,找出变换后的对应点,然后顺次连接各点即可,注意有两种情况.解答:解:(1)A点坐标为:(2,8),C点坐标为:(6,6);(2)所画图形如下所示,其中△A1B1C1即为所求,根据平移规律:左平移7个单位,可知M1的坐标(a ﹣7,b);(3)所画图形如下所示,其中△A2B2C2即为所求,点A2的坐标为(1,4)或(﹣1,﹣4).点评:本题考查了旋转变换和位似变换后图形的画法,解题关键是根据变换要求找出变换后的对应点,难度一般.10.(2011•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.菁优网考点:作图-位似变换;作图-平移变换.专题:作图题;压轴题.分析:(1)把A、B、C三点先向右平移4个单位,再向上平移1个单位得到A1,B1,C1,顺次连接得到的各点即可;(2)延长OA1到A2,使0A2=20A1,同法得到其余各点,顺次连接即可.解答:解:如图点评:考查图形的平移变换及旋转变换;注意图形的变换,看关键点是变换即可.©2010-2013 菁优网。
位似图形-练习一、选择题1.图中两个四边形是位似图形,它们的位似中心是()A. 点MB. 点NC. 点OD. 点P2. 如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:2,已知△ABC的面积为3,那么△A1B1C1的面积是().A.19B.11 C12 .D.133. 下列说法中:①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A′B′C′D′E′位似,则在五边形中连线组成的△ABC与△A′B′C′也是位似的.正确的个数是()A. 1B. 2C. 3D. 4二、解答题4.在如图的方格纸中(每个小方格的边长都是1个单位)有一点O和△ABC.(1)请以点O为位似中心,把△ABC缩小为原来的一半(不改变方向),得到△A′B′C′;(2)请用适当的方式描述△A′B′C′的顶点A′、B′、C′的位置.5.一个多边形的边长依次为1,2,3,4;5,6,7,8,与它位似的另一个多边形的最大边长为12,求另一个多边形的周长.位似图形-练习参考答案一、选择题1.D.解:点P在对应点M和点N所在直线上,再利用连接另两个对应点,得出相交于P点,即可得出P为两图形位似中心,故选:D.2.C. 解:∵△ABC与△A1B1C1为位似图形,∴△ABC∽△A1B1C1,∵位似比是1:2,∴相似比是1:2,∴△ABC与△A1B1C1的面积比为:1:4,∵△ABC的面积为3,∴△A1B1C1的面积是:3×4=12.故答案为C.3. C.解:利用位似的定义可知,位似图形一定是相似图形;但是相似图形不一定是位似图形,因为它是一种特殊的相似,所以①正确②错误,两个位似图形若全等,根据对应点一定相交于一点,可得到位似中心在两个图形之间,③正确;④若五边形ABCDE与五边形A′B′C′D′E′'位似,则在五边形中连线组成的△ABC与△A′B′C′,画出图形,可得它也是位似.④正确.所以①③④正确.故选C.二、解答题4.解:(1)利用三角形相似作图,连接OA,OB,OC,分别找出这三条线段的中点A′、B′、C′,顺次连接A′、B′、C′即可得到△A′B′C′;如图所示.(2)点A′、B′、C′的位置分别为OA、OB、OC的中点等.5. 解:一个六边形的边长依次为1,2,3,4,5,6,7,8.与它相似的另一个多边形最大边长为12,则这个多边形的周长是36,相似比是8:12=2:3,根据周长之比等于相似比,因而设另一个多边形的周长是x,则36:x=2:3,解得:x=54另一个多边形的周长为54.。
人教版九年级下册第1课时位似图形的概念及画法(188)1.如图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛AB在暗盒中所成像CD的长是()A.16cm B.13cm C.12cm D.1cm2.如图,四边形ABCD的周长为12cm,它的位似图形为四边形A′B′C′D′,位似中心为点O.若OA∶AA′=1∶3,则四边形A′B′C′D′的周长为()A.12cmB.24cmC.12cm或24cmD.以上都不对3.如图所示,已知五边形ABCDE,O是五边形ABCDE内一点,A1,B1,C1,D1,E1分别是OA,OB,OC,OD,OE上的点,且A1B1∥AB,B1C1∥BC,C1D1∥CD,D1E1∥DE,A1E1∥AE.若OD=2OD1,S五边形ABCDE=100cm2,求五边形A1B1C1D1E1的面积.4.如图,已知△OAB与△ODC是位似图形.(1)AB与CD平行吗?请说明理由;(2)如果OB=3,OC=4,OD=3.5,试求△OAB与△ODC的相似比及OA的长.5.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在边OA上,点D在边OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接三角形.求证:△C′D′E′是等边三角形.6.图中的两个相似三角形不是位似图形的是()A. B. C. D.7.图中的两个四边形是位似图形,它们的位似中心是()A.点MB.点NC.点OD.点P8.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于相似比.其中正确的是()A.②③B.①②C.③④D.②③④9.四边形ABCD和四边形A′B′C′D′是两个位似图形,点O是位似中心,且OA=32OA′,则AB∶A′B′等于()A.23B.53C.52D.3210.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4∶9,则OB′∶OB等于()A.2∶3B.3∶2C.4∶5D.4∶911.如图,A′B′∥AB,B′C′∥BC,且OA′∶OA=4∶7,则△ABC与是位似图形,相似比为;△OAB与是位似图形,相似比为., 12.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49则AB∶DE=.13.分别画出下图中的每组位似图形的位似中心.14.已知四边形ABCD及点O,试以点O为位似中心,将如图所示的四边形放大为原来的2倍.参考答案1.【答案】:D【解析】:∵AB∥CD,∴△ODC∽△OBA,∴CD6=212,∴CD=1(cm)2.【答案】:B【解析】:∵四边形ABCD与四边形A′B′C′D′是位似图形,∴ADA′D′=OAOA′.又∵OAAA′=13,∴设OA=k,则AA′=3k,∴OA′=AA′−OA=3k−k=2k,∴ADA′D′=OAOA′=k2k=12,即A′D′=2AD.同理A′B′=2AB,B′C′=2BC,C′D′=2CD.∴四边形A′B′C′D′的周长为A′B′+B′C′+C′D′+D′A′=2(AB+BC+CD+DA)=2×12=24(cm).3.【答案】:∵A1B1∥AB,B1C1∥BC,C1D1∥CD,D1E1∥DE,A1E1∥AE,∴OA1OA =OB1OB=OC1OC=OD1OD=OE1OE,且各对应顶点的连线都经过点O,∴五边形ABCDE与五边形A1B1C1D1E1是位似图形.∵OD=2OD1,∴OD1OD =12,∴S五边形A1B1C1D1E1S五边形ABCDE=14.∵S五边形ABCDE=100cm2,∴五边形A1B1C1D1E1的面积为25cm2【解析】:∵A1B1∥AB,B1C1∥BC,C1D1∥CD,D1E1∥DE,A1E1∥AE,∴OA1OA =OB1OB=OC1OC=OD1OD=OE1OE,且各对应顶点的连线都经过点O,∴五边形ABCDE与五边形A1B1C1D1E1是位似图形.∵OD=2OD1,∴OD1OD =12,∴S五边形A1B1C1D1E1S五边形ABCDE=14.∵S五边形ABCDE=100cm2,∴五边形A1B1C1D1E1的面积为25cm24(1)【答案】AB∥CD.理由:∵△OAB与△ODC是位似图形,∴△OAB∽△ODC,∴∠A=∠D,∴AB∥CD(2)【答案】显然点O是△OAB与△ODC的位似中心,相似比为OB∶OC=3∶4.∵OB∶OC=OA∶OD,即3∶4=OA∶3.5,∴OA=2.625【解析】:根据位似图形性质可得出,注意对应边成比例。
第二十七章第3节《位似》单元测试题 (3)一、单选题1.如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形111OA B C 与矩形OABC 关于点O 位似,且矩形111OA B C 的面积等于矩形OABC 面积的14,那么点1B 的坐标是( )A .()2,3-B .()2,3-C .31,2⎛⎫- ⎪⎝⎭或31,2⎛⎫- ⎪⎝⎭ D .()2,3-或()2,3- 2.如图,已知矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,若点B 的坐标为()2,4,点E 的坐标为()1,2-,则点P 的坐标为( )A .()4,0-B .()3,0-C .()2,0-D .()1.5,0- 3.将铁丝围成的△ABC 铁框平行地面(水平)放置,并在灯泡的垂直照射下,在地面上的影子是△A′B′C′,那么△ABC 与△A′B′C′之间是属于( )A .对称变换B .平移变换C .位似变换D .旋转变换 4.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA 'B 'C '与矩形OABC 关于点O 位似,且矩形OA 'B 'C '的面积等于矩形OABC 面积的14,那么点B '的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2) 5.下列说法正确的是( )A .四条边相等的平行四边形是正方形B .一条线段有且仅有一个黄金分割点C .对角线相等且互相平分的四边形是菱形D .位似图形一定是相似图形6.如图ABC ∆中,已知13AD AC =,14AE AB =,且ABC ∆的面积为218cm ,则BDE ∆的面积为( )A .26cmB .C .D .7.如图,小“鱼”与大“鱼”是位似图形,如果小“鱼”上一个“顶点”的坐标为(a ,b ),那么大“鱼”上对应“顶点”的坐标为( ).A .(-a ,-2b )B .(-2a ,-b )C .(-2a ,-2b )D .(-2b ,-2a ) 8.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O 为位似中心,画△A 1B 1C 1,使它与△ABC 的相似比为2,则点B 的对应点B 1的坐标是( )A .(4,2)B .(1,12)C .(1,12)或(﹣1,﹣12)D .(4,2)或(﹣4,﹣2)二、填空题9.如图,DEF 和ABC 是位似图形,点O 是位似中心,点D 、E 、F 分别是OA 、OB 、OC 的中点,若DEF 的面积是2,则ABC 的面积是__________.10.如图,OAB ∆与OCD ∆是以O 点为位似中心的位似图形,相似比为1:2,90,OCD CO CD ∠=︒=,若()10B ,,则点C 的坐标为_________.11.如图,在平面直角坐标系中,将OBC 各顶点的横、纵坐标都乘以一个相同的数得到OED ,若(1,2)B ,(2,0)C ,(5,0)D ,则点E 的坐标为__________.12.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,B 的坐标是()4,2,如果以点O 为位似中心,将矩形OABC 缩小为原来的12,那么点B 的对应点B '的坐标是________.13.已知11OA B ∆在直角坐标系内的位置如图所示, 111112,60,90OA AOB A B O =∠=︒∠=︒,把11OA B ∆绕原点O 逆时针旋转60︒后,再以原点O 为位似中心放大为原来的2倍,得到22OA B ∆,完成一次图形变换,经过2019次图形变换之后,点2019A 的坐标是___________14.如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若ABC 与111A B C △是位似图形,且顶点都在格点上,则位似中心的坐标是______.15.△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4).以原点O 为位似中心,将△ABC 缩小得到△DEF ,其中点D 与A 对应,点E 与B 对应,△DEF 与△ABC 对应边的比为1:2,这时点F 的坐标是_____.三、解答题16.如图,在1010⨯的网格中,每个小方格的边长看做单位1,每个小方格的顶点叫做格点,ABC ∆的顶点都在格点上.(1)请在网格中画出ABC ∆的一个位似图形111A B C ∆,使两个图形以点C 为位似中心,且所画图形与ABC ∆的位似比为2:1;(2)将111A B C ∆绕着点1C 顺时针旋转90得到222A B C ∆,画出图形,并求1A 绕着点1C 旋转到点2A 所经过的路径的长.17.如图,ABC ∆的顶点均在正方形网格的格点上,在已知的直角坐标系中,(1,0)A ,(3,1)C (1)画出将ABC ∆绕原点O 按逆时针方向旋转90后所得的111A B C ∆,并写出点1B 的坐标; (2)在网格内,以点O 为位似中心,画出与ABC ∆位似的图形222A B C ∆,使点2C 的坐标为(6,2)--18.如图,在平面直角坐标系中,OAB 的三个顶点都在格点上,其中点A 的坐标为()2,1.请在y 轴的左侧,以原点O 为位似中心,作OAB 的位似图形()OA B ''△),并使OA B ''△与OAB 的相似比为2.19.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为(1,2)A -,(3,4)B -,(2,6)C -.(1)画出ABC ∆绕点A 顺时针旋转90︒后得到的111A B C ∆;并写出点1A ,1B ,1C 的坐标; (2)以原点O 为位似中心,画出将111A B C ∆三条边放大为原来的2倍后的222A B C ∆. 20.如图,△ABC 与△A′B′C′是位似图形,且位似比是1:2.(1)在图中画出位似中心点O ;(2)若AB=2cm ,则A′B′的长为多少?21.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2:1,点C 1的坐标是_______;(2)△A 1B 1C 1的面积是_______平方单位.22.如图,在直角坐标系中,△ABC 的三个顶点坐标分别为A (2,1),B (1,4),C (3,2).请解答下列问题:(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1,并直接写出C 1点的坐标;(2)以原点O 为位似中心,位似比为1:2,在y 轴的右侧,画出△ABC 放大后的图形△A 2B 2C 2,并直接写出C 2点的坐标;(3)如果点D (a ,b )在线段BC 上,请直接写出经过(2)的变化后对应点D 2的坐标. 23.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标是A (0,﹣2),B (6,﹣4),C (2,﹣6).(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1.(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴左侧画出△A 2B 2C 2. (3)在y 轴上存在点P ,使得△OB 2P 的面积为6,请直接写出满足条件的点P 的坐标.24.在坐标系中,ABC ∆的三个顶点坐标分别为2,4, 3,()()2, (6),3.A B C ---(1)画出ABC ∆关于x 轴对称的111A B C ∆;(2)以M 点为位似中心,在第一象限中画出将111A B C ∆按照2:1放大后的位似图形222A B C ∆; (3)222A B C ∆面积为_______.(直接写出答案)25.如图,在10×10正方形网格中,每个小正方形边长均为1个单位.建立坐标系后,△ABC 中点C 坐标为(0,1).(1)把△ABC 绕点C 顺时针旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出A 1坐标. (2)把△ABC 以O 为位似中心放大,使放大前后对应边长为1:2,画出放大后的△A 2B 2C 2,并写出A 2坐标.26.按下列要求在如图格点中作图;(1)作出ABC ∆关于原点成中心对称的图形A B C '''∆;(2)以点B 为位似中心,作出ABC ∆放大2倍的图形BA C ''''∆,并写出C ''的坐标. 27.在如图的正方形网格中,每一个小正方形的边长均为1,已知格点△ABC 的顶点A 、C 的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系.(2)以点(﹣1,2)为位似中心,相似比为2,将△ABC 放大为原来的2倍,得到△A 1B 1C 1,画出△A 1B 1C 1,使它与△ABC 在位似中心的异侧,并写出B 1点坐标为 .(3)线段BC 与线段B 1C 1的关系为 .28.如图,图中小方格都是边长为1的正方形,ABC 与'''A B C 是关于点O 为位似中心的位似图形,它们的顶点都在小正方形顶点上.()1画出位似中心点O ;()2ABC 与'''A B C 的位似比为29.ABC 与'''A B C 位似,且()()()1,22,21,4A B C ---,,,()()0,02,0,A B '',()4,0,C '-画出位似中心,并写出ABC 与'''A B C 的位似比.30.如图,△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),在正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移4个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C,使△A2B2C与△ABC位似,且△A2B2C与△ABC 的位似比为2:1,并直接写出点B2的坐标.【答案与解析】1.D【解析】由矩形111OA B C 与矩形OABC 关于点O 位似,且矩形111OA B C 的面积等于矩形OABC 面积的14,利用相似三角形的面积比等于相似比的平方,即可求得矩形111OA B C 与矩形OABC 的位似比为1:2,又由点B 的坐标为(-4,6),即可求得答案.∵矩形111OA B C 与矩形OABC 关于点O 位似∴矩形111OA B C ∽矩形OABC∵矩形111OA B C 的面积等于矩形OABC 面积的14 ∴位似比为:12∵点B 的坐标为()4,6-∴点1B 的坐标是:()2,3-或()2,3-故答案为:D .本题考查了位似矩形的问题,掌握位似矩形的性质、相似三角形的性质以及判定定理是解题的关键.2.C【解析】 根据位似变换的性质得:2142PO OD PA AB ===,则PO=OA=2,然后写出P 点坐标. 解:∵点B 的坐标为(2,4),点E 的坐标为(-1,2),∴AB=4,OA=2,OD=2,∵矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,∴ 2142PO OD PA AB ===, ∴PO=OA=2,∴P 点坐标为(-2,0).故选:C .本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.3.C【解析】根据题意,分析可得△ABC 与△A′B′C′的各对应点的位置关系,面积的大小关系等,进而由几何变化的定义可得答案.根据题意,由于△ABC 平行地面放置,且在灯泡的照射下,所以△ABC 与△A′B′C′的各对应点的位置不变,且其连线应交于灯泡的所在的地方,面积大小不一,所以属于位似变换,故选:C .本题考查了常见几何变化的定义与判定,注意结合题意,把握几何变化的定义进行判断. 4.D【解析】利用位似图形的性质得出位似比,进而得出对应点的坐标.解:∵矩形OA′B′C′的面积等于矩形OABC 面积的14, ∴两矩形面积的相似比为:1:2,∵B 的坐标是(6,4),∴点B′的坐标是:(3,2)或(−3,−2).故答案为:D .此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键.5.D【解析】直接利用位似图形的性质以及矩形、菱形的判定方法分别分析得出答案.解:A 、四条边相等的平行四边形是菱形,故此选项错误; B 、一条线段有且仅有一个黄金分割点不正确,一条线段有两个黄金分割点,故此选项错误; C 、对角线相等且互相平分的四边形是矩形,故此选项错误; D 、位似图形一定是相似图形,正确.故选:D .此题主要考查了位似图形的性质以及矩形、菱形的判定方法,正确掌握相关性质与判定是解题关键.6.B【解析】 根据13AD AC =,可推出ABD ∆和BCD ∆的面积比,由已知ABD ∆和BCD ∆的面积和是18,可求出ABD ∆的面积,同理,由14AE AB =,可知ADE ∆和BDE ∆的面积比,即可求出BDE ∆的面积.∵13AD AC = ∴12S ABD AD S BDC CD == ∴318S ABC S ABD S BCD S ABD =+== ∴6S ABD = ∵14AE AB = ∴13AE BE ∴13S ADE AE S BDE BE == ∴463S ABC S ADE S BDE S BDE =+== ∴92S BDE =故选:B 本题考查了两个三角形同高时,面积比就等于底边的比,已知两个三角形底边比和面积和,即可分别求出两个三角形面积.7.C【解析】根据位似图形的性质结合图形写出对应坐标即可.∵小“鱼”与大“鱼”的位似比是1:2∴大“鱼”上对应“顶点”的坐标为(-2a ,-2b )故答案为:C .本题考查了位似图形的问题,掌握位似图形的性质是解题的关键.8.D【解析】根据位似三角形的性质画出△A 1B 1C 1,再根据位似的性质求出点B 的对应点B 1的坐标即可. 解:由图可知,点B 的坐标为(2,1),∵以原点O 为位似中心,画△A 1B 1C 1,使它与△ABC 的相似比为2,∴点B 的对应点B 1的坐标是(2×2,1×2)或(﹣2×2,﹣1×2),即(4,2)或(﹣4,﹣2), 故选:D .本题考查了位似三角形的问题,掌握位似三角形的性质是解题的关键.9.8.【解析】首先确定相似比,然后确定面积的比,根据一个三角形的面积求得另一个三角形的面积即可. 解:∵点D ,E ,F 分别是OA ,OB ,OC 的中点, ∴12DF AC =, ∴△DEF 与△ABC 的相似比是1:2, ∴2()DEF ABC S DF S AC ∆∆=,即214ABC S ∆=, 解得:S △ABC =8,故答案为:8.本题主要考查了三角形中位线定理、位似的定义及性质,掌握面积的比等于相似比的平方是解题的关键.10.(1,-1)【解析】连接BC ,由三角形OAB 与三角形OCD 为位似图形且相似比为1:2,根据B 的坐标确定出D 坐标,进而得到B 为OD 中点,利用直角三角形中斜边上的中线等于斜边的一半,确定出BC 与OB 的长,再利用三线合一性质得到CB 垂直于OD ,即可确定出C 坐标.连接BC ,∵△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,且B(1,0),∴OB=1,OD=2,即B 为OD 中点,∵OC=CD ,∴CB ⊥OD ,在Rt △OCD 中,CB 为斜边上的中线,∴CB=OB=BD=1,则C 坐标为(1,-1),故答案为:(1,-1).本题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.(2.5,5)【解析】直接利用位似图形的性质得出位似比进而得出答案.∵将OBC ∆各顶点的横、纵坐标都乘以一个相同的数得到OED ∆,(2,0)C ,(5,0)D .∴对应点坐标同乘以2.5即可故(1,2)B ,对称点E 的坐标为:(2.5,5).故答案为:(2.5,5).本题考查了位似图形的其中一个性质,位似图形上任意一对对应点到位似中心的距离之比等于位似比.12.()2,1或()2,1--【解析】首先根据题意可知矩形OABC 缩小为原来的12,则点B 的横坐标及纵坐标都将进行相应的变化,据此进一步求解即可.由题意得:矩形OABC 缩小为原来的12, ∴缩小后的矩形与最初的矩形OABC 的位似比为12, ∵位似变换是以原点为位似中心,∴位似图形对应点的坐标比为12±, 又∵点B 的坐标为(4,2),∴点B '的坐标为(2,1)或(2-,1-),故答案为:(2,1)或(2-,1-). 本题主要考查了位似图形的性质,熟练掌握相关概念是解题关键.13.()20192,0-【解析】根据∠A n OB n =60°得出该旋转过程是6次一循环,根据2019÷6的余数判定点2019A 和点3A 方向相同,再根据数值变化规律得出2019A 的坐标.解:由题意可知:A 1(1,A 2(-2,,A 3(-8,0),A 4(-8,,∵∠A n OB n =60°,直线OA 在旋转过程中是每6次一个循环,201963363÷=⋅⋅⋅⋅⋅⋅,∴点2019A 和点3A 方向相同,由题意,得231232,2,2OA OA OA ===,20192019OA 2∴=,∴点2019A 的坐标是()20192,0-. 故答案为:()20192,0-.本题考查了点的坐标以及直角三角形的性质,解题的关键是归纳出点A 的坐标变化规律. 14.(8,0)【解析】连接任意两对对应点,看连线的交点为那一点即为位似中心.解:连接BB 1,A 1A ,易得交点为(8,0).故答案为:(8,0).用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.15.(3,2)或(﹣3,﹣2)【解析】根据以原点O 为位似中心的位似变换的性质计算,得到答案.∵以原点O 为位似中心,将△ABC 缩小得到△DEF ,△DEF 与△ABC 对应边的比为1:2, ∴△DEF 与△ABC 的相似比为1:2,∵C (6,4).∴点C 的对应点F 的坐标为(6×12,4×12)或(﹣6×12,﹣4×12).即(3,2)或(﹣3,﹣2), 故答案为:(3,2)或(﹣3,﹣2).本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .16.(1)图形见详解;(2)图形见详解,【解析】(1)根据位似中心和位似比找到A,B,C 的对应点111,,,A B C ,顺次连接111,,A B C 即可得出答案;(2)先找到111,,A B C 的对应点222,,A B C ,顺次连接222,,A B C 即可得到222A B C ∆,然后利用弧长公式即可求出1A 绕着点1C 旋转到点2A 所经过的路径的长.(1)如图,(2)如图,∵11AC == ,∴1A 绕着点1C 旋转到点2A 所经过的路径的长为:l ==. 本题主要考查画位似图形和旋转图形,掌握位似图形和旋转图形的画法及弧长公式是解题的关键.17.(1)见解析,1(3,3)B -;(2)见解析.【解析】(1)根据绕原点O 按逆时针方向旋转90的性质画出△111A B C ,再写出点1B 的坐标即可; (2)由(3,1)C 和2(6,2)C --可知位似比为-2,直接利用位似图形的性质得出对应点位置. 解:(1)如图所示:1(3,3)B -(2)如图所示:此题主要考查了位似变换以及旋转变换,理解旋转变换及位似变换的性质、正确得出对应点位置是解题关键.18.见解析【解析】由OA B ''△与OAB 的相似比为2可知图形是放大,延长BO 至'B ,使'2OB OB =,按同样的方法确定'A 即可.解:延长BO 至'B ,使'2OB OB =,得到B 的对应点'B ,按同样的方法确定A 的对应 'A ,如图OA B ''△即为所求.本题考查的是位似作图,掌握相似三角形的性质是作图的关键.19.(1))△A1B1C1见解析,A1(-1,2),B1(1,4),C1(3,3);(2)见解析【解析】(1)点A1与点A重合,然后分别画出点B,点C绕点A顺时针旋转90°后的对应点B1,C1即可;(2)延长OA1到A2,使得OA2=2OA1即可,同法可得B2、C2.解:(1)△A1B1C1如图所示,A1(-1,2),B1(1,4),C1(3,3);(2)△A2B2C2如图所示.本题考查旋转变换、位似变换等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考基础题.20.(1)见解析;(2)A B''的长为4cm【解析】(1)根据位似图形的性质直接得出位似中心即可;(2)利用位似比得出对应边的比进而得出答案.解:(1)如图所示:连接BB′、CC′,它们的交点即为位似中心O;(2)∵△ABC 与△A′B′C′是位似图形,且位似比是1:2,AB=2cm ,∴A′B′的长为4 cm .此题主要考查了位似图形的性质,利用位似比等于对应边的比得出是解题关键.21.(1)画图见解析;点C 1的坐标是(1,0);(2)10.【解析】(1)利用位似图形的性质得出对应点位置,连线即可;(2)利用等腰直角三角形的性质得出△A 1B 1C 1的面积即可.(1)如图所示,根据位似图形的性质,分别找到点A 、B 、C 的对应点A 1、B 1、C 1连接各点得到△A 1B 1C 1,从图中可知,点C 1的坐标是(1,0);(2)根据图形可知,211A B =40,211A C =20 ,211B C =20,满足勾股定理,211A B =211A C +211B C ,∴△A 1B 1C 1是等腰直角三角形,∴△A 1B 1C 1的面积是:1212×20=10, 答:△A 1B 1C 1的面积是10平方单位,故答案为:10.本题考查了位似图形的作图,勾股定理逆定理的应用,平面直角坐标系中的图形面积,掌握位似图形的作图是解题的关键.22.(1)图详见解析,C1(-3,2);(2)图详见解析,C2(6,4);(3)D2(2a,2b)【解析】(1)依据轴对称的性质,即可得到△ABC关于y轴对称的图形△A1B1C1,进而得出C1点的坐标;(2)依据原点O为位似中心,位似比为1:2,即可得出△ABC放大后的图形△A2B2C2,进而得到C2点的坐标;(3)依据原点O为位似中心,位似比为1:2,即可得出对应点D2的坐标.解:(1)如图所示,△A1B1C1即为所求,C1(-3,2);(2)如图所示,△A2B2C2即为所求,C2(6,4);(3)∵原点O为位似中心,位似比为1:2,∴点D(a,b)的对应点D2的坐标为(2a,2b).此题主要考查了利用位似变换进行作图,正确利用位似的性质得出对应点位置是解题的关键.23.(1)详见解析;(2)详见解析;(3)(0,4),(0,﹣4).【解析】(1)直接利用关于x轴对称点的性质得出对应点坐标进而得出答案;(2)直接利用关于位似图形的性质得出对应点坐标进而得出答案;(3)直接利用三角形面积求法得出答案.(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:当△OB2P的面积为6时,点P的坐标为:(0,4),(0,﹣4).此题主要考查了轴对称变换以及位似变换,正确得出对应点位置是解题关键.24.(1)见解析;(2)见解析;(3)14【解析】(1)根据轴对称的特点确定对应点并顺次连线即可;(2)分别连接MA1、MA2、MA3并延长相等的距离得到对应点并顺次连线即可;(3)利用割补法即可求出.(1)如图,(2)如图,(3) 222A B C ∆面积=11148242628222⨯-⨯⨯-⨯⨯-⨯⨯=14, 故答案为:14. 此题考查作图能力,正确掌握轴对称的性质、位似图形的性质是解题的关键,还应掌握网格中图形面积的计算方法.25.(1)见解析, A 1(2,3);(2)见解析,A 2(4,-6).【解析】(1)根据旋转变换的定义,将三角形的三个顶点分别顺时针旋转90°后得到对应点,顺次连接即可得;(2)根据位似变换的定义得出点的对应点,顺次连接即可得.解:(1)如下图所示:111A B C △即为所求,A 1坐标为(2,3);(2)如下图所示:222A B C △即为所求,A 2坐标为(4,−6).本题考查了旋转作图及图形位似的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、位似的特点.26.(1)如图所示A B C '''∆;(2)如图所示BA C ''''∆, C ''的坐标为(1,3).【解析】(1)根据关于原点对称图形的性质作出图形即可;(2)根据位似图形的性质得出对应点位置,然后确定C ''的坐标即可.解:(1)如图所示:A B C '''∆,即为所求;(2)如图所示:BA C ''''∆,即为所求, C ''的坐标为(1,3)本题主要考查了位似变换以及旋转变换,运用位似变换和旋转变换找到对应点位置是解题关键.27.(1)见解析;(2)见解析,B 1(5,4);(3)BC ∥B 1C 1,B 1C 1=2BC【解析】(1)根据点A、C的坐标即可建立坐标系;(2)根据位似变换的概念作图即可得;(3)利用位似图形的性质可得答案.解:(1)建立的平面直角坐标系如图所示:(2)如图所示,△A1B1C1即为所求,其中B1点坐标为(5,4),故答案为:(5,4);(3)由位似图形的性质可得BC∥B1C1,B1C1=2BC,故答案为:BC∥B1C1,B1C1=2BC.本题考查额方格作图的问题,掌握位似变换的概念、位似图形的性质是解题的关键.28.()1详见解析;()21:2.【解析】(1)直接利用位似图形的性质连接对应点,进而得出点O的位置;(2)直接利用位似图形的性质得出位似比.解:(1)如图所示:点O即为所求.(2)∵'1 2OAOA∴ABC与'''A B C的位似比为1∶2.故答案为1∶2.本题主要考查了位似变换. 正确掌握位似图形的性质是解题的关键.29.作图见详解,位似比为1:2【解析】连接BB′、CC′,它们的交点P为位似中心,根据位似的性质相似比等于位似比,所以计算AB与A′B′的值即可得到△ABC与△A′B′C′的位似比.解:如图,点P为位似中心.∵AB=1,A′B′=2,∴△ABC与△A′B′C′的位似比=AB:A′B′=1:2.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行或共线.30.(1)详见解析;(2)图详见解析,点B2的坐标为(4,0).【解析】(1)将△ABC向上平移4个单位得到的△A1B1C1即可;(2)画出△A2B2C,并求出B2的坐标即可.解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C为所求三角形,点B2的坐标为(4,0).本题考查了作图-位似变换,平移变换,熟练掌握位似、平移的性质是解本题的关键.。
第二十七章第3节《位似》单元测试题 (17)一、单选题1.如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为(9,0)、(6,﹣9),△AB'O'是△ABO 关于点A 的位似图形,且O'的坐标为(﹣3,0),则点B'的坐标为( )A .(8,﹣12)B .(﹣8,12)C .(8,﹣12)或(﹣8,12)D .(5,﹣12)2.1. 下列说法不正确的是 ( )A .位似图形一定是相似图形B .相似图形不一定是位似图形C .位似图形上任意一对对应点到位似中心的距离之比等于位似比D .位似图形中每组对应点所在的直线必相互平行3.将OAB ∆以点O 为位似中心放大为原来的2倍,得到OA B ''∆,则:OAB OA B S S ''∆∆等于( ) A .1:2 B .1:3 C .1:4 D .1:84. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3) 5.平面直角坐标系中,有一条鱼,它有六个顶点,则( )A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横,纵坐标都乘以2,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以12,得到的鱼与原来的鱼位似6.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)7.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.128.在下列图形中,不是位似图形的是()A.B.C.D.9.如图,在平面直角坐标系中,以原点O为位似中心,在第一象限内,按照位似比2:3将OAB放大得到OCD,且A点坐标为(2,3),B点坐标为(3,3),则线段CD长为()A .13B .2C .23D .32二、解答题10.如图,△ABC 的顶点坐标分别为A(1,3)、B(4,2)、C(2,1),以原点为位似中心,在原点的另一侧画出△A 1B 1C 1 ,使11AB A B =12,并写出△A 1B 1C 1 各顶点的坐标.11.已知O 是坐标原点,A 、B 的坐标分别为(3,1),(2,﹣1):(1)画出△OAB 绕点O 顺时针旋转90°后得到的△OA 1B 1;(2)以O 为位似中心,相似比为2,在y 轴左侧将△OAB 放大,得到△OA 2B 2,在网格中画出△OA 2B 2并直接写出A 2、B 2两点坐标.12.如图,在边长为1个单位长度的正方形网格中,有一个格点△ABC (各个顶点都是正方形网格的格点).(1)画出△ABC 关于直线l 对称的格点△111A B C ;A B C;(2)画出以点O为位似中心,在网格内把△ABC放大到原来的2倍的△222A B C.(3)画出△ABC绕点O逆时针旋转90°后得到的△33313.如图,在平面直角坐标系中,点A,B,E,D,F的坐标分别是A(4,3),B(4,0),E(5,0),D(13,6),F(13,0),△DEF 是由△AOB经过位似变换得到的,求位似中心的坐标.14.如图,△OAB的顶点坐标分别为O(0,0)、A(3,2)、B(2,0),将这三个顶点的坐标同时扩大到原来的2倍,得到对应点D、E、F.(1)在图中画出△DEF;(2)点E是否在直线OA上?为什么?(3)△OAB与△DEF______位似图形(填“是”或“不是”)15.如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)将△ABC绕O点逆时针旋转90°,得到△A1B1C1;(2)以点P(-1,1)为位似中心,在△ABC的异侧作位似变换,且使△ABC的面积扩大为原来的4倍,得到△A2B2C2,并写出点A2的坐标.16.如图,已知在平面直角坐标系中,A(2,1),B(3,3),C(5,2).(1)画图:以A点为位似中心向右侧放大两倍;(2)△ABC内有一点p(a,b)求放大后对应点的坐标.17.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是.(2)探究:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG ⊥BE .(3)应用:在(2)情况下,连结GE (点E 在AB 上方),若GE ∥AB ,且AB AE =1,则线段DG 是多少?(直接写出结论)18.如图,以O 为位似中心,在网格内作出四边形ABCD 的位似图形,使新图形与原图形的相似比为2:1,并以O 为原点,写出新图形各点的坐标.19.图①、图②、图③都是66⨯的网格,每个小正方形的顶点称为格点.ABC 顶点A 、B 、C 均在格点上,在图①、图②、图③给定网格中按要求作图,并保留作图痕迹.(1)在图①中画出ABC 中BC 边上的中线AD ;(2)在图②中确定一点E ,使得点E 在AC 边上,且满足BE AC ⊥;(3)在图③中画出BMN △,使得BMN △与BCA 是位似图形,且点B 为位似中心,点M 、N 分别在BC 、AB 边上,位似比为13.20.如图,直线13y x b =-+与x 轴,y 轴分别交于,A B 两点,与反比例函数()0k y x x=<交于点,C 点A 的坐标为()3,0,CD x ⊥轴于点D .(1)点B 的坐标为 ;(2)若点B 为AC 的中点,求反比例函数()0k y x x=<的解析式; (3)在(2)条件下,以CD 为边向右作正方形,CDEF EF 交AC 于点,G 直接写出CGF △的周长与ABO 的周长的比.21.ABC ∆在边长为1的正方形网格中如图所示.(1)以点C 为位似中心,作出ABC ∆的位似图形111A B C ∆,使其位似比为1:2.且111A B C ∆位于点C 的异侧,并表示出1A 的坐标;(2)作出ABC ∆绕点C 顺时针旋转90︒后的图形222A B C ∆.三、填空题22.已知:△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以O为位似中心画△A1B1C1,使得△A1B1C1与△ABC位似,且相似比是3,则点C的对应顶点C1的坐标是_________.23.已知ABC与DEF是位似图形,以x轴上的一点为位似中心,点(1,1)A-的对应点D的坐标为(1,2),则(2,2)B-的对应点E的坐标为_______.24.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是_____________.25.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是_______.26.如图,正方形OABC 与正方形ODEF是位似图,点O为位似中心,位似比为2:3 ,点A 的坐标为(0,2),则点E的坐标是____.27.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为12,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′_____,B′_____;点A到原点O的距离是______.28.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3∶4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是______.29.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD =27,则S△EFC等于_____.【答案与解析】1.D【解析】过点B作BC⊥OA于点C,过点B′作B′D⊥AO于点D,利用位似图形的性质可求出B′D的长,可得B′的纵坐标,利用待定系数法可得直线AB的解析式,把B′纵坐标代入即可得B′的横坐标,即可得答案.过点B作BC⊥OA于点C,过点B′作B′D⊥AO于点D,∴BC、B′D分别是△ABO和△AB′O′的高,∵A(9,0)、B(6,﹣9),O′(-3,0),∴AO=9,AO′=12,BC=9,∵△AB′O′是△ABO关于点A的位似图形,∴AOAO'=BCB D',即912=9DB',解得:B′D=12,∴点B′的纵坐标为-12,设直线AB的解析式为:y=kx+b,∴9069 k bk b+=⎧⎨+=-⎩,解得:k3b27=⎧⎨=-⎩,∴直线AB的解析式为:y=3x﹣27,当y=﹣12时,﹣12=3x﹣27,解得:x=5,故B′点坐标为:(5,﹣12),故选D.此题主要考查了位似图形的性质以及相似三角形的性质,熟练掌握相似三角形的对应高的比等于相似比是解题关键.2.D【解析】本题主要考查了位似图形的定义.如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫位似图形,这个点叫做位似中心,因而A,B,C正确,D错误.解:根据位似图形的定义可知,B,C正确,似图形中每组对应点所在的直线相交于一点,D错误.故选D.3.C【解析】根据位似图形都是相似图形,再直接利用相似图形的性质:面积比等于相似比的平方计算可得.)∵将△OAB放大到原来的2倍后得到△OA′B′,∴S△OAB:S△OA′B′=1:4.故选:C.本题考查位似图形的性质,解题关键是首先掌握位似图形都是相似图形.4.D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形.把一个图形变换成与之位似的图形是位似变换.因此,∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC.∵矩形OA′B′C′的面积等于矩形OABC面积的14,∴位似比为:12.∵点B的坐标为(-4,6),∴点B′的坐标是:(-2,3)或(2,-3).故选D.5.C【解析】解:平面直角坐标系中图形的各个顶点,如果横纵坐标同时乘以同一个非0的实数k,得到的图形与原图形关于原点成位似图形,位似比是|k|.若乘的不是同一个数,得到的图形一定不会与原图形关于原点对称.故选C.6.A试题分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.考点:位似变换;坐标与图形性质.7.D【解析】利用位似图形的面积比等于位似比的平方,进而得出答案.解:根据位似比可得:△ABC的面积:△A′B′C′的面积=1:4,则△A′B′C′的面积=12.故选:D此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.8.D【解析】根据位似图形的定义分析各图,对各选项逐一分析,即可得出答案.对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选:D.此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.9.D【解析】先求出AB的长,再根据位似图形的性质即可求解.∵A点坐标为(2,3),B点坐标为(3,3),∴AB=1∵按照位似比2:3将OAB放大得到OCD,∴23 AB CD故CD=32故选D .此题主要考查位似的求解,解题的关键是熟知位似图形的性质10.画图见解析;点A 1(-2,-6),B 1(-8,-4),C1(-4,-2).【解析】 根据题意利用画位似图形的作图技巧以原点为位似中心,以12为位似比作图并结合图像写出△A 1B 1C 1 各顶点的坐标. 解:利用画位似图形的作图技巧以原点为位似中心,以12为位似比作图: 因为11AB A B =12,△A 1B 1C 1 各顶点的坐标为原坐标A(1,3)、B(4,2)、C(2,1),横纵坐标互为相反数的2倍,即A 1(-2,-6),B 1(-8,-4),C 1(-4,-2).本题考查位似图形的作图,熟练掌握并利用画位似图形的作图技巧以及位似比进行作图分析是解题的关键.11.(1)见解析;(2)A 2(﹣6,﹣2)、B 2(﹣4,2)【解析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案.(1)如图所示:△OA 1B 1,即为所求;(2)如图所示:△OA 2B 2,即为所求,A 2(﹣6,﹣2)、B 2(﹣4,2).考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.12.(1)见解析(2)见解析(3)见解析【解析】(1)利用对称的性质分别作出A、B、C关于直线l的对称点A1、B1、C1即可得到△A1B1C1;(2)延长AO到A2使A2O=2OA,则点A2为点A的对应点,同样方法作出B、C的对应点B2、C2,从而得到△A2B2C2为所作;(3)根据网格特点和旋转的性质画出A、B、C对称点A3、B3、C3,从而得到△A3B3C3.(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,△A3B3C3为所作..【知识点】本题考查了位似变换以及轴对称变换以及旋转变换,根据题意得出对应点位置是解题关键.13.位似中心的坐标为P(-5,0).【解析】利用已知坐标得出位似比,进而求出位似中心的坐标.解:连接DA,并延长交x轴于点P,因为A(4,3),B(4,0),E(5,0),D(13,6),F(13,0),△DEF是由△AOB经过位似变换得到,所以相似比为3162=,则12PBPF=,即41132POPO+=+,解得PO=5.故位似中心的坐标为P(-5,0).此题考查位似变换以及坐标与图形的性质,解题关键是得出位似比.14.(1)见解析;(2)点E在直线OA上;(3)是.【解析】(1)根据题意将各点坐标扩大2倍得出答案;(2)求出直线OA的解析式,进而判断E点是否在直线上;(3)利用位似图形的定义得出△OAB与△DEF的关系.解:(1)如图所示:△DEF,即为所求;(2)点E在直线OA上,理由:设直线OA的解析式为:y=kx,将A(3,2)代入得:2=3k,解得:k=23,故直线OA的解析式为:y=23x,当x=6时,y=23×6=4,故点E在直线OA上;(3)△OAB与△DEF是位似图形.故答案为是.本题考查的知识点是作图-位似变换,解题的关键是熟练的掌握作图-位似变换. 15.(1)作图见解析(2)作图见解析,点A2的坐标为:(1,-5)【解析】(1)根据旋转的意义,分别连接OA、OB、OC,将它们绕点O分别逆时针旋转90°即可.(2)根据相似的性质,得出两图形的相似比,相似比即为位似比,然后根据位似的作图方法进行位似作图即可.通过观察图形即可确定A 2的坐标.解:(1)分别连接OA 、OB 、OC将OA 、OB 、OC 分别以点O 为旋转中心,逆时针旋转90°,到111OA OB OC 、、,连接111A B C 、、,如图所示:△A 1B 1C 1,即为所求;(2)根据相似的性质,面积之比等于相似比的平方,可知变换后的图形与三角形ABC 相似,且相似比为21:,位似比等于相似比,连接AP 并延长AP 到2A ,使2PA =2AP,连接CP 并延长CP 到2C ,使2PC =2CP,连接BP,并延长BP 至2B ,使22PB BP ,连接222A B C 、、如图所示:△A 2B 2C 2,即为所求,由图可知:点A 2的坐标为:(1,-5).本题考查了旋转作图和位似作图,解决本题的关键是熟练掌握旋转和位似的意义以及它们的作图方法.16.(1)如图,△AB ′C ′为所作;见解析;(2)(2a ﹣2,2b ﹣1).【解析】(1)作AB BB '=,AC CC '=,连接B C ''即可;(2)先平移到原点,再根据为似图形求解即可;(1)如图,△AB ′C ′为所作;(2)把A 点向左平移2个单位,向下平移1个单位与原点重合,点P (a ,b )向左平移2个单位,向下平移1个单位的对应点P 1的坐标为(a ﹣2,b ﹣1), 点P 1(a ﹣2,b ﹣1)以原点为位似中心向右侧放大两倍的对应点P 2的坐标为(2a ﹣4,2b ﹣2), 把点P 2(2a ﹣4,2b ﹣2)向右平移2个单位,向上平移1个单位的对应点P ′的坐标为(2a ﹣2,2b ﹣1).故答案为(2a ﹣2,2b ﹣1).本题主要考查了坐标系中位似图形的知识点,准确分析作图是解题的关键.17.(1)BE =DG ,BE ⊥DG ;(2)证明见解析;(3)4【解析】(1)先判断出△ABE ≌△ADG ,进而得出BE=DG ,∠ABE=∠ADG ,再利用等角的余角相等即可得出结论;(2)先利用两边对应成比例夹角相等判断出△ABE ∽△ADG ,得出∠ABE=∠ADG ,再利用等角的余角相等即可得出结论;(3)先求出BE ,进而得出BE=AB ,即可得出四边形ABEG 是平行四边形,进而得出∠AEB=90°,求出BE ,借助(2)得出的相似,即可得出结论.(1)①∵四边形ABCD 和四边形AEFG 是正方形,∴AE=AG ,AB=AD ,∠BAD=∠EAG=90°,∴∠BAE=∠DAG ,在△ABE 和△ADG 中,AB AD BAE DAG AE AG ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△ADG (SAS ),∴BE=DG ;②如图2,延长BE 交AD 于G ,交DG 于H ,由①知,△ABE ≌△ADG ,∴∠ABE=∠ADG ,∵∠AGB+∠ABE=90°,∴∠AGB+∠ADG=90°,∵∠AGB=∠DGH ,∴∠DGH+∠ADG=90°,∴∠DHB=90°,∴BE ⊥DG(2)∵四边形ABCD 与四边形AEFG 都为矩形,∴∠BAD=∠DAG ,∴∠BAE=∠DAG ,∵AD=2AB ,AG=2AE , ∴12AB AE AD AG ==, ∴△ABE ∽△ADG ,∴∠ABE=∠ADG ,∵∠AGB+∠ABE=90°,∴∠AGB+∠ADG=90°,∵∠AGB=∠DGH ,∴∠DGH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)∵EG∥AB,∴∠DME=∠DAB=90°,在Rt△AEG中,AE=1,∴AG=2AE=2,根据勾股定理得,∵∴EG=AB,∵EG∥AB,∴四边形ABEG是平行四边形,∴AG∥BE,∵AG∥EF,∴点B,E,F在同一条直线上如图5,∴∠AEB=90°,在Rt△ABE中,根据勾股定理得,,由(3)知,△ABE∽△ADG,∴12 BE ABDG AD=,∴212 DG=,∴DG=4.此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,旋转的性质,判断出△ABE≌△ADG或△ABE∽△ADG是解本题的关键.18.作图详见解析;A′(2,4),B′(4,8),C′(8,10),D′(6,2).【解析】以O为位似中心,作四边形ABCD的位似图形,使各边都扩大2倍,再根据O为原点,写出新图形各点的坐标即可.解:如图所示,新图形为四边形A′B′C′D′,新图形各点坐标分别为A′(2,4),B′(4,8),C′(8,10),D′(6,2).本题考查作图——位似变换.19.(1)见解析;(2)见解析;(3)见解析【解析】(1)根据中线的定义,取BC中点D,连接AD即可;(2)将AC所在的2×4的长方形逆时针旋转90°即可确定点E;(3)将AC向左平移4个单位后,分别与BC、AB交于点M、N即可得出答案.解:(1)如图①所示,AD即为所求;(2)如图②所示,点E即为所求;(3)如图③所示,△BMN即为所求.本题主要考查作图﹣位似变换,解题的关键是掌握位似变换的定义和性质及平行线分线段成比例定理.20.(1)()0,1;(2)6y x =-;(3)23【解析】(1)将点A 代入一次函数,从而得出一次函数的解析式,然后再求B 点的坐标;(2)根据题意,OB 是△ACD 的中位线,利用中位线的性质可得点C 的坐标,代入反比例函数可得解析式;(3)先证△CFG ∽△AOB ,在根据点的坐标,可求得CD 、AO 的长,根据相似三角形线段比即为周长比解得.(1)∵一次函数过点A ()3,0,代入得: 1033b =-⋅+ 解得:b=1∴一次函数为:113y x =-+ 令x=0,则y=1∴B(0,1)(2),//.AB BC OB CD =,2OA OD CD OB ∴==()()()3,0,0,1,3,2A B C -.点C 在k y x=上 2,k x∴= 6y ∴=-∴反比函数解析式为6y x =-. (3)()()()3,0,D 3,0,3,2A C --∴CD=2,AO=3∵四边形CFED 是正方形,∴CF=CD=2,CF ∥AO ,∠F=90°∴∠FCG=∠BAO∵∠BOA=∠F=90°∴△CFG ∽△AOB∴CGF △的周长与ABO 的周长的比为:CF AO =23本题考查正方形的性质、求一次函数和反比例函数的解析式、相似的应用,解题关键是利用函数解析式,得出各个点的坐标,从而得出线段长度,进而开展推导过程.21.(1)图见解析,A 1的坐标为(3,-3);(2)图见解析.【解析】(1)延长AC 到A 1使A 1C=2AC ,延长BC 到B 1使B 1C=2BC ,则△A 1B 1C 满足条件,再写出A 1坐标即可;(2)利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2,从而得到△A 2B 2C .解:(1)如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3);(2)如图,△A 2B 2C 为所作;本题考查了作图——位似变换和作图——旋转变换.(1)中画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.(2)作旋转图形时,需明确旋转中心,旋转方向和旋转角度.22.()6,3或()6,3--【解析】根据位似图形的特点可知将对应点坐标乘以±3故可求解. 解:∵以O 为位似中心画△A 1B 1C 1,使得△A 1B 1C 1与△ABC 位似,且相似比是3,∴对应点坐标乘以±3,∵C (2,1),∴点C 1的坐标为:(6,3)或(﹣6,﹣3).故答案为:(6,3)或(﹣6,﹣3).此题主要考查坐标与图形性质、位似变换,解题的关键是熟知位似的特点.23.(7,4)-【解析】根据位似性质,先画出对应边AB 和DE ,作AF ⊥x 轴,DG ⊥x 轴,根据对应点的纵坐标求出位似比,根据位似比的意义求出位似中心坐标和点E 的纵坐标,再根据位似性质进一步求出E 的横坐标.如图,画出对应边AB和DE,则AB∥DE,作AF⊥x轴,DG⊥x轴,由已知可设位似中心P(x,0),E (a,b)因为AF⊥x轴,DG⊥x轴,所以AF∥DG所以AF PADG PD==PBPE=ABDE因为点A(-1,1)的对应点D的坐标为(1,2),所以,AB AF PADE DG PD===12,所以,212 PA PBPD PE b-===所以,根据位似性质,1121,122xx b---==-,分别解得x=-3,b=-4所以PBPE=()()23132a--=--,解得a=7所以E(7,-4)故答案为(7,-4)考核知识点:坐标与位似图形.根据题意画出图形,求出位似比是关键. 24.1:4【解析】由题意可知:△DEF∽△ABC,且相似比为1:2,∴△DEF与△ABC的面积比为:1:4.故答案为1:4.25.(52,-1)或(-52,1).【解析】试题解析:∵以原点O 为位似中心,位似比为1:2,把△ABO 缩小,B (5,-2),∴点B 的对应点B′的坐标是:(52,-1)或(-52,1). 考点:1.位似变换;2.坐标与图形性质.26.(3,3)【解析】根据位似图形的比求出OD 的长即可解题.解:∵正方形OABC 与正方形ODEF 是位似图,位似比为 2:3 ,∴OA:OD=2:3,∵点A 的坐标为(0,2),即OA=2,∴OD=3,DE=EF=3,故点E 的坐标是(3,3).本题考查了位似图形,属于简单题,根据位似图形的性质求出对应边长是解题关键.27.(12m ,12m ) (n ,12n ) m .【解析】根据位似图形的性质得出即可.∵点A (m ,m ),B (2n ,n ),以原点O 为位似中心,相似比为1:2把线段AB 缩小,∴A ,B 对应点都乘以12或即可得出答案, 则点A 的对应点坐标为:(12m ,12m ),点B 的对应点坐标为:(n ,12n ).由勾股定理得,=故答案为(12m ,12m );(n ,12n ); m .此题主要考查了位似变换的性质,注意要分在位似中心的同侧与异侧两种情况求解.28.(2,【解析】根据题意得出D 点坐标,再解直角三角形进而得出答案.分别过A 、C 作AE ⊥OB ,CF ⊥OB ,∵∠OCD =90°,∠AOB =60°,∴∠ABO =∠CDO =30°,∠OCF =30°,∵△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为3:4,点B 的坐标是(6,0),∴D(8,0),则DO=8,故OC=4,则FO=2,CF=CO•cos30°=4×2=故点C的坐标是:(2,.故答案为:(2,.此题主要考查了位似变换,运用位似图形的性质正确解直角三角形是解题关键.29.12【解析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的面积比等于相似比的平方即可求解.解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,CE=2EB,∴△AFD∽△CFE,且它们的相似比为3:2,∴S△AFD:S△EFC=(32)2,而S△AFD=27,∴S△EFC=12.故答案为12.本题考查相似三角形的判定与性质,解题关键是首先利用平行四边形的对边平行且相等构造相似三角形的相似条件,然后利用其性质即可求解.。
第二十七章第3节《位似》单元测试题 (6)一、单选题1.如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(2,1)B .(-1,-2)C .(2,1)或(-2,-1)D .(1,2)或(-1,-2)2.下列命题是假命题的是( )A .位似比为1:2的两个位似图形的面积比为1:4B .点P (﹣2,﹣3)到x 轴的距离是2C .n 边形n≥3的内角和是180°n ﹣360°D .2、3、4这组数据能作为三角形三条边长3.如图,在平面直角坐标系中,已知点A (2,4),B (4,1),以原点O 为位似中心,将△OAB 扩大为原来的4倍,则点A 的对应点的坐标是( )A .(12,1) B .(-12,-1) C .(8,16)或(﹣16,﹣8) D .(8,16)或(﹣8,﹣16)4.如图,在56 的网格中,每个小正方形边长均为1,ABC 的顶点均为格点,D 为AB 中点,以点D 为位似中心,相似比为2,将ABC 放大,得到'''A B C ,则'BB =( )AB C D5.将OAB 以点O 为位似中心放大为原来的2倍,得到''OA B ,则'':OABOA B S S等于( )A .1:2B .1:3C .1:4D .1:86.下列语句中,不正确的是( ) A .位似的图形都是相似的图形 B .相似的图形都是位似的图形 C .位似图形的位似比等于相似比D .位似中心可以在两个图形外部,也可以在两个图形内部7.如图,在平面直角坐标系中,矩形 OABC 的顶点 O 在坐标原点,边 OA 在 x 轴上, OC 在 y 轴上, 如果矩形OA B C '''与矩形 OABC 关于点 O 位似,且矩形OA B C '''的面积等于矩形 OABC 面积的14,那么点 B ' 的坐标是( )A .3,12⎛⎫ ⎪⎝⎭B .3,12⎛⎫⎪⎝⎭或3,12⎛⎫-- ⎪⎝⎭C .3,12⎛⎫-- ⎪⎝⎭D .(3,2)或(-3,-2)8.如图,ABC ∆与A B C '''∆是位似图形,点O 是位似中心,若2OA AA '=,4ABC S ∆=,则A B C S '''∆等于( )A .6B .8C .9D .12二、解答题9.如图,在平面直角坐标系xOy 中,已知△ABC 和△DEF 的顶点分别为A (1,0)、B (3,0)、C (2,1)、D (4,3)、E (6,5)、F (4,7).按下列要求画图:以点O 为位似中心,将△ABC 向y 轴左侧按比例尺2:1放大得△ABC 的位似图形△A 1B 1C 1,并解决下列问题:(1)顶点A 1的坐标为 ,B 1的坐标为 ,C 1的坐标为 ;(2)请你利用旋转、平移两种变换,使△A 1B 1C 1通过变换后得到△A 2B 2C 2,且△A 2B 2C 2恰与△DEF 拼接成一个平行四边形(非正方形),写出符合要求的变换过程.10.如图,图中的小方格都是边长为1的正方形,点E 、A 、B 、C 都在小正方形的顶点上.(1)以点E 为位似中心,画111A B C △使它与ABC 的相似比为2(要求:画出所有图形,保留画图痕迹,不写画法)(2)若建立平面直角坐标系,使点A 在直角坐标系的坐标为(-2,0),请画出平面直角坐标系, 则点A 1的坐标是(3)三角形ACB 与三角形A 1C 1B 1的面积比为11.如图所示,在边长为1个单位长度的小正方形组成的网格中,ABC 的顶点A ,B ,C 在格点(网格线的交点)上.(1)将ABC 绕点B 逆时针旋转90 ,得到11A BC ,画出11A BC ;(2)以点A 为位似中心放大ABC ,得到22AB C △,使22AB C △与ABC 的位似比为2:1,请你在网格内画出22AB C △.12.如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为()()()4,3,3,1,1,3A B C ---,请按下列要求画图:(1)将ABC ∆先向右平移4个单位长度、再向下平移5个单位长度,得到111A B C ∆,画出111A B C ∆,并写出点B 的坐标;(2)以点A 为位似中心将ABC ∆放大2倍,得到222A B C ∆,画出222A B C ∆并写出点B 的坐标. 13.如图,ABC 在方格纸中(1)请在方格纸上建立平面直角坐标系,使()2,3A ,()6,2C ,并写出B 点坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将ABC 放大,画出放大后的图形A B C '''.14.如图,在边长为1的正方形网中建立平面直角坐标系,已知ABC 三个顶点分别为A (1-,2)、B (2,1)、C (4,5).(1)画出ABC 关于x 对称的111A B C △;(2)以原点O 为位似中心,在x 轴的上方画出222A B C △,使222A B C △与ABC 位似,且位似比为2,并求出222A B C △的面积.15.如图,图中的小方格都是边长为1的正方形,ABC 的顶点都在小正方形的顶点上.若点P 的坐标为()1,0-,点B 的坐标为()50,(1)则点A 的坐标是________.点C 的坐标是________.(2)画出ABC 关于点P 为位似中心的一个位似'''A B C ,且ABC 与'''A B C 的相似比为2;并写出下面三个点的坐标.点'A 的坐标是________,'B 的坐标是________,点'C 的坐标是________.16.如图,ABC 在坐标平面内三顶点的坐标分别为()0,2A ,()3,3B ,()2,1C .以点B 为位似中心,在图中画出11A BC ,使它与ABC 相似,且相似比为2,并写出11A BC 各顶点的坐标.(只需画出一种情况1:1:2=AB A B );1(A ________,________),1(B ________,________),1(C ________,________)17.如图,ABC 与111A B C △是位似图形.在网格上建立平面直角坐标系,使得点A 的坐标为()1,6-.()1在图上标出点,ABC 与111A B C △的位似中心.P 并写出点P 的坐标为________;()2以点A 为位似中心,在网格图中作22AB C △,使22AB C △和ABC 位似,且位似比为1:2,并写出点2C 的坐标为________.18.如图,在平面直角坐标系中,OAB 的顶点坐标分别为()0,0O ,()2,4A ,()4,0B ,分别将点A 、B 的横坐标、纵坐标都乘以1.5,得相应的点A '、B '的坐标.(1)画出OA B '';(2)OA B ''△与AOB ________位似图形;(填“是”或“不是”)(3)若线段AB 上有一点()00,D x y ,按上述变换后对应的A B ''上点的坐标是________. 19.画图:点()12A ,,()2,0B 把ABO 以点O 为位似中心放大到原来的2倍,且写出对应顶点的坐标.20.如图,在平面直角坐标系中,给出了格点△ABC (顶点均在正方形网格的格点上),已知点A 的坐标为(﹣4,3).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1.(2)以点O 为位似中心,在给定的网格中画△A 2B 2C 2,使△ABC 与△A 2B 2C 2位似,且点A 2的坐标为(8,﹣6).(3)△ABC与△A2B2C2的位似比是.21.按下列要求在如图格点中作图:(1)作出△ABC关于原点成中心对称的图形△A'B'C';(2)以点B为位似中心,作出△ABC放大2倍的图形△BA″C″.22.如图,在平面直角坐标系中,点A、点B的坐标分别为(1,3),(3,2).(1)画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O′A′B;(3)点M是OA的中点,在(1)和(2)的条件下,M的对应点M′的坐标为.23.如图,已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD,使新图与原图的相似比为2:1;(2)分别写出A,B的对应点C、D的坐标;(3)求△OCD的面积.三、填空题24.△ABC 与△DEF 是位似图形,且△ABC 与△DEF 的位似比是1:3,已知△ABC 的面积是2,则△DEF 的面积是_______.25.已知:如图,()6,2-E ,()2,2--F ,以原点O 为位似中心,相似比1:2,把EFO △在点O 另一侧缩小,则点E 的对应点'E 的坐标为________.26.画位似图形的依据是________.27.如图,'''A B C 是将ABC 放大后的图形,若图中线段1'2=AA OA ,且2'''18=A B C S cm ,则ABCS的面积是________.28.如图,ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(−1,0).以点C 为位似中心,在x 轴的下方作ABC 的位似图形,并把ABC 的边长放大到原来的2倍,记所得的像是A B C '''.设点A 的横坐标是a ,则点A 对应的点A '的横坐标是_________.29.如图,四边形OABC 为矩形,AB =1,矩形OA B C '''与矩形OABC 是位似图形,O 为位似中心,位似比为k ,过点B 的反比例函数y =kx(k≠0)的图象与A B '' 、B C ''分别交于点D ,E ,若ADA '的面积为3,则k 的值为________.30.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,在点O的异侧将△OAB缩小为原来的12,则点B的对应点的坐标是________.【答案与解析】1.C 【解析】利用位似图形的性质得出位似比,进而得出对应点的坐标. 解:∵矩形OA′B′C′的面积等于矩形OABC 面积的14, ∴两矩形面积的相似比为:1:2, ∵B 的坐标是(4,2),∴点B′的坐标是:(2,1)或(-2,-1). 故选:C .本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况. 2.B 【解析】根据位似的性质和相似三角形的性质对A 进行判断;根据点的坐标的意义对B 进行判断;根据多边形的内角和定理对C 进行判断;根据三角形三边的关系对D 进行判断. 解:A 、位似比为1:2的两个位似图形的面积比为1:4,所以A 选项为真命题; B 、点P (﹣2,﹣3)到x 轴的距离是3,所以B 选项为假命题; C 、n 边形n≥3的内角和为180°(n ﹣2),所以C 选项为真命题;D 、因为2+3>4,则2、3、4这组数据能作为三角形三条边长,所以D 选项为真命题. 故选:B .本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 3.D 【解析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k 解答.∵以原点O 为位似中心,将△OAB 放大为原来的4倍,得到△OA'B',A (2,4),∴点A 的对应点A′的坐标是:(24⨯,44⨯)或()()2444⎡⎤⨯-⨯-⎣⎦,,即(8,16)或(8-,16-). 故选:D .本题考查了位似变换的性质,平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 4.D 【解析】根据△A′B′C′和△ABC 以D 为位似中心,且位似比为1:2或2:1,得出对应点位置进而得出答案. ∵ AC =1,BC =2,∴ AB = ∵ ''ABC AB C ∽,相似比为2,∴12AB AB '=,∴ ''A B =∴ ()1'''2BB A B AB =-=同理:BB ″=A ″B ″A -″2B = 故选:D此题主要考查了位似变换,根据题意得出对应点位置是解题关键. 5.C 【解析】利用位似图形的性质得出位似比进而得出面积比.∵ 将OAB 以点O 为位似中心放大为原来的2倍,得到''OA B , ∴ OAB 与''OA B 的位似比为1:2, 则'':OABOA B SS=1:4.故选:C此题主要考查了位似变换,正确得出位似比和面积比是解题关键. 6.B 【解析】利用位似图形的性质分别判断得出即可.A 、位似的图形都是相似的图形,正确,不合题意;B 、相似的图形不一定是位似的图形,错误,符合题意;C、位似图形的位似比等于相似比,正确,不合题意;D、位似中心可以在两个图形外部,也可以在两个图形内部,正确,不合题意.故选:B.此题主要考查了位似图形的性质,正确掌握位似图形的相关性质是解题关键.7.B【解析】根据位似图形的位似比求得相似比,然后根据B点的坐标确定其对应点的坐标即可.解:∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,∴两矩形的相似比为1:2,∵B点的坐标为(3,2),∴点B′的坐标是(32,1)或(32-,-1),故选:B.本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况.8.C【解析】△ABC与△A′B′C′是位似图形,由OA=2AA′可得两个图形的位似比,利用面积的比等于位似比的平方即可求解.解:△ABC与△A′B′C′是位似图形且由OA=2AA′可得2'3OA OA,∴两位似图形的位似比为2:3,所以两位似图形的面积比为4:9,又S△ABC=4,∴S△A'B'C'=44=99÷.故选:C本题考查位似图形,理解位似图形的面积比即是对应线段比的平方是解题关键.9.见解析【解析】解:作图如下:(1)(-2,0),(-6,0),(-4,-2). (2)符合要求的变换有两种情况: 情况1:如图1,变换过程如下:将△A 2B 2C 2向右平移12个单位,再向上平移5个单位;再以B 1为中心顺时针旋转900. 情况2:如图2,变换过程如下:将△A 2B 2C 2向右平移8个单位,再向上平移5个单位;再以A 1为中心顺时针旋转900.(1)作位似变换的图形的依据是相似的性质,基本作法是:①先确定图形的位似中心;②利用相似图形的比例关系作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意有两种情况,图形在位似中心的同侧或在位似中心的两侧.(2)作平移变换时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形. 作旋转变换时,找准旋转中心和旋转角度 10.(1)见解析;(2)()4,3,()4,1-;(3)1:4 【解析】(1)根据位似的知识点作图即可;(2)建立平面直角坐标系,求出点的坐标即可; (3)根据相似图形的性质即可得出结果;(1)根据位似比是2可画出相对应的点,连接即可,如图所示;(2)因为点A 在直角坐标系的坐标为(-2,0),建立平面直角坐标系如图所示,可得()14,3A 和()4,1-;(3)根据面积比是相似比的平方可得面积比是1:4. 本题主要考查了位似的知识点,准确画图计算是解题的关键. 11.(1)见详解;(2)见详解 【解析】(1)分别作出点A 、C 绕点B 逆时针旋转90°所得的对应点,再顺次连接,即可; (2)分别作出点B 、C 变换后的对应点,再顺次连接,即可. (1)如图所示,11A BC 即为所求;(2)如图所示,22AB C △即为所求.本题主要考查图形的旋转变换以及位似变换,掌握旋转变换和位似变换的定义和性质,是解题的关键.12.(1)详见解析()11,4B -;(2)详见解析()22,1B -- 【解析】(1)根据题目中给出的平移方式,描点画图即可; (2)根据相似比找到对应点2B 和2C 即可. (1)根据题意可得:∴()11,4B -(2)根据题意可得:∴()22,1B --本题主要考查了图形的平移变换,位似图形的性质,熟练掌握位似图形的性质是解题的关键. 13.(1)见解析,()2,1B ;(2)见解析 【解析】(1)根据点()2,3A ,()6,2C 可确认出坐标原点O 的位置,从而可建立平面直角坐标系,再根据点B 的位置即可得出其坐标; (2)根据位似的定义画图即可.(1)由点()2,3A ,()6,2C 确认出坐标原点O 的位置,由此画出x 轴和y 轴,建立平面直角坐标系,如图所示:由点B 在平面直角坐标系中的位置得:点B 坐标为()2,1B ;(2)根据位似的定义,分别连接,,OA OB OC ,将它们分别延长至点,,A B C ''',使得2,2,2OA OA OB OB OC OC '''===,然后顺次连接点,,A B C ''',即可得到A B C '''∆,如图所示:本题考查了建立平面直角坐标系、画位似图形,依据点A 、C 坐标正确建立平面直角坐标系是解题关键.14.(1)见解析;(2)如图所示, 222A B C △就是所求三角形,见解析;222A B C S △=28. 【解析】(1)分别找出A 、B 、C 关于x 对称点111A B C 、、,然后连接111111A B AC B C 、、即可;(2)连接OA 并延长至1A ,使1AA =OA ;连接OB 并延长至1B ,使1BB =OB ;连接OC 并延长至1C ,使1CC =OC ;连接222222A B A C B C 、、即可得到222A B C △,然后用矩形将222A B C △框住,然后利用矩形的面积减去三个直角三角形的面积即可.解:(1)分别找出A 、B 、C 关于x 对称点111A B C 、、,然后连接111111A B AC B C 、、,如图所示,111A B C △就是所求三角形;(2)连接OA 并延长至1A ,使1AA =OA ;连接OB 并延长至1B ,使1BB =OB ;连接OC 并延长至1C ,使1CC =OC ;连接222222A B A C B C 、、,如图所示, 222A B C △就是所求三角形如图,用矩形将222A B C △框住,∵A (−1,2),B (2,1),C (4,5), 222A B C △与ABC 位似,且位似比为2, ∴A 2(−2,4),B 2(4,2),C 2(8,10), ∴222A B C S △=8×10−12×6×2−12×4×8−12×6×10=28.此题考查的是作关于x 轴对称的图形和作位似图形,掌握位似图形的性质是解决此题的关键. 15.(1)()1,4,()7,6;(2)见解析,()0,2,()20,,()3,3. 【解析】(1)先根据点P 、B 的坐标建立平面直角坐标系,然后即可写出点A 、C 的坐标;(2)连接PA 、PB 、PC ,分别取各边中点为A '、B '、C ',然后顺次连接即可,再根据平面直角坐标系即可写出各点的坐标.解:(1)建立平面直角坐标系如图,()1,4A ,()7,6C ;(2)A B C '''如图所示,()0,2A ',()2,0B ',()3,3C '. 故答案为:()0,2,()20,,()3,3.本题主要考查了位似作图,属于常见题型,熟练掌握网格特点和位似变换的性质、正确确定出对应点的位置是解题关键.16.作图见解析,()13,1-A ,()13,3B ,()11,1-C . 【解析】先根据A 、B 、C 三点的坐标确定三点的位置,再以点B 为位似中心画位似三角形11A BC ,使相似比为2,最后写出11A BC 各顶点的坐标.先根据A 、B 、C 三点的坐标确定三点的位置,再以点B 为位似中心画位似三角形11A BC ,使相似比为2,如图所示:设()1,A a b ,()1,C m n ,由画图过程和相似比可知,点1B 与点B 重合,则()13,3B ,点A 为1A B 的中点,点C 为1C B 的中点,则302322a b +⎧=⎪⎪⎨+⎪=⎪⎩和322312m n +⎧=⎪⎪⎨+⎪=⎪⎩, 解得31a b =-⎧⎨=⎩和11m n =⎧⎨=-⎩,即()13,1-A ,()11,1-C .本题考查了作图-位似变换,熟练掌握位似图形的画法和性质是解题关键.17.(1)见解析,()12--,;(2)见解析,()13-,. 【解析】(1)将位似图形对应的点连接起来,连线的交点就是它们的位似中心,然后写出坐标; (2)根据题意,在线段AC 和AB 上取中点2C 和2B ,就可以画出22AC B . 解:(1)将1AA ,1BB ,1CC 连结起来, 交点即为位似中心P , 如图所示:()12P ,--,故答案为:()12--,. (2)∵位似比为1:2, ∴所图如下:则点2C 的坐标为()13-,, 故答案为:()13-,. 本题考查位似中心和位似图形的作图,解题的关键是掌握位似图形的相应概念并根据题目要求画出图象.18.(1)见解析;(2)是;(3)()001.5,1.5x y .【解析】(1)直接利用将点A 、B 的横坐标、纵坐标都乘以1.5,得相应的点A '、B '的坐标,即可得出答案;(2)利用位似图形的定义得出答案;(3)利用位似图形的性质即可得出对应点坐标.解:(1)如图所示:OA B ''△,即为所求;(2)OA B ''△与AOB 是位似图形;(3)若线段AB 上有一点()00,D x y ,按上述变换后对应的A B ''上点的坐标是:()001.5,1.5x y .本题考出来位似变换以及位似图形的性质,正确得到图形对应点的坐标是解题关键.19.作图见解析,()0,0O ,()2,4A ',()4,0B '或()0,0O ,()2,4A ''--,()4,0B ''-.【解析】根据作位似变换图形的要求可知以O 点为位似中心放大到原来2倍,延长OA 到A ',使2OA OA '=,得到点A 的对应点A ',同法得到点B 的对应点B ',点O 的对应点不变,连接A B '',OA B ''△就是所求的三角形;也可以反向延长AO 或BO ,由同样的方法得到,A B 的对应点,,A B ''''连接,A B ''''OA B ''''△就是所求的三角形;再由所画的位似图形点的横纵坐标均为原来各对应点横纵坐标的2±倍,即可得到答案.解:延长OA 到'A ,使'2OA OA =,得到点A 的对应点'A ,同法得到点B 的对应点'B ,点O 的对应点不变,连接''A B ,''OA B 就是所求的三角形;或反向延长AO 或BO ,由同样的方法得到,A B 的对应点,,A B ''''连接,A B ''''OA B ''''△就是所求的三角形;由()()0,0,12O A ,,()2,0B ∴ ()0,0O ,()2,4A ',()4,0B '.或()0,0O ,()2,4A ''--,()4,0B ''-.主要考查画位似图形;用到的知识点为:新图形的各顶点到位似中心的距离与原图形到位似中心的距离的比等于位似比,掌握两个位似图形的点的坐标规律是解题的关键.20.(1)如图所示:△A 1B 1C 1,即为所求;见解析;(2)如图所示:△A 2B 2C 2,即为所求;见解析;(3)1:2.【解析】(1)直接利用关于y 轴对称点的性质得出答案;(2)直接利用对应点的坐标变化得出对应点位置进而得出答案;(3)直接利用(2)中对应点变化进而得出位似比.(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)△ABC与△A2B2C2的位似比是:1:2.故答案为:1:2.本题主要考查了位似变换以及关于y轴对称点的性质,正确得出对应点位置是解题关键.21.(1)见解析;(2)见解析.【解析】(1)直接利用关于原点对称图形的性质即可画出对应图形;(2)直接利用位似图形的性质得出对应点位置进而画出对应图形.解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:△BA″C″,即为所求.此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.22.(1)详见解析;(2)详见解析;(3)(2,7)【解析】(1)根据旋转的性质即可画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)根据位似变换即可以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O′A′B;(3)点M是OA的中点,在(1)和(2)的条件下,即可得M的对应点M′的坐标.(1)如图,△O′A′B即为所求;(2)如图,△O″A″B即为所求;(3)如图,∵点M是OA的中点,∴经过(1)旋转后坐标变为(52,92)∴经过(1)位似变换后,M的对应点M′的坐标为(2,7).故答案为:(2,7).本题考察了画旋转图形和位似图形,中点坐标公示,严格按照旋转和位似图形的性质,做出正确的图形,是解决本题的关键.23.(1)详见解析;(2)C(﹣6,﹣2),D(﹣4,2);(3)10.【解析】(1)延长AO到C使得OC=2OA,延长BO到D,使得OD=2OB,连接CD,△OCD即为所求;(2)根据C,D的位置写出坐标即可;(3)利用分割法求出三角形的面积即可.解:(1)如图,△OCD即为所求.(2)由图可得:C(﹣6,﹣2),D(﹣4,2),(3)S △OCD =24﹣12×4×2﹣12×6×2﹣12×2×4=10.本题考查作图-位似变换,解题的关键是熟练掌握基本知识,属于中考常考题型.24.18【解析】根据相似三角形中,面积比等于相似比的平方直接进行求解即可.设所求三角形的面积为S ,可以得到2123S⎛⎫ ⎪⎝⎭= 解得:S =18.故答案为18.本题主要考查相似三角形,关键是根据相似三角形的面积比等于相似比的平方.25.()31-,【解析】根据题意,可得2'OE OE =,且点'E 在第四象限,又由E 的坐标,计算可得答案.解:根据题意,可得2'OE OE =,且点'E 在第四象限;又由E 的坐标为()6,2-,则对应点'E 的坐标为()3,1-.故答案是:()3,1-本题主要考查位似图形的坐标特征,熟练掌握坐标系中位似图形对应点的坐标特征,是解题的关键.26.两边对应成比例且夹角相等的两个三角形相似【解析】由位似图形的定义:两个图形是相似图形,而且每组对应点所在的直线经过同一点,结合相似三角形的判定解答即可.解:画位似图形的依据是:两边对应成比例且夹角相等的两个三角形相似.故答案为:两边对应成比例且夹角相等的两个三角形相似.本题考查了位似图形的有关知识,如果两个图形不仅是相似图形,而且每组对应点所在的直线经过同一点,那么这两个图形叫做位似图形,熟知位似图形的概念是关键.27.28cm【解析】 利用位似图形的性质首先得出2'3OA OA =,进而得出三角形面积比,即可得出答案. ∵'''A B C 是将ABC 放大后的图形,图中线段1'2=AA OA , ∴2'3OA OA =, ∴'''49ABC A B C S S =, ∵2'''18=A B C Scm , ∴ABC S =28cm .故答案为:28cm .此题主要考查了位似图形的性质,得出相似比是解题关键.28.32a --【解析】△A′B′C 的边长是△ABC 的边长的2倍,过A 点和A′点作x 轴的垂线,垂足分别是D 和E ,因为点A 的横坐标是a ,则DC=-1-a .可求EC=-2-2a ,则OE=CE-CO=-2-2a-1=-3-2a解:如图,过A 点和A′点作x 轴的垂线,垂足分别是D 和E ,∵点A的横坐标是a,点C的坐标是(-1,0).∴DC=-1-a,OC=1又∵△A′B′C的边长是△ABC的边长的2倍,∴CE=2CD=-2-2a,∴OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.29.7【解析】利用位似图形相似且相似比为k,可得到OA与OA'的比值,设设OA=x,则OA'=kx,可得到AA'的长,再结合反比例函数的性质可以表示出DA';然后根据ADA'的面积为3,建立方程求出k 的值.∵矩形OA B C'''与矩形OABC是位似图形,O为位似中心,位似比为k∴OC OAk OC OA==''设OA=x则OA'=kx∴AA'=kx-x∵点D在反比例函数图像上,∴点D1,kxx ⎛⎫ ⎪⎝⎭∴1 A Dx '=∵ADA'的面积为3∴11 ()3 2kx xx-⨯=∴k=7故答案为:7.本题考察了位似变换、反比例函数的知识;求解的关键是熟练掌握位似变换的性质和反比例函数图象上点的坐标特征,从而完成求解.30.(-2,1 2 -)【解析】平面直角坐标系中,如果位似变换是以原点为位似中心且在点O 的异侧,相似比为k ,那么位似图形对应点的坐标的比等于 k -解答.以O 为位似中心且在点O 的异侧,把△OAB 缩小为原来的12, 则点B ()41,的对应点的坐标为114122⎡⎤⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,, 即122⎛⎫-- ⎪⎝⎭,, 故答案为:122⎛⎫-- ⎪⎝⎭,. 本题考查的是位似变换的性质,平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .。
第4章相似三角形4.7 图形的位似(9大题型)分层练习考查题型一位似图形的识别1.(2022秋·九年级单元测试)如图,下面三组图形中,位似图形有( )A.0组B.1组C.2组D.3组2.(2023·河北廊坊·校考三模)在研究相似问题时,嘉嘉和淇淇两同学的观点如下:嘉嘉:将边长为1的正方形按图1的方式向外扩张,得到新正方形,它们的对应边间距为1,则新正方形与原正方形相似,同时也位似;淇淇:将边长为1的正方形按图2的方式向外扩张,得到新正方形,每条对角线向其延长线两个方向各延伸1,则新正方形与原正方形相似,同时也位似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对3.(2022春·全国·九年级专题练习)位似图形的性质(1)位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于(2)位似图形相似图形,但相似图形4.(2020秋·安徽滁州·九年级校联考阶段练习)在如图所示的网格中,以点的位似图形,小明认为四边形边形NPMQ,你认为正确的是A.2、点P B2.(2023·河北沧州·模拟预测)如图,A.点M B.点3.(2023秋·九年级课时练习)如图,在平面直角坐标系中,阴影所示的两个正方形是位似图形,若位似中心在两个正方形之间,则位似中心的坐标为4.(2022春·九年级课时练习)如图,在正方形()1,1--,则两个正方形的位似中心的坐标是(1)在图中标出ABC V 与111A B C △的位似中心点M 的位置,并直接写出点(2)若以点O 为位似中心,请你帮小明在图中画出△似比为2(只画出一个三角形即可).考查题型三 位似图形相关概念辨析1.(2022秋·吉林长春·九年级校考阶段练习)如图,ABC V 与DEF V 位似,点O 为位似中心,位似比为2:3,若DEF V 的周长为6,则ABC V 的周长是( )A.16B.2.(2023秋·河北保定·九年级统考期末)下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;4.(2023秋·九年级课时练习)如图,点=;ABCÐ=,Ð5.(2022春·九年级单元测试)如图,在68´的网格中,每个小正方形的边长均为1,点O 和ABC V 的顶点均为小正方形的顶点.(1)在图中ABC V 的内部作A B C ¢¢¢V ,使A B C ¢¢¢V 和ABC V 位似,且位似中心为点O ,位似比为1:2;(2)连接(1)中的AA ¢,则线段AA ¢的长度是________.A .1:2B .2:12.(2023秋·全国·九年级专题练习)如图,四边形形,若四边形ABCD 与四边形A .23:B .49:C .3.(2023秋·陕西西安·九年级高新一中校考阶段练习)面积为1,DEF V 面积为9,则OC CF 的值为4.(2023秋·黑龙江哈尔滨·九年级哈尔滨工业大学附属中学校校考开学考试)四边形1111D C B A 是位似图形,点A 与点么AB A B = .(1)在图中画出ABC V 沿x 轴翻折后的11A B C △(2)以点()1,2M 为位似中心,作出111A B C △按(3)求点2A 的坐标以及ABC V 与222A B C △的周长比.考查题型五 画已知图形放大或缩小n 倍后的位似图形1.(2023春·河北邢台·九年级统考开学考试)以O 为位似中心,画出一个矩形,使得所画的矩形与矩形ABCD 位似,且位似比为1:2,则所画的矩形可以是( )A .①B .②C .③D .④A.P点B.Q点3.(2022春·九年级课前预习)总结画位似图形的一般步骤:(1)确定;(2)分别连接并延长和能代表原图的关键点;(3)根据,确定能代表所作的位似图形的关键点;(4)顺次连接上述各点,得到放大或缩小的图形.4.(2022春·九年级课前预习)把图中的四边形分析:把原图形缩小到原来的似中心的距离之比为作法:5.(2022秋·四川成都·九年级川大附中校考期中)在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ¢¢△,放大后点B ,C 两点的对应点分别为B ¢,C ¢,请画出OB C ¢¢△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M ¢的坐标.(用含a ,b 的代数式表示)A.62.(2022秋·安徽合肥为位似中心,把△A.(9,6)B.3.(2023秋·福建莆田·九年级校考阶段练习)如图,()A-,OAB4,2V与OCDV4.(2023秋·陕西榆林·九年级校考期末)如图,在平面直角坐标系中,位似中心的位似图形,点A、5,6,则点A点A的坐标为()5.(2023秋·浙江·九年级专题练习)如图,方格纸中的每个小方格都是边长为面直角坐标系后,ABC V 的顶点均在格点上,点C 的坐标为()41-,.(1)以O 为位似中心在第二象限作位似比为1:2变换,得到对应的111A B C △,画出111A B C △,并写出1C 的坐标;(2)以原点O 为旋转中心,画出把ABC V 顺时针旋转90°的图形222A B C △,并写出2C 的坐标.A .2B .33.(2022春·八年级单元测试)如图,四边形6,4,3OC CC AB ¢===,则A B ¢¢=4.(2023·山西运城·统考一模)在平面直角坐标系中,的坐标分别为()1,3-,()3,9-,则ABC V 5.(2022秋·广西贵港·九年级统考期中)A .DEF VB .DHF △2.(2023春·河北邯郸·九年级校考开学考试)在如图所示正方形网格图中,以大为原来的2倍,则A 的对应点为(A .N 点B .M 点3.(2023春·九年级单元测试)已知方形网格中,每个小正方形的边长是与ABC V 位似,且111A B C △与ABC V5.(2022春·湖南郴州·九年级校考开学考试)如图,平面直角坐标系中,点上.(1)以O 点为位似中心,位似比为2,将ABC V (2)若ABC V ,111A B C △的面积为S 、1S ,写出考查题型九 在坐标系中画位似中心1.(2023春·云南昭通·九年级统考期中)如图,在直角坐标系中,ABC V 与ODE V 是位似图形,已知点()2,1A ,则位似中心的坐标是( )A .()1,5B .()4,22.(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点ABC DEF V V 、成位似关系,则位似中心的坐标为(A .()1,0-B .()0,03.(2023秋·全国·九年级专题练习)如图,在直角坐标系中,则位似中心的坐标是 .5.(2023秋·全国·九年级专题练习)已知,分别为()()()104132-,,,,,.1A △(1)请画出点P 的位置,并写出点P 的坐标(2)以点O 为位似中心,在y 轴左侧画出V 内一点,则点M 在222A B C △内的对应点的坐标为1,2BA.()2.(2023秋·浙江·九年级专题练习)如图,四边形OE2A.4B.163.(2023秋·山东聊城·九年级校考开学考试)如图,在边长为V的三个顶点均在格点(网格线的交点)上.以原点标系,ABC相似比为2,则点B的对应点1B的坐标是(42,B.A.()4.(2023·山东日照·校考三模)如图,在平面直角坐标系中,()-,,点C坐标为()20-,10A .()3,2-B .5.(2021春·福建龙岩·九年级校考阶段练习)COD △的相似比是31:,且点A .()2,4B .7.(2023秋·湖南衡阳·九年级校联考阶段练习)将函数的新函数记作()g x ,我们称()f x 与(g x 8.(2023秋·全国·九年级专题练习)如图,在平面直角坐标系中,是位似中心,已知点()2,0A ,点(),C a b ,式子表示)9.(2023·辽宁盘锦·统考中考真题)如图,ABO V 中心,将ABO V 缩小为原来的13,得到A B O ¢¢△10.(2022秋·湖南长沙位似比是1:3,已知11.(2022秋·湖南永州·九年级校考期中)如图,()2,4C -,请你画出以坐标原点并直接写出A 、B 的对应点的坐标.12.(2022秋·陕西渭南·九年级统考期末)如图,在平面直角坐标系中,()()()0,02,11,2O A B -、、.(1)以原点O 为位似中心,在图中画出OAB V 的位似11OA B V ,使得点AB 、的对应点11A B 、均在y 轴的右侧,且11OA B V 与OAB V 的相似比为2:1;(2)在(1)的条件下,写出点1A 的坐标.13.(2023秋·山东临沂·七年级统考开学考试)(1)用数对分别表示出梯形四个顶点的位置:A ( )B ( )C ( )D ( )(2)把图中的梯形绕B 点顺时针旋转90°,画出旋转后的图形.(3)将原梯形按2:1放大,画出放大后的图形.14.(2023春·黑龙江绥化·九年级校考阶段练习)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC V 的三个顶点坐标分别为()1,4A ,()1,1B ,()3,1C .(1)画出ABC V ,再画出ABC V 关于x 轴对称的111A B C △;(2)画出ABC V 以点O 为位似中心扩大2倍后的图形222A B C △.15.(2023秋·全国·九年级专题练习)如图,已知()0,2A -,()2,1B -,()3,2C .(1)求线段AB 的长;(2)把A 、B 、C 三点的横坐标,纵坐标都乘2,得到A ¢,B ¢,C ¢的坐标,画出A B C ¢¢¢V ,并求A B ¢¢的长;(3)ABC V 与A B C ¢¢¢V 是位似图形吗?若是,请写出位似中心的坐标,并求出位似比.。
初三数学图形的位似试题1.如图,点是四边形与的位似中心,则________=________=________;________, ________.【答案】,,;,【解析】位似图形的性质:位似图形的对应边成比例,对应角相等.∵点是四边形与的位似中心∴==;,.【考点】位似图形的性质点评:本题是位似图形的性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.2.如图,,则与的位似比是________.【答案】【解析】先根据可得∽,再根据位似图形的相似比也叫做位似比即可得到结果.∵∴∽∴与的位似比是.【考点】位似图形的判定和性质点评:相似三角形全等的判定和性质的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3.把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________.【答案】【解析】相似图形的性质:相似图形的对应边的比等于相似比.由题意得原图与新图的相似比为.【考点】相似图形的性质点评:本题是相似图形的性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.4.两个相似多边形,如果它们对应顶点所在的直线________,那么这样的两个图形叫做位似图形.【答案】相交于一点【解析】直接根据位似图形的定义填空即可.两个相似多边形,如果它们对应顶点所在的直线相交于一点,那么这样的两个图形叫做位似图形.【考点】位似图形的定义点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较单一,因而在中考中不太常见,一般以选择题、填空题形式出现,难度一般.5.位似图形的相似比也叫做________.【答案】位似比【解析】直接根据位似比的定义填空即可.位似图形的相似比也叫做位似比.【考点】位似比的定义点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较单一,因而在中考中不太常见,一般以选择题、填空题形式出现,难度一般.6.位似图形上任意一对对应点到________的距离之比等于位似比.【答案】位似中心【解析】直接根据位似图形的性质填空即可.位似图形上任意一对对应点到位似中心的距离之比等于位似比.【考点】位似图形的性质点评:本题是位似图形的判定方法与性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度不大.7.画出下列图形的位似中心.【答案】如图所示:【解析】连接两个位似图形两对对应点,对应点连线的交点就是位似中心.点O就是所求的位似中心.【考点】位似中心的画法点评:作图能力是初中数学学习中一个极为重要的能力,是中考的热点,一般以作图题形式出现,难度不大,需特别注意.8.将四边形放大2倍.要求:(1)对称中心在两个图形的中间,但不在图形的内部.(2)对称中心在两个图形的同侧.(3)对称中心在两个图形的内部.【答案】(1)四边形A′B′C′D′就是所求的四边形;(2)四边形A′BC′D′就是所求的四边形;(3)四边形A′B′C′D′就是所求的四边形.【解析】画任意一个四边形ABCD,设对称中心为O.(1)对称中心在四边形外,连接对称中心和顶点A,并延长到A′,使A′到对称中心的距离等于A到对称中心的距离,同法得到其余点的对应点,顺次连接各对应点即为所求的图形;(2)对称中心在四边形的顶点,依照(1)的方法做;(3)对称中心在四边形的内部,依照(1)的方法做.(1)四边形A′B′C′D′就是所求的四边形;(2)四边形A′BC′D′就是所求的四边形;(3)四边形A′B′C′D′就是所求的四边形.【考点】画位似图形点评:作图能力是初中数学学习中一个极为重要的能力,是中考的热点,一般以作图题形式出现,难度不大,需特别注意.9.如图,四边形和四边形′位似,位似比,四边形和四边形位似,位似比.四边形和四边形是位似图形吗?位似比是多少?【答案】是位似图形,【解析】因为四边形A″B″C″D″和四边形ABCD的对应顶点的连线已经相交于一点了,所以我们只要证明四边形A″B″C″D″∽四边形ABCD即可;相似具有传递性,所以可证得四边形A″B″C″D″∽四边形ABCD;又因为位似比等于相似比,所以可求得四边形A″B″C″D″和四边形ABCD的位似比.∵四边形ABCD和四边形A′B′C′D′位似,∴四边形ABCD∽四边形A′B′C′D′.∵四边形A′B′C′D′和四边形A″B″C″D″位似,∴四边形A′B′C′D′∽四边形A″B″C″D″.∴四边形A″B″C″D″∽四边形ABCD.∵对应顶点的连线过同一点,∴四边形A″B″C″D″和四边形ABCD是位似图形.∵四边形ABCD和四边形A′B′C′D′位似,位似比k=2,1=1,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比k2∴四边形A″B″C″D″和四边形ABCD的位似比为.【考点】位似图形的判定方法与性质点评:本题是位似图形的判定方法与性质的基础应用题,在中考中比较常见,在各种题型中均有出现,一般难度不大.10.请把如图所示的图形放大2倍.【答案】如图所示:【解析】可选择原图形的一个顶点作为位似中心,分别连接原图形中的关键点及位似中心并延长到放大后的新顶点,使新顶点到位似中心的距离等于2倍的原顶点到位似中心的距离,按原图形中的关键点的顺序连接新图形中的对应点即可.【考点】画位似图形点评:作图能力是初中数学学习中一个极为重要的能力,是中考的热点,一般以作图题形式出现,难度不大,需特别注意.。
第二十七章 相 似 27.3 位 似1.下列说法正确的是( )A .位似图形中每组对应点所在的直线必互相平行B .两个位似图形的面积比等于相似比C .位似多边形中对应对角线之比等于相似比D .位似图形的周长之比等于相似比的平方2.如图2739,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1∶2B .1∶4C .1∶5D .1∶6图2739 图273103.如图27310,五边形ABCDE 和五边形A 1B 1C 1D 1E 1是位似图形,且P A 1=23P A ,则AB ∶A 1B 1=( )A.23B.32C.35D.534.已知△ABC 和△A ′B ′C ′是位似图形,△A ′B ′C ′的面积为6 cm 2,周长是△ABC 的一半,AB =8 cm ,则AB 边上高等于( )A .3 cmB .6 cmC .9 cmD .12 cm 5.如图27311,点O 是AC 与BD 的交点,则△ABO 与△CDO ________是位似图形(填“一定”或“不一定”).图273116.如图27312,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,且相似比为12. 若五边形ABCDE 的面积为17 cm 2, 周长为20 cm ,那么五边形A ′B ′C ′D ′E ′的面积为________,周长为________.图273127.已知,如图27313,A ′B ′∥AB ,B ′C ′∥BC ,且OA ′∶A ′A =4∶3,则△ABC 与________是位似图形,位似比为________;△OAB 与________是位似图形,位似比为________.图273138.如图27314,电影胶片上每一个图片的规格为3.5 cm×3.5 cm,放映屏幕的规格为2 m ×2 m;若放映机的光源S距胶片20 cm,那么光源S距屏幕________米时,放映的图象刚好布满整个屏幕.图273149.如图27315,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).图2731510.某出版社的一位编辑在设计一本书的封面时,想把封面划分为四个矩形,其中左上角的矩形与右下角的矩形位似(如图27316),以给人一种和谐的感觉,这样的两个位似矩形该怎样画出来?该编辑认为只要A,P,C三点共线,那么这两个矩形一定是位似图形,你认为他的说法对吗?请说明理由.图2731627.3位似【课后巩固提升】1.C 2.B 3.B 4.B 5.不一定 6.174107.△A ′B ′C ′ 7∶4 △OA ′B ′ 7∶48.807 解析:设光源距屏x 米,则 3.5×3.52×102×2×102=⎝⎛⎭⎫20x ×1022,解得x =807. 9.解:(1)如图D63.图D63(2)AA ′=CC ′=2.在Rt △OA ′C 中,OA ′=OC =2,得A ′C =2 2, 于是AC ′=4 2.∴四边形AA ′C ′C 的周长=4+6 2.10.解:对的.如图D64,作对角线AC ,在AC 上根据需要取一点P ,过点P 作EF ∥BC ,作GH ∥AB ,则矩形AEPG 和矩形CFPH 就是两个位似的图形.图D64矩形AEPG 和矩形CFPH 的每个内角都是直角,又由AE ∥FC ,AG ∥CH ,可得EP PF =AE CF =AP CP ,PG PH =GA HC =AP CP ,于是EP PF =AE CF =PG PH =GAHC.所以矩形AEPG ∽矩形CFPH ,而且这两个矩形的对应点的连线交于P 点,因此矩形AEPG 位似于矩形CFPH ,位似中心是点P .。
专题04 图形的位似(五大类型)【题型1位似图形性质】【题型2 位似图形的点坐标】【题型3 判定位似中心】【题型4 位似图形作图】【题型5 平移、轴对称、旋转和位似综合】【题型1位似图形性质】1.(2023春•乳山市期末)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=5,则=()A.B.C.D.2.(2023•开州区校级模拟)如图,△ABC与△DEF位似,点O是位似中心,且OD=2AD,则S△ABC :S△DEF=()A.3:2B.9:4C.9:1D.4:1 3.(2023•衡南县三模)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则()A.B.C.D.4.(2023•宿豫区三模)如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49 5.(2023•大理州模拟)如图,△ABC与△DEF位似,点O为位似中心,位似比为2:3,若△ABC的面积为4,则△DEF的面积是()A.6B.9C.12D.16 6.(2023春•石景山区期中)如图,四边形ABCD与四边形EFGH是位似图形,点O是位似中心.若,四边形ABCD的面积是100,则四边形EFGH 的面积是()A.4B.16C.36D.7.(2023•汇川区模拟)如图,△ABC和△DEF是位似三角形,点O是位似中心,且AC=9,DF=3,OA=6,则OD=()A.2B.4C.6D.8 8.(2023春•太仓市期末)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若A(1,0),C(3,0),则△OAB与△OCD 的面积比是()A.1:2B.1:3C.1:4D.1:9 9.(2023•岳麓区校级模拟)如图所示,△ABC与△DEF是位似图形,点O为位似中心.若AD=3OA,△ABC的周长为5,则△DEF的周长为()A.10B.15C.25D.125【题型2 位似图形的点坐标】9.(2022秋•江北区校级期末)如图,在平面直角坐标系中△ABC与△A'B'C'位似,且原点O为位似中心,其位似比1:2,若点B(﹣2,﹣1),则其对应点B'的坐标为()A.(2,4)B.(4,2)C.(2,1)D.(1,2)10.(2023•舟山三模)在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)11.(2023•市南区校级二模)如图,在平面直角坐标系中,等边三角形OAB的顶点O(0,0),B(2,0),已知△OA'B′与△OAB位似,位似中心是原点O,且△OA'B′的面积是△OAB面积的4倍,则点A对应点A′的坐标为()A.B.或C.D.或12.(2023春•岱岳区期末)如图,△OAB和△OCD是以点O为位似中心的位似图形,已知A(﹣4,2),△OAB与△OCD的相似比为2:1,则点C的坐标为()A.(2,﹣1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,2)13.(2023春•肥城市期末)如图,矩形OABC与矩形ODEF是位似图形,点P 是位似中心.若点B的坐标为(2,3),点E的横坐标为﹣1,则点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.D.14.(2023春•长寿区校级期中)如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣1 )D.(﹣2,﹣1)15.(2023•杜集区校级模拟)如图,在平面直角坐标系中,△A'B'C'与△ABC 位似,位似中心为原点O,已知点A(﹣1,﹣1),C(﹣4,﹣1),A'C'=6,则点C'的坐标为()A.(2,2)B.(4,2)C.(6,2)D.(8,2)【题型3 判定位似中心】16.(2022秋•泉州期末)如图,在8×8网格中,△ABC和△A'B'C'位似,则位似中心为()A.点O B.点P C.点Q D.点R 17.(2023•长安区模拟)图中的两个三角板是位似图形,则位似中心可能是()A.点A B.点B C.点C D.点D 18.(2022秋•青县期末)如图中的两个三角形是位似图形,点M的坐标为(3,2),则它们位似中心的坐标是()A.(0,2)B.(0,3)C.(2,﹣1)D.(2,3 )19.(2023春•烟台期末)如图,点A的坐标为(﹣3,1),点B的坐标为(﹣1,1),点C的坐标为(0,﹣1).(1)求出△ABC的面积;(2)请以点O为位似中心作一个与△ABC位似的△A1B1C1,使得△A1B1C1的面积为18.20.(2022秋•未央区期末)如图,在平面直角坐标系中,△ABO的顶点都在正方形网格顶点上.以原点O为位似中心,相似比为1:2,在y轴的右侧,画出将△ABO放大后得到的△A1B1O.【题型4 位似图形作图】21.(2023春•福山区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【题型5 平移、轴对称、旋转和位似综合】22.(2023•碑林区校级模拟)如图,在平面直角坐标系中,△AOB的顶点均在网格格点上,且点A、B的坐标分别为A(3,1),B(2,﹣1).(1)在y轴的左侧以原点O为位似中心作△OAB的位似图形△OA1B1(点A、B的对应点分别为A1,B1)使△OA1B1与△OAB的相似比为2:1;(2)在(1)的条件下,计算△OA1B1的面积为.23.(2023•南山区校级一模)在平面直角坐标系内,△ABC的位置如图所示.(1)将△ABC绕点O顺时针旋转90°得到△A1B1C1,作出△A1B1C1.(2)以原点O为位似中心,在第四象限内作出△ABC的位似图形△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.24.(2023春•荣成市期末)如图,在边长为1的小正方形组成的网格中,△ABC 的顶点在格点(网格线的交点)上,以点O为原点建立平面直角坐标系,点B的坐标为(1,0).(1)将△ABC向左平移5个单位长度,得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,将△A1B1C1放大到两倍(即新图与原图的相似比为2),得到△A2B2C2,在所给的方格纸中画出△A2B2C2;(3)若点M是AB的中点,经过(1)、(2)两次变换,M的对应点M2的坐标是.25.(2023•碑林区校级模拟)如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)请在网格中画出△ABC关于x轴对称的△A1B1C1.(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)①点B1的坐标为;②求△A2B2C2的面积.26.(2022秋•青羊区期中)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)求出△OA2B2的面积.。
《位似》同步习题玉龙县太安中学木华梁一、选择题1.下列说法正确的是().A.相似的两个五边形一定是位似图形B.两个大小不同的正三角形一定是位似图形C.两个位似图形一定是相似图形D.所有的正方形都是位似图形考查目的:考查位似图形的概念.答案:C.解析:位似图形是相似图形的特例,相似图形不一定是位似图形,故答案应选择C.2.两个位似多边形一对对应顶点到位似中心的距离比为1∶2,且它们面积和为80,则较小的多边形的面积是().A.16 B.32 C .48 D.64考查目的:考查位似图形的概念和性质.答案:A.解析:位似图形必定相似,具备相似形的性质,其相似比等于一对对应顶点到位似中心的距离比.相似比为1∶2,则面积比为1∶4,由面积和为80,得到它们的面积分别为16,64.故答案应选择A.3.如图,以点A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若S1表示△ADE 的面积,S2表示四边形DBCE的面积,则S1∶ S2=().A.1∶2 B.1∶3 C.1∶4 D. 2∶3考查目的:考查位似图形的性质和画法.答案:B.解析:位似图形必定相似,具备相似形的性质,△ADE与△ABC相似比为1∶2,则面积比为1∶4,所以△ADE与四边形DBCE的面积比为1∶3,故答案应选择B.二、填空题4.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,且位似比为1∶2.若五边形ABCDE的面积为17 cm2,周长为20 cm,那么五边形A′B′C′D′E′的面积为________ cm2,周长为________ cm.考查目的:考查位似图形的概念和性质.答案:68;40.解析:位似图形必定相似,相似比是1∶2,则面积比是1∶4,故五边形A′B′C′D′E′的面积应是68 cm2;周长是40 cm.5.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为________ cm.考查目的:考查位似图形的概念和性质.答案:50.解析:位似图形一定是相似图形,具备相似图形的性质,其相似比等于一组对应边的比,相似比是3∶5,则周长比是3∶5,故答案应是50 .三、解答题6.利用位似的方法把下图缩小到原来的一半,要求所作的图形在原图内部.考查目的:考查位似图形的画法.答案:解析:利用位似的方法作图,要求所作图要位于原图内部,关键是确定位似中心,本题的位似中心取在原图内部,(1)在五边形ABCDE内部任取一点O.(2)以点O为端点作射线OA、OB、OC、OD、OE.(3)分别在射线OA、OB、OC、OD、OE上取点A′、B′、C′、D′,使OA∶OA′=OB∶OB′=OC∶OC′=OD∶OD′=OE∶OE′=2∶1.(4)连接A′B′、B′C′、C′D′、D′E′、E′A′.得到所要画的多边形A′B′C′D′E′.7.如图,小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.(1)图中△ABC与△ADE是否位似?为什么?(2)求古塔的高度.考查目的:考查位似图形的概念和性质.答案:△ABC与△ADE位似;古塔的高度为16 m.解析:根据位似图形的概念,△ABC与△ADE中,BC与DE平行,两个三角形相似,且对应顶点的连线相交于一点,所以△ABC与△ADE位似.利用相似三角形对应边成比例,可求出DE的长,故古塔的高度是16 m.。
《位似图形》练习及答案《位似图形》配套练习一、选择题:1.用作位似形的方法,可以将一个图形放大或缩小,位似中心()A.只能选在原图形的外部;B.只能选在原图形的内部;C.只能选在原图形的边上;D.可以选择任意位置。
2.已知:E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2,把△EOF缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)3.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF 与△ABC的面积比是()A.1︰2 B.1︰4C.1︰5 D.1︰64.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,O为位似中心,OD=1OD′,则A′B′:AB为()2C.1:2D.2:1(第3题图)(第4题图)5.图中的两个三角形是位似图形,它们的位似中心是( )A .PB .OC .MD .N6. 如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与△CDE 对应边的比为k ,则位似中心的坐标和k 的值分别为( )A. (00),,2B. (22),,12C. (22),,2D. (22),,37. 如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0)。
以点C 为位似中心,在x 轴的下方作ABCED O B/AC/D/E/△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C 。
设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a -- D .1(3)2a -+(第5题图) (第6题图)(第7题图)二、填空题:1.关于对位似图形的表述,下列命题正确的是 。
(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比。
O P M N2.已知△ABC 与△DEF 是以原点为位似中心的位似图形,位似比为32,则A (-1,1)的对应点D 的坐标为 。
3.△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小,使变换后得到的△DEF 与△ABC 对应边的比为1∶2,则线段AC 的中点P 变换后对应的点的坐标为:。
4.如图,已知△OAB 与△OA ′B ′是相似比为1∶2的位似图形,点O 为位似中心,若△OAB 内一点P (x ,y )与△OA ′B ′内一点P ′是一对对应点,则P ′的坐标是 。
5.如图,△AOB 以O 位似中心,扩大到△COD ,各点坐标分别为:A (1,2)、B (3,0)、D (4,0)则点C 坐标为 。
6. 如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点。
若ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 。
(第4题图)(第5题图)(第6题图)7.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是。
8.如图1,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是。
(第7题图)(第8题图)三、解答下列各题: 1.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出.....△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△OAB 的位似比为2︰1。
2.如图,△ABC 与△A′B′C′是位似图形,且位似比是1︰2,若AB =2cm ,则A′B′是cm ,并在图中画出位似中心O 。
′ A BC AC′′3.已知△ABC 在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1)。
以B 为位似中心,画出与△ABC 相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是 。
4.已知五边形ABCDE 和点O ,请你以O 为位似中心画五边形ABCDE 的位的图形A ′B ′C ′D ′E ′,使得相似比=21,即21=''B A AB5.如图,在平面直角坐标系中,ABC ∆的顶点坐标为)3,2(-A 、)2,3(-B 、)1,1(-C 。
(1)若将ABC ∆向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111C B A ∆;(2)画出111C B A ∆绕原点旋转︒180后得到的222C B A ∆;(3)'''C B A ∆与ABC ∆是位似图形,请写出位似中心的坐标: ;(4)顺次连结C 、1C 、'C 、2C ,所得到的图形是轴对称图形吗?6.如图,△ABC三个顶点的坐标分别为A (2,7),B (6,8),C (8,2),请你分别完成下面的作图并标出所有顶点的坐标。
(不要求写出作法)(1)以O为位似中心,在第三象限内作出△A1B1C1,使△A1B1C1与△ABC的位似比为1∶2;(2)以O为旋转中心,将△ABC沿顺时针方向旋转90°得到△A2B2C2。
y BCAO x7.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B的坐标为(11)--,。
(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2 C,画出△A2B2C的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3。
8.如图,在12×12的正方形网格中,△TAB 的顶点坐标分别为T(1,1)、A(2,3)、B(4,2)。
(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△T A′B′,放大后点A、B的对应点分别为A′、B′。
画出△T A′B′,并写出点A′、B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标。
9.在边长为1的正方形网格中,有形如帆船的图案①和半径为2的⊙P。
(1)将图案①进行平移,使A点平移到点E,画出平移后的图案;(2)以点M为位似中心,在网格中将图案①放大2倍,画出放大后的图案,并在放大后的图案中标出线段AB的对应线段CD;(3)在(2)所画的图案中,线段CD被⊙P所截得的弦长为___ ___。
(结果保留根号)10.如图,正三角形ABC 的边长为33 。
(1)如图①,正方形EFPN 的顶点E 、F 在边AB 上,顶点N 在边AC 上,在正三角形ABC 及其内部,以点A 为MAEBP①位似中心,作正方形EFPN的位似正方形////NFE,且P使正方形////NE的面积最大(不要求写作PF法);(2)求(1)中作出的正方形////NE的边长;PF(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPN,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由。
《位似图形》专题练习答案一、选择题: 1.D ; 2.A ; 3.B ; 4.D ; 5.A ; 6.C ;7.D 。
二、填空题: 1.②③ ;2.),或(3232)32,32(--; 3.),,(232)232(-- ,; 4.(-2x ,-2y );5.)38,34(; 6.(9,0);7. ),或(3234)0,2(-; 8.(1,0),(-5,-2);解:∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1),∴E (-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点,设AG 所在直线的解析式为b kx y +=(0≠k ),∴⎩⎨⎧-==+123b b k ,解得⎩⎨⎧-==11b k ∴此函数的解析式为1-=x y ,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点,设AE 所在直线的解析式为b kx y +=(0≠k ),⎩⎨⎧=+-=+023b k b k ,解得⎪⎪⎩⎪⎪⎨⎧==2121b k ,故此一次函数的解析式为2121+=x y 。
① 同理,设CG 所在直线的解析式为y =kx +b (k≠0),⎩⎨⎧-==+105b b k ,解得⎪⎩⎪⎨⎧-==151b k ,故此直线的解析式为151-=x y ② 联立①②得⎪⎪⎩⎪⎪⎨⎧-=+=1512121x y x y 解得⎩⎨⎧-=-=25y x , 故AE 与CG 的交点坐标是(-5,-2)。
综上所述:位似中心的坐标是:(1,0)或(-5,-2)。
或经过画图探索。
解:易知位似中心应有两个,如图1、图2所示,且两位似图形的位似比即相似比为1∶2。
图1中,由△MQG ∽△MCD ,知12OG OM CD MC ==,而OC =3,所以OM =1,即M(1,0)。
图2中,由△MEO ∽△MAD ,知12OM OE MD AD ==,即M 为MD 中点,所以M 、D 两点关于原点中心对称,又D 点坐标为(-5,-2),故M 点坐标为(-5,-2)。
故这两个正方形的位似中心的坐标是(1,0)或(-5,-2)。
图1 图2三、解答下列各题:1.解:分别延长AO、BO到A′、B′,使OA′︰OA=OB′︰OB=2︰1。
2.解:∵△ABC与△A′B′C′是位似图形∴△ABC∽△A′B′C′∵位似比是1︰2∴AB︰A′B′=1︰2∵AB=2cm∴A′B′=4cm。
位似中心如图,点O即为所求。
3.解:所画图形如下所示。
它的三个对应顶点的坐标分别是:(-6,0)、(3,3)、(0,-3)。
4.解:画出图形如下:五边形A′B′C′D′E′为所求的五边形。
A1C1B1CBAy421x15.(1)如图;(2)如图;(3)(0, 0);(4)轴对称图形。
6.7.解:(1)画出的△A1B1C1如图所示,点B1的坐标为(-9,-1);(2)画出的△A2B2C的图形如图所示,点B2的坐标为(5,5);(3)画出的△AB3C3的图形如图所示。