《实验:探究单摆周期与摆长的关系》参考教案
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
摆的周期实验测量摆的周期与摆长的关系标题:摆的周期实验:探究摆的周期与摆长的关系引言:摆是物理学中常见的现象,它具有固定的摆长与一定的周期。
在本实验中,我们将通过摆的周期实验来探究摆的周期与摆长的关系,以进一步了解摆的特性和物理原理。
1. 实验背景摆是一个简单而重要的物理系统,它是通过一个固定支点和一根线或杆相连的物体。
在实验中,摆长是指支点到摆铅球质心的距离,而周期是指摆从一侧摆动到另一侧所需的时间。
摆的周期与摆长之间存在一定的关系,本实验旨在通过测量和分析数据,找出摆的周期与摆长之间的关系。
2. 实验步骤(1)准备实验装置:将一根线或杆固定在一个支点上,悬挂一个适当重量的摆铅球。
(2)测量摆铅球的摆长:使用一个尺子或测量工具,准确测量摆铅球的摆长。
(3)重新悬挂摆铅球:调整摆铅球的位置,确保它能够自由摆动。
(4)开始计时:使用一个计时器或手机应用,记录摆动的时间,即周期。
(5)重复实验:多次测量和记录,确保结果的准确性和可靠性。
(6)改变摆长:根据需要,改变摆长,重新进行测量和记录。
3. 数据处理与分析(1)绘制摆长与周期的图表:根据实验数据,绘制一张表格或柱状图,将摆长作为横坐标,周期作为纵坐标。
(2)观察图表:通过观察和分析图表,寻找摆长与周期之间的关系。
是否存在某种规律或趋势?(3)假设与验证:基于观察的结果,提出假设并设计实验来验证。
(4)数据拟合与回归分析:使用适当的数学模型进行数据拟合和回归分析,以获得更准确的关系表达式。
4. 结果与讨论(1)得出结论:根据实验结果,得出摆的周期与摆长之间的关系,例如摆长越长,周期是否越大?(2)分析和解释:解释实验结果背后的物理原理,例如摆长对摆动速度和加速度的影响。
(3)讨论误差和限制:讨论实验中可能存在的误差和限制,如测量误差、环境因素等。
(4)实验扩展:进一步讨论如何扩展实验,探究其他因素对摆的周期的影响,如质量、摆动角度等。
结论:通过摆的周期实验,我们探究了摆的周期与摆长之间的关系。
《探究单摆周期与摆长的关系》教学设计【课标要求】《课程标准》要求学生通过实验,探究单摆的周期与摆长的关系。
会用单摆测定重力加速度。
为了研究周期与各种因素是否有关以及有怎样的关系,可以采用控制变量的方式进行定性和定量相结合的方案来研究这些关系【教学目标】1.知识与技能目标(1)知道单摆周期与哪些因素有关。
(2)知道单摆的周期公式。
(3)能运用单摆的周期公式解答有关实际问题。
2.过程与方法目标(1)通过单摆振动周期规律探究,培养学生猜想能力,实验设计能力,数据处理能力,交流协作能力。
(2)通过单摆周期公式的应用,培养学生运用物理知识解答实际问题的能力。
3.情感态度与价值观目标(1)结合物理学史介绍物理学家对单摆的研究,法展学生对自然的好奇性,激发学生乐于探究自然的奥秘。
(2)在单摆周期规律的探究中,培养学生的交流协作精神,使学生体验科学探究的艰辛和喜悦。
【学情分析】1.通过前面的学习,学生已经知道了单摆的概念,单摆的回复力等知识。
也了解了单摆做简谐运动的条件。
2.高二学生已有一定的物理学科方法,如观察实验,控制实验,假说方法,从现象归纳规律等,可以实现教材渗透的方法教育意图3.可能存在的困难:学生对实验的数据处理。
【教学重难点】1.教学重点:自足探究单摆的周期与哪些因素有关。
2.教学难点:定量实验,得出单摆的周期T与L的关系并对数据的处理。
【课前准备】1.课前完成对小组长学案题目完成情况的的检查和实验操作的指导培训。
【教学过程】一、实验目的:探究单摆的周期与摆长的关系。
二、实验器材:铁架台细线摆球(中间有孔)游标卡尺直尺秒表三、实验方法:控制变量法四、实验步骤:1、组装仪器2、测量摆长3、测量周期4、数据处理5、重复测量【自主探究】:探究一:探究单摆的周期与什么因素有关?物理量振幅(A)质量(M)摆长(L)周期(T)振幅(A)改变不变不变质量(M)不变改变不变摆长(L)不变不变改变探究二:探究单摆周期与摆长之间有什么定量的关系?物理量/组数 1 2 3 4 5摆长(L)周期(T)周期(T2)猜想:先通过简单的数据分析,对周期T与摆长L的定量关系做出猜猜,例如可能是T ∝L、 T∝L2或者、……然后按照猜测来确定纵坐标轴和横坐标轴。
单摆的周期跟摆长的关系
在探究单摆的周期跟哪些因素有关的实验中,得出周期跟摆长的关系是本实验的主要任务,为了探究二者的关系,实际教学过程中可以参考如下思路进行。
一、理论指导
单摆的周期指单摆做简谐运动时,完成一次全振动的时间。
单摆的摆长指悬挂小球的细线长度跟小球半径之和。
一个单摆制作完工以后,其摆长为定值,不同摆长的单摆振动过程中,振动周期与摆长有关,在某一地点,重力加速度g一定,单摆的摆长不同,振动周期就不同。
二、实验指导
1.定性探究:由对比实验不难发现摆长L越大,周期T越大。
2.猜想:有可能T跟L成正比,也可能T2跟L成正比。
3.定量探究:先设计数据表,然后通过实验获取相关数据,最后根据表中数据作出T2--L 图象,就会发现图线是一条直线,从而验证了T2跟L成正比的猜想。
数据表如下:。
实验十一探究单摆周期与摆长的关系一、实验目的1.知道把单摆的运动看做简谐运动的条件.2.会探究与单摆的周期有关的因素.3.会用单摆测定重力加速度.二、实验原理单摆在摆角小于10°时,其振动周期跟摆角的大小和摆球的质量无关,单摆的周期公式是T=2πlg,由此得g=4π2lT2,因此测出单摆的摆长l和振动周期T,就可以求出当地的重力加速度值.三、实验器材带孔小钢球一个、细丝线一条(长约1 m)、毫米刻度尺一把、秒表、游标卡尺、带铁夹的铁架台.四、实验步骤1.做单摆:取约1 m 长的细丝线穿过带孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂.2.测摆长:用米尺量出摆线长l (精确到毫米),用游标卡尺测出小球直径D (也精确到毫米),则单摆的摆长l ′=l +D2.3.测周期:将单摆从平衡位置拉开一个角度(小于10°),然后释放小球,记下单摆做30~50次全振动的总时间,算出平均每一次全振动的时间,即为单摆的振动周期.反复测量三次,再算出测得周期数值的平均值.4.改变摆长,重做几次实验. 五、数据处理1.公式法:将测得的几次的周期T 和摆长l 代入公式g =4π2lT 2中算出重力加速度g 的值,再算出g 的平均值,即为当地的重力加速度的值.2.图象法:由单摆的周期公式T =2π·l g 可得l =g4π2T 2,因此以摆长l 为纵轴、以T 2为横轴作出的l -T 2图象是一条过原点的直线,如图所示,求出斜率k ,即可求出g 值.g =4π2k ,k =lT 2=Δl ΔT 2.六、注意事项1.选择材料时应选择细、轻又不易伸长的线,长度一般在1 m 左右,小球应选用密度较大的金属球,直径应较小,最好不超过2 cm.2.单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象.3.注意摆动时控制摆线偏离竖直方向不超过10°.可通过估算振幅的办法掌握. 4.摆球振动时,要使之保持在同一个竖直平面内,不要形成圆锥摆.5.计算单摆的振动次数时,应从摆球通过最低位置时开始计时,为便于计时,可在摆球平衡位置的正下方作一标记.以后摆球每次从同一方向通过最低位置时进行计数,且在数“零”的同时按下秒表,开始计时计数.七、误差分析1.系统误差:主要来源于单摆模型本身是否符合要求.即:悬点是否固定,摆球是否可看做质点,球、线是否符合要求,摆动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为摆长等.只要注意了上面这些问题,就可以使系统误差减小到远小于偶然误差而达到忽略不计的程度.2.偶然误差:主要来自时间(即单摆周期)的测量上.因此,要注意测准时间(周期).要从摆球通过平衡位置开始计时,并采用倒计时计数的方法,即4,3,2,1,0,1,2,…在数“零”的同时按下秒表开始计时.不能多计或漏计振动次数.为了减小偶然误差,应进行多次测量后取平均值.对实验原理操作及误差分析的考查【典题例析】某同学利用单摆测量重力加速度.(1)为了使测量误差尽量小,下列说法正确的是________.A.组装单摆须选用密度和直径都较小的摆球B.组装单摆须选用轻且不易伸长的细线C.实验时须使摆球在同一竖直面内摆动D.摆长一定的情况下,摆的振幅尽量大(2)如图所示,在物理支架的竖直立柱上固定有摆长约1 m的单摆.实验时,由于仅有量程为20 cm、精度为1 mm的钢板刻度尺,于是他先使摆球自然下垂,在竖直立柱上与摆球最下端处于同一水平面的位置做一标记点,测出单摆的周期T1;然后保持悬点位置不变,设法将摆长缩短一些,再次使摆球自然下垂,用同样方法在竖直立柱上做另一标记点,并测出单摆的周期T2;最后用钢板刻度尺量出竖直立柱上两标记点之间的距离ΔL.用上述测量结果,写出重力加速度的表达式g=________.[解析](1)应选用密度较大且直径较小的摆球,A错.在摆动中要尽力保证摆长不变,故应选用不易伸长的细线,B对.摆动中要避免单摆成为圆锥摆,摆球要在同一竖直面内摆动,C对.摆动中摆角要控制在5°以内,所以D错.(2)设两次摆动时单摆的摆长分别为L1和L2,则T1=2πL1g,T2=2πL2g,则ΔL=g4π2·(T21-T22),因此,g=4π2ΔLT21-T22.[答案](1)BC(2)4π2ΔLT21-T22(1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°.(2)要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.(3)测周期的方法①要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.②要测多次全振动的时间来计算周期.如在摆球从某一方向经过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过平衡位置时计数1次.某实验小组在探究单摆周期与摆长的关系的实验中:(1)用游标卡尺测定摆球的直径,测量结果如图所示,则该摆球的直径为________cm.(2)小组成员在实验过程中有如下说法,其中正确的是________(填选项前的字母).A.把单摆从平衡位置拉开30°的摆角,并在释放摆球的同时开始计时B.测量摆球通过最低点100次的时间t,则单摆周期为t100C.用悬线的长度加摆球的直径作为摆长,代入单摆周期公式计算得到的重力加速度值偏大D.选择密度较小的摆球,测得的重力加速度值误差较小解析:(1)主尺刻度加游标尺刻度的总和等于最后读数,0.9 cm+7×110mm=0.97 cm,不需要估读.(2)单摆在摆角较小时才能看做简谐运动,其周期公式才成立,为减小计时误差,应从摆球速度最大的最低点瞬间计时,A错误;通过最低点100次的过程中,经过的时间是50个周期,B错误;应选用密度较大、直径较小的球以减小空气阻力的影响,D错误;悬线的长度加摆球的半径才等于摆长,由单摆周期公式T=2πl+rg可知,若摆长记录值偏大,测定的重力加速度也偏大,C正确.答案:(1)0.97(2)C对实验数据处理的考查【典题例析】(2020·湖州调研)下表是探究单摆周期与摆长的关系实验中获得的有关数据:(2)利用图象,取T2=4.2 s2时,l=________m.重力加速度g=________m/s2.[解析](1)由T=2πl g得g=4π2·lT2或l=g4π2·T2,所以图象是过原点且斜率为g4π2的一条直线.l-T2图象如图所示.(2)T2=4.2 s2时,从图中画出的直线上可读出其摆长l=1.05 m,将T2与l代入公式g=4π2l2.T2,得g=9.86 m/s[答案](1)见解析图(2)1.059.86某同学用实验的方法探究影响单摆周期的因素.(1)他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,如图所示.这样做的目的是________(填字母代号).A.保证摆动过程中摆长不变B.可使周期测量得更加准确C.需要改变摆长时便于调节D.保证摆球在同一竖直平面内摆动(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆球的最低端的长度L =0.999 0 m ,再用游标卡尺测量摆球直径,结果如图所示,则该摆球的直径为________mm ,单摆摆长为________m.(3)下列振动图象真实地描述了对摆长约为1 m 的单摆进行周期测量的四种操作过程,图中横坐标原点表示计时开始,A 、B 、C 均为30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四种操作过程合乎实验要求且误差最小的是______(填字母代号).解析:(1)用一块开有狭缝的橡皮夹牢摆线的目的是保证摆动过程中摆长不变,需要改变摆长时便于调节,A 、C 正确.(2)根据游标卡尺读数规则,摆球直径为12.0 mm ,单摆摆长为L -d2=0.999 0 m -0.0060 m =0.993 0 m.(3)单摆测量周期,必须从平衡位置开始计时,且摆角小于10°,所以合乎实验要求且误差最小的是A.答案:(1)AC(2)12.00.993 0(3)A[随堂检测]1.(2020·丽水质检)在“用单摆测定重力加速度”的实验中:(1)下面所给器材中,选用哪些器材较好,请把所选用器材前的字母依次填写在题后的横线上.A.长1 m左右的细线B.长30 cm左右的细线C.直径2 cm的铅球D.直径2 cm的铝球E.秒表F.时钟G.最小刻度是厘米的直尺H.最小刻度是毫米的直尺所选用的器材是________.(2)实验时对摆线偏离竖直线的偏角要求是___________________________________.解析:本实验的原理:振动的单摆,当摆角<10°时,其振动周期与摆长的平方根成正比,与重力加速度的平方根成反比,而与偏角的大小(振幅)、摆球的质量无关,周期公式为T=2πlg,变换这个公式可得g=4π2lT2.因此,本实验中测出单摆的摆长l和振动周期T,就可以求出当地的重力加速度g的值,本实验的目的是测量重力加速度g的值,而非验证单摆的振动规律.因此实验中应选用较长的摆长l,这样既能减小摆长的测量误差,又易于保证偏角θ不大于10°,而且由于振动缓慢,方便计数和计时.本实验所用的实际摆要符合理论要求,摆长要有1 m左右,应选用不易伸长的细线,摆球直径要小于2 cm,应选用较重的小球,故选A、C.由于重力加速度g与周期的平方成反比,周期T的测量误差对g的影响是较大的,所用计时工具应选精确度高一些的,故选E.由于摆长l 应是悬点到铅球的边缘的距离l 加上铅球的半径r .铅球半径用游标卡尺测量出(也可由教师测出后提供数据),因此l 应读数准确到毫米位.实验中应用米尺或钢卷尺来测量,故选H.答案:(1)A 、C 、E 、H (2)小于10°2.(2016·10月浙江选考)在“探究单摆周期与摆长的关系”实验中,测量单摆的周期时,图中________(填“甲”“乙”或“丙”)作为计时开始与终止的位置更好些.答案:乙3.某同学在做“利用单摆测重力加速度”的实验时,先测得摆线长为101.00 cm ,摆球直径为2.00 cm ,然后用秒表记录了单摆振动50次所用的时间为101.5 s ,则(1)他测得的重力加速度g =________m/s 2.(2)为了提高实验精度,在实验中可改变几次摆长l 并测出相应的周期T ,从而得出一组对应的l 与T 的数据,再以l 为横坐标、T 2为纵坐标将所得数据连成直线,并求得该直线的斜率k .则重力加速度g =________.(用k 表示)解析:(1)本次实验中的摆长l =L +r =(101.00+1.00)cm =1.020 0 m ,周期T =t N =101.550s =2.03 s ,由公式g =4π2lT2可以解得g =9.76 m/s 2.(2)由公式g =4π2l T 2得:T 2=4π2g l ,这是一条T 2关于l 的一元一次函数(如y =kx ),所以它的斜率是k =4π2g ,所以g =4π2k.答案:(1)9.76 (2)4π2k4.(2020·湖州质检)在做“用单摆测定重力加速度”的实验过程中:(1)小李同学用游标卡尺测得摆球的直径如图所示,则摆球直径d =________cm.(2)小张同学实验时却不小心忘记测量小球的半径,但测量了两次摆线长和周期,第一次测得悬线长为L 1,对应振动周期为T 1,第二次测得悬线长为L 2,对应单摆的振动周期为T 2,根据以上测量数据也可导出重力加速度的表达式为________.解析:(1)游标卡尺为20分度,精确度为0.05 mm ,主尺读数为20 mm ,游标尺读数为0.05×6=0.30 mm ,所以测得摆球的直径d =2.030 cm.(2)设摆球半径为r ,则:T 1=2πL 1+r g ,T 2=2π L 2+r g 联立两式解得:g =4π2(L 1-L 2)T 21-T 22. 答案:(1)2.030 (2)4π2(L 1-L 2)T 21-T 22。
测定并验证单摆周期和摆长的关系一、选题背景:在我们的高一物理书中也详细介绍了单摆的原理与实验。
说到单摆,你一定会联想到铁架台上挂摆球,外加秒表刻度尺,这几乎成了所有学校与学生心中单摆装置的统一模式。
但由于这套装置本身的不完善性,在实验过程中往往会造成较大的误差,并不令人信服。
为了更好地完善单摆实验,我们选择了这个实验作为研究课题。
二、选题目的通过自己搭建实验平台,利用三套不同的TI设备进行实验,更精确的进行数据采样,拟合摆长与周期关系的图样。
同时我们还就以上三套TI设备做单摆实验的优缺点进行综合评价,为TI设备在不久的将来将走进物理实验课做好铺垫。
三、选用仪器TI-83Plus、CBL-2、光电门、自制平台由于一般的铁架台过于笨重,且不可收缩,为实验带来了很大的不便,于是我们有必要自己设计制作一个便携式实验平台四、试验程序TI-83 PHYSICS五、实验方案我们的整个实验主要分为搭建平台与测量数据和汇总两大部分。
其中搭建平台是基础,而伸缩轻杆则是本次搭建平台的关键。
在我们的初步方案中,本来是用抽屉滑槽作为伸缩杆的材料,但是买不到。
我们甚至还考虑了悬挂式平台,但此计划最终还是难产。
为了解决这一难题,我们用了整整两个星期展开全面搜索,最终理想的材料找到了。
我们一共设计并制作了两套实验平台。
其中一个是由铝制拉伸式衣架改装而成,在上面安装滑轮,可以方便地调节摆线长。
另一套是我们为本次试验和身订制的。
在杆上刻有刻度,通过可移动的横杆构成X, Y轴,可以方便地读出摆长,同时通过横杆上的刻度,我们可以很方便地选择相应的摆角。
六、实验过程在整个实验中,我们运用了TI-83Plus、CBL2、光电门。
1.按下APPS键选择PHYSICS,在菜单中找到PHOTOGATE,进入,其中第三项便是有关单摆试验的程序,在进入之前,可以用CHECK GATE来检验光电门是否接触良好,按下第三项,进入试验。
2.控制好摆长,摆角,无外力释放摆球,使球心刚好从光电门的圆孔连线处穿过,待摆动稳定后,按下ENTER键,测得周期有关数据。
实验:探究单摆周期与摆长的关系一、游标卡尺1.构造:主尺、游标尺(主尺和游标尺上各有一个内、外测量爪)、游标卡尺上还有一个深度尺.(如图1所示)图12.用途:测量厚度、长度、深度、内径、外径.3.原理:利用主尺的最小分度与游标尺的最小分度的差值制成.不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的小等分刻度少1mm.常见的游标卡尺的游标尺上小等分刻度有10个的、20个的、50个的,其规格见下表:4.读数:若用x 表示从主尺上读出的整毫米数,K 表示从游标尺上读出与主尺上某一刻度线对齐的游标的格数,则记录结果表示为(x +K ×精确度)mm.二、探究单摆周期与摆长的关系1.实验原理 由T =2πl g ,得g =4π2lT2,则测出单摆的摆长l 和周期T ,即可求出当地的重力加速度. 2.实验器材铁架台及铁夹,金属小球(有孔)、秒表、细线(1m 左右)、刻度尺、游标卡尺. 3.实验步骤(1)让细线穿过小球上的小孔,在细线的穿出端打一个稍大一些的线结,制成一个单摆. (2)将铁夹固定在铁架台上端,铁架台放在实验桌边,把单摆上端固定在铁夹上,使摆球自由下垂.在单摆平衡位置处做上标记.(3)用刻度尺量出悬线长l ′(准确到mm),用游标卡尺测出摆球的直径d (准确到mm),则摆长为l =l ′+d2. (4)把单摆拉开一个角度,角度不大于5°,释放摆球.摆球经过最低位置时,用秒表开始计时,测出单摆全振动30次(或50次)的时间,求出一次全振动的时间,即为单摆的振动周期. (5)改变摆长,反复测量几次,将数据填入表格. 4.数据处理(1)平均值法:每改变一次摆长,将相应的l 和T 代入公式中求出g 值,最后求出g 的平均值. 设计如下所示实验表格(2)图象法:由T =2πl g 得T 2=4π2gl ,作出T 2-l 图象,即以T 2为纵轴,以l 为横轴.其斜率k =4π2g,由图象的斜率即可求出重力加速度g .5.注意事项(1)选择细而不易伸长的线,比如用单根尼龙丝、丝线等,长度一般不应短于1m ,摆球应选用密度较大的金属球,直径应较小,最好不超过2cm. (2)摆动时控制摆线偏离竖直方向的角度应很小.(3)摆球摆动时,要使之保持在同一竖直平面内,不要形成圆锥摆.(4)计算单摆的全振动次数时,应从摆球通过最低位置时开始计时,每当摆球从同一方向通过最低位置时计数,要测n次(如30次或50次)全振动的时间t,用取平均值的方法求周期T=t n .一、实验器材与注意事项例1(2018·浙江名校协作体第二学期考试)在“单摆测重力加速度”实验中,测量周期时,秒表指针如图2所示,读数为________s.图2答案48.4例2(2017·浙江名校新高考研究联盟第三次联考)某同学在“探究单摆周期与摆长的关系”实验中,在用铁架搭建好单摆后先测量摆线的长度,其过程如下:图3其中悬挂最佳的是图3中的________(填甲、乙、丙),这样做的目的是________(填选项前的字母代号).A.保证摆动过程中摆长不变B.可使周期测量得更加准确C.保证摆球在同一竖直平面内摆动某同学采用了如图4所示方法测量摆长:图4摆球直径用游标卡尺进行测量,测量方法和游标刻度如图5所示,则摆球的直径是________mm.本单摆的摆长是________m.(请注意单位,本空保留四位有效数字)图5答案乙 A 14.00~14.06 0.4830~0.4845针对训练(2016·浙江10月选考)在“探究单摆周期与摆长的关系”的实验中,测量单摆的周期时,图6中________(填“甲”“乙”或“丙”)作为计时开始与终止的位置更好些.图6答案乙解析因小球通过平衡位置时的速度较大,有利于计时.故选乙.二、实验数据处理例3(2018·金华一中高二上学期第二次段考)某同学“探究单摆周期与摆长关系”,他用最小分度值为毫米的直尺测得摆线长为89.40cm,用游标卡尺测得摆球直径如图7甲所示,读数为________cm,摆长为________cm.用停表记录单摆做30次全振动所用的时间如图乙所示,则停表读数为________s,如果测得的g值偏大,可能的原因是________(填序号).A.计算摆长时加的是摆球的直径B.将摆线和摆球平放在桌面上,拉直后用米尺测出摆球球心到摆线某点O间的长度作为摆长C.摆线上端未牢固系于悬点,振动中出现松动,使摆线长度增加(实验过程中先测摆长后测周期)D.实验中误将30次全振动记为31次图7答案 2.050 90.425 57.0 AD解析 游标卡尺的主尺读数为2cm ,游标尺上第10个刻度和主尺上某一刻度对齐,所以游标尺读数为10×0.05mm=0.50mm ,所以最终读数为:2cm +0.050cm =2.050cm ; 摆长为:89.40cm +2.0502cm =90.425cm ;由题图乙可知:秒表的读数t =57.0s ; 根据T =2πl g ,得g =4π2l T2 计算摆长时用的是摆线长加摆球的直径,则摆长的测量值偏大,重力加速度测量值偏大,故A 正确;用米尺测出摆球球心到摆线某点O 间的长度作为摆长使摆长的测量值偏小,重力加速度测量值偏小,故B 错误;摆线上端未牢固系于悬点,振动中出现松动,使摆线长度增加,则摆长的测量值偏小,重力加速度测量值偏小,故C 错误;实验中误将30次全振动记为31次,则周期的测量值偏小,重力加速度测量值偏大,故D 正确.例4 (2018·杭州第一学期质检)(1)如图8甲所示为小金在进行“探究单摆摆长和周期关系”实验时,用秒表记录下单摆50次全振动所用时间,由图可知该次实验中50次全振动所用时间为________s.(2)如图乙所示,他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,他这样做的主要目的是________.图8A .便于测量单摆周期B .保证摆动过程中摆长不变C .保证摆球在同一竖直平面内摆动(3)小金同学以摆线的长度(L )作为纵坐标,以单摆周期的平方(T 2)作为横坐标,作出L -T2的图象如图丙所示,则其作出的图线是________(填“图线1”“图线2”或“图线3”).若作出的图线的斜率为k ,能否根据图象得到当地的重力加速度?________________________. (若不可以,填“否”;若可以求出,则写出其表达式) 答案 (1)99.8 (2)B (3)图线2 4π2k解析 (1)秒表的读数为60s +39.8s =99.8s ,即50次全振动所用时间;(2)用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,这样做主要是为了防止小球在摆动过程中把摆线拉长,故B 正确;(3)根据单摆周期T =2πL +D2g可得,L =g4π2T 2-D 2,故应为图线2; 根据图象斜率k =g4π2,所以g =4π2k .[学科素养] 通过例3、例4,学生回顾了游标卡尺和秒表的读数方法,锻炼了用单摆测定重力加速度的本领,在解题过程中,提高了实验探究过程中交流、反思的能力.本题着重体现了“实验探究”学科素养.1.(实验器材与注意事项)(2018·宁波“十校联考”期末)在“用单摆测定重力加速度”的实验中(1)以下关于本实验的措施中正确的是________. A .摆角应尽量大些 B .摆线应适当长些C .摆球应选择密度较大的实心金属小球D .用停表测量周期时,应从摆球摆至最高点时开始计时(2)用50分度的游标卡尺测量小球的直径,如图9所示的读数是________mm ,用停表记录了单摆振动50次所用的时间如图10所示,停表读数为________s.图9 图10(3)考虑到单摆振动时空气浮力的影响后,同学甲说:因为空气浮力与摆球重力方向相反,它对球的作用相当于重力加速度变小,因此振动周期变大,乙同学说:浮力对摆球的影响好像用一个轻一些的摆球做实验,因此振动周期不变,这两个同学的说法中________. A .甲正确 B .乙正确 C .都错误答案 (1)BC (2)17.50 100.2 (3)A解析 (1)在摆角小于5°的情况下单摆的运动可以看做简谐运动,实验时摆角不能太大,不能超过5°,故A 错误;实验中,摆线的长度应远远大于摆球的直径,适当增加摆线的长度,可以减小实验误差,故B 正确;减小空气阻力的影响,选择密度较大的实心金属小球作为摆球,故C 正确;用停表测量周期时,应从球到达平衡位置开始计时,这样误差小一些,故D 错误.(2)由题图可看出,游标尺上的第25条刻度线与主尺上的4.2cm 刻度线对齐了,则游标尺的零刻度线与此刻度线之间的距离为25×4950mm =24.5mm ,因4.2cm -24.5mm =17.5mm ,则游标尺的零刻度线应在17mm ~18mm 之间,游标尺读数为25×0.02mm=0.50mm ;则游标卡尺读数为17mm +0.50mm =17.50mm ;由图示秒表可知,分针示数超过了半刻线,秒表示数为:60s +40.2s =100.2s ;(3)考虑到单摆振动时空气浮力的影响后,物体不只受重力了,加速度也不是重力加速度,实际加速度要减小,因此振动周期变大,甲同学说法正确.2.(实验数据处理)(2018·温州“十五校联合体”高二第一学期期末)“用单摆测定重力加速度”的实验装置如图11所示.关于该实验,有下列步骤:图11(1)测单摆周期时,为减小测量误差,应________. A .以平衡位置作为计时起点 B .以最大位移处作为计时起点 C .可以以任意位置作为计时起点(2)测出摆线长L ,小球直径d ,及单摆完成n 次全振动所用的时间t ,则重力加速度g =________.(用L 、d 、n 、t 表示)(3)如图12所示,用游标卡尺测得小球的直径为______mm.图12(4)某同学在实验时忘了测量小球直径,但是改变摆线长度做了多次测量,得到多组T 与L 的实验数据,根据这些数据,该同学能否求得当地的重力加速度?________.(填“能”或“不能”)答案 (1)A (2)2n 2π2(2L +d )t2(3)20.3 (4)能 3.(实验数据处理)(2018·金丽衢十三校第二次联考)在做“用单摆测定重力加速度”的实验过程中,小张同学实验时不小心忘记测量小球的半径,但测量了两次摆线长和周期,第一次测得悬线长为L 1,对应振动周期为T 1,第二次测得悬线长为L 2,对应单摆的振动周期为T 2,根据以上测量数据也可导出重力加速度的表达式为____________. 答案 g =4π2(L 1-L 2)T 12-T 224.(实验综合考查)(2018·嘉兴高二第一学期期末)某同学用实验的方法“探究单摆的周期与摆长的关系”.(1)组装单摆时,应在下列器材中选用________较为合适. A .长度为1m 左右的细线 B .长度为30cm 左右的细线 C .直径为1.8cm 左右的塑料球 D .直径为1.8cm 左右的铁球(2)该同学用如图13甲所示仪器来测量球的直径,该仪器的名称是________,某次测量的读数区如图乙所示,该球的直径为________mm.图13(3)用秒表测量小球多次摆动的总时间,如图14所示,对应时间为________.图14答案(1)AD (2)游标卡尺23.68(23.60~23.74) (3)117.4s解析(1)为减小实验误差,应选择1m左右的摆线,为减小空气阻力影响,摆球应选质量大的金属球,因此需要的实验器材是A、D.(2)题图所示仪器为游标卡尺,读数为:23mm+0.02×34mm=23.68mm.(3)秒表的读数为:60s+57.4s=117.4s.。
«探究单摆周期与摆长的关系»学案
红安一中物理组邓永高
班级:姓名:学号:
一学习目标:
1运用变量控制法探究单摆周期与质量、振幅、摆长的关系。
2体会用图像法处理数据的直观性和优越性。
3体会运用实验去探究科学真理的成功和喜悦。
二学习重点:
1了解实验仪器,并能熟练地操作。
2掌握列表法,图像法处理数据。
3善于从实验现象中归纳总结物理规律。
4体会探究科学规律的一般步骤:发现问题→提出猜想→设计方案→实验论证→归纳总结。
三学习内容:
1课前预习课本15页。
2复习回顾控制变量法。
3由视频引出的问题而提出猜想。
4设计方案。
5实验验证。
6处理数据。
7总结实验结论及推广。
四实验注意事项:
1摆的振幅不要太大。
2摆线和摆球的选择。
3细线上端的悬挂方式。
4摆长的测量。
5周期的测量。
6数据的分析。
五设计实验与实验数据记录表方案一:
方案二:
数据记录:
数据处理:
实验结论:
归纳总结:。
实验:探究单摆周期与摆长的关系
一、教学目标
1、知识与技能:
(1)探究摆长对单摆周期的影响及其定量关系
(2)理解单摆周期与摆长的定量关系
(3)学会借助计算机处理实验数据
2、过程和方法:
体验用计算机辅助系统进行科学探究的过程,学会科学探究的基本思想和基本方法
3、情感、态度和价值观:科学研究的浓厚兴趣,培养科学探究能力,培养团队合作精神
二、教学重点与难点
重点:实验探究单摆周期与摆长的定量关系
难点:精确测量摆长
三、教学结构
四、教学过程
(一)情景导入,提出问题
复习单摆理想模型,分析描述单摆作简谐振动的条件。
(二)观察实验,做出猜测
1.两摆的振幅不同
2.两摆的质量不同
3.两摆的摆长不同
(三)设计方案与讨论
1:利用米尺和游标卡尺分别测量出细线长度和小球的半径,算出摆长。
2;让单摆做简谐运动,用秒表测出振动周期。
(课件出示注意事项)
注意事项
1.为减小误差,测量时间时从摆球经过平衡位置计时,此处摆球速度最大,计时误差相对较小。
2.为提高测量准确度,采取叠加测量,即测量30个周期时间,再除以次数,也
可减小测量误差。
(四)学生实验,教师辅导
每个小组改变摆长测量10组摆长和周期的数据。
(直接记录到电脑的Excel 表格中)
学生进行实验,老师辅导,约10分钟
(五)实验总结,数据分析
1、原始数据定性分析大致规律
学生观察采集到的原始数据,根据数据定性分析。
学生观察采集的数据,可以从数据中看到:随着摆长逐渐减小,单摆的周期也在逐渐减小。
2、作图并拟合曲线分析定量关系
从数据的变化我们已经可以看出,摆长的确是影响单摆周期的因素之一,而且他们的大致关系是摆长越小周期也越小。
excell 中,提供了对表格数据的绘图功能,利用这个功能,可以用计算机快捷地把原始数据绘制成图象。
学生活动:在计算机上画出图象,用各种函数进行拟合一次函数、二次函数、三次函数、平方根函数、三次方根函数等,观察哪条函数图线拟合得最好。
学生观察结果:平方根函数拟合得最好。
3、转化参量提高定量分析精度
师:曲线的拟合程度高低看起来还不是非常直观,最好能把图线转化成直线,这样更能说明问题。
可以把周期的数据平方,当然也可以选择把摆长的数据开平方根,都可以更加精确地证明我们的猜想。
而且利用软件提供的功能,可以非常快捷地完成这个过程。
学生活动,分两大组分别用两种方法处理数据,重新绘制图线。
4、找到规律总结思想方法
学生分析:从重新绘制的拟合图线中可以看出,将周期平方或者将摆长开平方根以后得到的拟合图线与正比例函数拟合得非常好,从而表示出了周期与摆长的定量关系,那就是L T ∝2,或L T ∝。
(六)讨论摆长与其他因素的关系
1、设计实验讨论细节
提出问题:
问题一:通过实验研究了单摆周期与摆长之间的关系,而之前猜测的影响周期的因素除了摆长以外,还有摆球质量、振幅等等,也可以用控制变量法来研究,如何做呢?
问题二:改变单摆的振幅时,单摆振幅的可取范围比较小,因为单摆作简谐振动的条件是摆角小于五度,大家有没有对这个限制条件产生过怀疑?如果摆角大于五度会发生什么事情呢?
2、学生分组实验
学生分成三大组,1、2、3、4组研究摆球质量不同的单摆,5、6、7、8组研究摆角小于5度时不同振幅的单摆,9、10、11、12组研究摆角大于五度时单摆的周期,教师作指导,时间大约5分钟。
3、交流实验结果
●当摆长一定,振幅一定的情况下,摆球质量不同的单摆,周期相同,因此,单摆的周期应该与摆球质量无关。
●当摆长一定,摆球质量一定时,小于5度情况下,振幅发生变化,单摆的周期不变。
●数据显示摆角大于五度时,只要摆角在30度以内,不同摆角时单摆周期的变化不超过0.1秒,我们认为在大多数对精度要求不是非常高的情况下我们还是可以近似认为单摆的周期是不变的,摆角超过30度以后,单摆的周期变化就非常大了,可以从数据中看出摆角越大,周期越大。
4、结论:单摆具有等时性
(七)布置作业
设计方案研究一下重力加速度对单摆周期的影响。