攀枝花钒钛磁铁矿情况简介
- 格式:doc
- 大小:46.56 MB
- 文档页数:13
49矿产资源Mineral resources钒钛磁铁矿矿床的成矿地质特征及成因综述张雪瑞(成都理工大学地球科学学院,四川 成都 610059)摘 要:钒钛磁铁矿矿床是全球金属钒和钛的主要来源,约占全球钛资源量的80%以上,钒资源量的70%以上,成为各大矿业公司的重点勘查和开采对象。
由于钒钛磁铁矿矿床属产于镁铁-超镁铁质岩体的典型岩浆矿床,其矿床成因与地幔柱活动相关,因而一直是矿床学家研究的热点。
本文通过搜集国内外关于钒钛磁铁矿矿床的资料,简要介绍了钒钛磁铁矿矿床的含矿岩体形态、矿体特征和成矿地质背景等内容,并以经典成因理论和中国攀西地区成矿控制因素为重点对矿床成因模式进行了总结。
关键词:钒钛磁铁矿矿床;地质特征;成因模式中图分类号: P611 文献标识码:A 文章编号:11-5004(2020)23-0049-2 收稿日期:2020-12作者简介:张雪瑞,男,生于1994年,汉族, 四川成都人,硕士在读,研究方向:地质学(岩石学、矿物学、矿床学) 。
1 钒钛磁铁矿矿床的地质特征1.1 钒钛磁铁矿矿床的定义钒钛磁铁矿矿床在形成过程中与大型铁质镁铁-超镁铁质层状岩体和斜长岩杂岩体密切相关,属晚期岩浆矿床[1]。
该矿床中最主要的矿石矿物是磁铁矿和钛铁矿,二者通常呈格架状、叶片状构造紧密连生。
同时,由于钒通常以类质同像混合物的形式产于磁铁矿中,因此被称为钒钛磁铁矿矿床。
含矿的超基性-基性岩体常与大规模的大陆溢流玄武岩在时空上紧密伴生,并且它的母岩浆主要由高镁玄武岩提或苦橄榄质组成;因此,据信这种在铁质-超基性侵入体中发生的岩浆沉积与地幔柱活动直接相关[2]。
表1列出了世界上主要的大型含钒钒磁铁矿床。
目前,世界上最大的钒钛磁铁矿床位于在南非Bushveld 杂岩体中,其钒和钛的储量分别达到260万吨和2.1亿吨。
我国的钒钛磁铁矿床以攀西地区的攀枝花、红格和白马岩体为代表,其组成了世界上最大的钒钛磁铁矿矿集区,赋存着超过880万吨的钒和8.7亿吨的钛,分别占世界资源量的11%和38%。
攀枝花钒钛磁铁矿矿床攀枝花钒钛磁铁矿矿床位于四川省攀枝花境内,属仁和区银江乡及市东区所辖,地理坐标东经101o45`45"~101o47`08",北纬26o36`15"~26o37`15"。
矿体长35Km,宽约2Km,储量近百亿吨。
成昆铁路纵贯攀枝花市区,市区内有支线横贯东西各矿区,公路可直通成都、昆明、交通极为方便。
丽江、大理;市区内公路四通八达,并有公交线直通矿区,攀枝花钒钛磁铁矿矿床是世界闻名、中国最大的钒钛磁铁矿矿床,现己成为我国重要钢铁基地之一,也是钛、钒原材料重要生产基地。
图1 攀枝花市交通位置图一、区域地质概况攀枝花铁矿地处杨子地台西缘盐源—丽江台缘拗陷与康滇地轴(中段)的交接部位,其成矿受区域性南北向的安宁河断裂、磨盘山—昔格达断裂和攀枝花断裂组成的川滇南北向造带(北段)及加里东期—海西期基性、超基性岩浆活动的控制。
矿体产于侵入震旦系上统大理岩中的海西期辉长岩体中,岩体作北东30o 方向延伸。
矿体呈似层状, 层位稳定, 规模巨大。
因受断裂切割分为朱家包包、兰家火山、尖包包、倒马坎、公山、纳拉箐6个矿段。
矿源主要来自于地幔,矿石主要是钒钛磁铁矿。
1、地层矿区出露地层较简单,仅有震旦系上统灯影组;三叠系上统丙南组、大莽地组、宝鼎组;第三系昔格达组和第四系。
1.1 震旦系上统灯影组出露于攀枝花辉长岩体东南侧的岩体底板,受海西期花岗岩影响及构造破坏,该层残缺不全,且普遍变质,岩性为大理岩。
在兰家火山主峰下可明显分为二层:下部为镁橄榄石蛇纹石化大理岩,主要矿物成分为方解石、镁橄榄石、蛇纹石、透闪石等,厚150m;上部为透辉石、透辉石大理岩互层,矿物成分为透辉石、方解石、透闪石等,厚75m。
1.2 三叠系上统丙南组分布于新庄、硫磺沟、岔河一带,为紫红色砂岩、砾岩互层,上部过渡为紫红色页岩。
与大莽地组呈假整合接触,厚度为206m。
大莽地组分布于大莽地、红泥一带,以粗砂岩、砾岩为主,夹页岩及煤层,厚度为2156m。
矿床学实习报告矿床类型:岩浆矿床典型矿床:四川攀枝花钒钛磁铁矿矿床班级:020151姓名:***实习日期:2017.09.29一、矿床地质背景简介1、大地构造位置四川省攀枝花钒钛磁铁矿床位于攀枝花境内,在四川省渡口市东北12Km处,是我国最大的钒钛磁铁矿床。
大地构造位置属扬子准地台康滇地轴中段西缘的安宁河深大断裂带上,西邻丽江台缘坳陷北段,西南接滇中坳陷,该区域岩浆活动非常活跃,构造极其复杂,是我国非常重要的岩浆-构造带。
(如图1中方框内)2、区域主要地层、岩浆岩、构造(1)地层区内中元古界、古生界、中生界及新生界地层均有出露,最古老的地层为上震旦系,分两层,下部是蛇纹石化大理岩;上部是透辉石和透辉石大理岩互层。
上三叠纪底层在本区最发育,分布在矿区北部和西北部,其底部是紫红色砂砾岩,上部为灰色砂岩与黑色砂页岩互层,含煤。
老第三系紫红色砂砾岩呈水平或近水平,不整合覆于老地层之上。
基底为下元古代早期的米易群,主要岩性为斜长角闪岩以及角砾状混合岩,夹少量的变粒岩;围岩地层为震旦系—寒图1(据25万综合)武系一套陆表海沉积[1],下部为观音崖组砂岩以及片岩,分布较少,上部主要为灯影组白云岩、夹硅质条带的白云岩,呈断层接触于基底地层之上。
矿区缺失寒武系—石炭系的地层,推测是由于基底地层的抬升,导致了寒武—石炭系地层变薄至消失[2],晚二叠世由于裂谷中裂隙构造发育到达顶峰,形成以峨眉山玄武岩为主的大陆溢流相火山岩,以及研究区层状含矿辉长岩体。
在晚三叠世-晚侏罗世的裂陷盆地中,堆积了厚度巨大的陆相类磨拉石—含煤建造,在矿区中主要以丙南组(T3b)和大荞地组(T3d)为代表,主要岩性为砂岩、砾岩以及上部的页岩和含煤层。
而到第三系主要为薄层砂页岩沉积,厚度巨大。
[3](2)岩浆岩该区位于康滇构造-岩浆带上,区内岩浆岩十分发育,呈南北向分布于地轴内,形成四川省内著名的岩浆杂岩带[4]。
①侵入岩主要分布于含矿岩体以及研究区两侧的正长岩。
54矿产资源M ineral resources四川省攀枝花新街钒钛磁铁矿矿床地质特征罗启超1,周 杨2(1.成都理工大学 地球科学学院,四川 成都 610059;2.中国地质大学 工程学院,湖北 武汉 430074)摘 要:攀西地区是我国钒钛磁铁矿重要成矿带和铁矿石基地。
攀枝花钒钛磁铁矿矿石有着丰富的有益元素,其中铁、钛、钒被开发利用,伴生元素钴、镍元素等,具有很高的经济价值,到目前为止,却没有被有效的利用。
在广泛搜集、整理了攀西地区钒钛磁铁矿现有的地质资料和相关稀有分散元素研究成果的基础上,大致总结了攀枝花新街矿区中钴镍的分布状况,为下一步回收利用提供了一定的依据。
综合来看,在铁矿开发利用过程中,钴与镍主要富集在磁铁矿中,在对钒钛磁铁矿综合利用时,也具有综合利用价值。
关键词:新街钴镍分布特征中图分类号:P573 文献标识码:A 文章编号:11-5004(2020)07-0054-2收稿日期:2020-04作者简介:罗启超(1994-),男(汉族),四川绵阳人,硕士,研究方向:矿产普查与勘探;1 区域地质概况攀西地区是我国钒钛磁铁矿非常重要的一个成矿带,区内遍布各类时期的基性-超基性岩,侵入岩和喷出岩都十分发育。
区域内的基性-超基性岩,主要出露于安宁河、绿汁江流域。
区内地层主要受南北向的断裂带控制,呈南北向带状展布,其次是在会理一带,呈东西向的带状展布。
2 矿床地质特征2.1 岩体特征新街岩体位于川滇南北向裂谷带中段的安宁河断裂与昔格达断裂之间,岩体底板为中二叠世晚期的峨眉山玄武岩,顶板为与峨眉山玄武岩同期的正长岩。
此外,岩体的某些地段完全包裹在峨眉山玄武岩中[1]。
新街岩体与峨眉山玄武岩是同源岩浆演化过程中不同岩相的产物。
图1 新街矿床地质简图(据攀枝花地质综合研究队改编,1981)新街岩体是一个北西-南东向的椭圆形层状基性-超基性岩体。
岩体长7 km,宽1km-1.5 km,为白马钒钛磁铁矿带向南的延伸部位。
钒钛磁铁矿基本情况我国钒钛磁铁矿床分布广泛,储量丰富,储量和开采量居全国铁矿的第三位,已探明储量98.3亿吨,远景储量达300亿吨以上,主要分布在四川攀枝花地区、河北承德地区、陕西汉中地区、湖北郧阳、襄阳地区、广东兴宁及山西代县等地区。
其中,攀枝花地区是我国钒钛磁铁矿的主要成矿带,也是世界上同类矿床的重要产区之一,南北长约300km,已探明大型、特大型矿床7处,中型矿床6处。
钒矿资源较多,总保有储量V2O5 2596万吨,居世界第3位。
钒矿主要产于岩浆岩型钒钛磁铁矿床之中,作为伴生矿产出。
钒矿作为独立矿床主要为寒武纪的黑色页岩型钒矿。
钒矿分布较广,在19个省(区)有探明储量,四川钒储量居全国之首,占总储量的49%;湖南、安徽、广西、湖北、甘肃等省(区)次之。
钒钛磁铁矿主要分布于四川攀枝花-西昌地区及河北承德地区,黑色页岩型钒矿主要分布于湘、鄂、皖、赣一带。
钒矿成矿时代主要为古生代,其他地质时代也有少量钒矿产出。
钛矿主要为钒钛磁铁矿中的钛矿、金红石矿和钛铁矿砂矿等。
钒钛磁铁矿中的钛主要产于四川攀枝花地区。
金红石矿主要产于湖北、河南、山西等省。
钛铁矿砂矿主要产于海南、云南、广东、广西等省(区)。
钛铁矿的TiO2保有储量为3.57亿吨,居世界首位。
钛矿矿床类型主要为岩浆型钒钛磁铁矿,其次为砂矿。
从成矿时代来看,原生钛矿主要形成于古生代,砂钛矿则于新生代形成。
含钒钛磁铁矿岩体分为基性岩(辉长岩)型和基性-超基性岩(辉长岩-辉石岩-辉岩)型两大类,前者有攀枝花、白马、太和等矿床,后者有红格、新街等矿床。
总的来说,两种类型的地质特征基本相同,前者相当于后者的基性岩相带部分的特征,后者除铁、钛、钒外,伴生的铬、钴、镍和铂族组分含量较高,因而综合利用价值更大。
钒钛磁铁矿不仅是铁的重要来源,而且伴生的钒、钛、铬、钴、镍、铂族和钪等多种组份,具有很高的综合利用价值。
钒钛磁铁矿一般技术路线为磁选-重选-浮选、浮选-磁选-重选、磁选-浮选-重选-浮选、浮选-弱磁-强磁-重选等相结合的选矿工艺。
矿床学实习报告矿床类型:岩浆矿床典型矿床:四川攀枝花钒钛磁铁矿矿床班级:020151姓名:崔勇辉实习日期:2017.09.29一、矿床地质背景简介1、大地构造位置四川省攀枝花钒钛磁铁矿床位于攀枝花境内,在四川省渡口市东北12Km处,是我国最大的钒钛磁铁矿床。
大地构造位置属扬子准地台康滇地轴中段西缘的安宁河深大断裂带上,西邻丽江台缘坳陷北段,西南接滇中坳陷,该区域岩浆活动非常活跃,构造极其复杂,是我国非常重要的岩浆-构造带。
(如图1中方框内)2、区域主要地层、岩浆岩、构造(1)地层区内中元古界、古生界、中生界及新生界地层均有出露,最古老的地层为上震旦系,分两层,下部是蛇纹石化大理岩;上部是透辉石和透辉石大理岩互层。
上三叠纪底层在本区最发育,分布在矿区北部和西北部,其底部是紫红色砂砾岩,上部为灰色砂岩与黑色砂页岩互层,含煤。
老第三系紫红色砂砾岩呈水平或近水平,不整合覆于老地层之上。
基底为下元古代早期的米易群,主要岩性为斜长角闪岩以及角砾状混合岩,夹少量的变粒岩;围岩地层为震旦系—寒图1(据25万综合)武系一套陆表海沉积[1],下部为观音崖组砂岩以及片岩,分布较少,上部主要为灯影组白云岩、夹硅质条带的白云岩,呈断层接触于基底地层之上。
矿区缺失寒武系—石炭系的地层,推测是由于基底地层的抬升,导致了寒武—石炭系地层变薄至消失[2],晚二叠世由于裂谷中裂隙构造发育到达顶峰,形成以峨眉山玄武岩为主的大陆溢流相火山岩,以及研究区层状含矿辉长岩体。
在晚三叠世-晚侏罗世的裂陷盆地中,堆积了厚度巨大的陆相类磨拉石—含煤建造,在矿区中主要以丙南组(T3b)和大荞地组(T3d)为代表,主要岩性为砂岩、砾岩以及上部的页岩和含煤层。
而到第三系主要为薄层砂页岩沉积,厚度巨大。
[3](2)岩浆岩该区位于康滇构造-岩浆带上,区内岩浆岩十分发育,呈南北向分布于地轴内,形成四川省内著名的岩浆杂岩带[4]。
①侵入岩主要分布于含矿岩体以及研究区两侧的正长岩。
钒钛磁铁矿冶炼技术简介一前言钒钛磁铁矿属于难冶炼的矿石之一,俗称呆矿,其在冶炼过程中会对炉内操作及炉外渣铁处理产生一系列不利的影响,使冶炼难以为继,建国以后,我国特别是四川攀钢等钒钛矿丰富的地区,在党和政府的支持下组织了专家进行了一系列的攻关,取得了满意的冶炼成果,积蓄了丰富的经验.二钒钛矿的分类钒钛矿依据所含钛化物的多少分为低钛矿,中钛矿和高钛矿,通常把含TiO2≤3.5%的钒钛矿称为低钛矿,把含3.5%<TiO2≤8.0%称为中钛矿,把含TiO2>8.0%的钒钛矿称为高钛矿.通过几十年的研究和探索,目前我国已完全掌握了钒钛矿冶炼的技术,特别是四川攀钢,经过长期的系统的技术研究,申报了20余项的专利技术,形成了独特的钒钛矿高配比高强度冶炼系统技术,高炉冶炼主要技术经济指标也有了显著的提高,高炉利用系数,焦比,煤比等指标都得到了改善,实现了高钒钛矿比例下高强度冶炼的重大技术突破,使钒钛矿冶炼技术达到了国内先进水平.三钒钛矿冶炼的特点及钛渣的性质钒钛矿冶炼的特点主要是高炉中还原出来的钛,与高炉内的碳和氮结合形成高熔点的化合物碳化钛和氮化钛,使渣铁粘稠,渣铁不分,流动性差,渣铁排放困难,严重时造成高炉炉缸堆积难行.高炉冶炼钒钛磁铁矿的主要困难是由钛渣的特殊性质决定的,高钛渣的特点是脱硫能力低,熔化性温度高和高温还原变稠等特点.1) 高钛渣的脱硫性质一般来说,一定冶炼条件下,高炉渣的脱硫能力与渣中的氧化钙含量及温度成正比,与普通高炉冶炼的四元渣系相比,高钛渣因含有较高的钛化物,在相同碱度下,渣中氧化钙的质量百分比要低15%左右,这必然降低炉渣的脱硫能力,与普通渣相比,若维持1.1的炉渣碱度,普通渣的脱硫系数可达36左右,而含氧化钛20,25,30的钛渣脱硫系数仅为13.12.10,可见脱硫能力甚低.且随着氧化钛的增加而减弱.而且因为氧化钙在钛渣中的质量百分比较小,所以碱度对钛渣的脱硫能力影响较普通渣弱,在钒钛矿冶炼中,即使选用较高的炉渣碱度,也难于改变钛渣脱硫能力低的弱点.反而,随碱度的提高,炉渣的熔化性温度提高,而熔化性温度过高会给操作带来困难,所以不能靠大幅提高炉渣碱度来维持炉渣的脱硫能力.2) 含钛炉渣的熔化性温度熔化性温度高是钛渣的另一特点,高钛渣是一种结晶能力很强的短渣,从岩相来看,普通渣的主要物相是黄长石,辉石,假硅灰石等,其熔点都低于1600度,而当氧化钛参加造渣后,其物相组成全部改观,主要由钙钛矿,巴依石,钛辉石,尖晶石,碳化钛,氮化钛等组成,全部是高熔点矿物,而且其结晶能力很强,实测表明,高钛渣其熔化性温度通常要高于普通渣80-100度,一般来说在高于1.0的常用炉渣碱度范围内,炉渣的熔化性温度随着碱度的提高而提高,从有利于高炉操作的方面考虑,提高碱度使钛渣的熔化性温度提高,过高的熔化性温度使高炉难操作,但为了改善脱硫能力又需要维持一定的炉渣碱度,因此对于钛渣来说,炉渣脱硫与熔化性温度之间存在着相互制约的关系,过高过低都会引起炉缸工作失调或生铁出格.3 含钛渣的炉渣粘度钛渣熔化性温度高,结晶能力强,必然给高炉冶炼带来困难,当遇原料波动,使炉渣碱度升高或炉缸温度降低时,很容易引起流动性变差,出现高结晶相,使炉缸工作失调.另外,出铁过程中不可避免的要有温降,熔点高,结晶能力强的钛渣很容易粘附在沟壁上,造成严重的挂沟现象.增加炉前劳动强度.含钛渣变稠是由于渣中氧化钛在高温下生成碳化钛和氮化钛等高熔点化合物,这些化合物以固体状态悬浮于液体渣中,使炉渣粘度增加,另外在还原的粘渣中含有许多不能聚合的铁珠,这些铁珠周围包裹着相当数量的碳化钛和氮化钛,它们呈环状或半环状分布于铁珠周围形成一个固体壳,一方面增加了铁珠与熔渣间的摩擦力,减轻铁珠的有效重量,影响铁珠的沉降,使渣中铁损增加,同时也使炉渣粘度增加.四针对钒钛矿冶炼的措施1严格控制生铁硅钛含量,在钒钛矿冶炼中,生铁中硅钛含量不但是炉温的表征,而且是二氧化钛被还原的判据,炉温是影响炉渣变稠速率的最重要因素,即便在二氧化钛含量很低的情况下,提高炉温,仍然会引起炉缸失调,冶炼不能正常进行,因此在冶炼钒钛矿时,在保证生铁合格的情况下,应尽量压低炉温,生产中常用生铁中硅加钛含量表示炉温,硅加钛一般不高于0.5%.渣中二氧化钛含量越高,生铁中硅加钛应越低,适宜的生铁中硅加钛含量以0.15%比较适合于冶炼,并应保持稳定.2 选择适宜的炉渣碱度钒钛矿冶炼中,碱度可以引起炉渣性质的双重变化,提高碱度可以改善生铁脱硫,但也会使熔化性温度提高,适宜的碱度应兼顾两者,过低难于得到合格生铁,过高将出现风口挂渣,炉缸堆积,风量萎缩等冶炼困难.适宜的炉渣碱度与硫负荷,高炉容积,操作水平有关,我国攀钢条件下,一般控制在1.1左右,3 稳定优质的原燃料条件原燃料的波动易引起炉温的波动,而对于钒钛矿冶炼来说,炉温的波动往往是致使的因素,炉温过高或炉温过低都容易引起炉渣的流动性变差,渣铁不分.所以要求原燃料要稳定,另外由于钛渣的脱硫能力较弱,所以要求要选用优质的焦炭,生铁中的硫主要来自于焦碳,因此要求焦碳含硫要低,以降低硫负荷,一般要求硫负荷在4公斤/吨铁左右,4 操作特点的影响高炉取样研究表明,高炉内钛的还原以及碳化钛氮化钛的生成在炉腹高温区最激烈,达到最大值,在经过风口燃烧带氧化区时,又有一部分被氧化,使碳化钛氧化钛含量降低,因此在操作中要维持较高的冶炼强度,大风操作,以保证风口区的氧化作用,坚决杜绝小风量操作,为缩短炉渣在炉缸中的停留时间,减少还原时间,应多放上渣,尽量增加出铁次数, 结语:1 钒钛矿冶炼的关健是钛渣的特殊性质问题,一切应围绕着有利于改善钛钛的性能的方向去努力.2 生产中应严格控制炉温即生铁中硅加钛不应大于0.5,并保持炉温的稳定性,保证炉缸充沛的热量.炉缸温度视炉容大小应控制在1450左右.3 目前有高炉为解决出铁时钛渣的流动性问题,在出铁时在主沟中加入化渣剂,也取得了很好的效果.而且在铁水缶中加入化渣剂也很好的解决了铁水缶使用时间短的问题.对降低炉外劳动强度有积极的意义.。
国内外钒钛磁铁矿资源分析1.钒钛磁铁矿资源情况全球钒钛磁铁矿储量比较丰富,公开报道的资料统计,资源总量在400亿吨以上,较为集中地分布在少数几个国家,主要资源国为中国、俄罗斯、加拿大、南非、美国、巴西、芬兰、挪威等。
次生砂矿床多分布于澳大利亚、印度、非洲沿海诸国。
各国钒钛磁铁矿的资源差异较大,根据钛含量不同可分为低钛型和高钛型两类。
由于各国的资源特性有差异,各国的资源利用策略也不尽一致,以铁、钒、钛三种主要元素为例,部分国家重点开发利用铁和钒;部分仅开发利用钒;我国和俄罗斯则是采取铁、钒、钛全利用的策略。
2.国外钒钛磁铁矿资源南非钒钛磁铁矿属低钛、高钒型,集中分布于德兰士瓦((Transvaal)东部的布什维尔德(Bushveld)杂岩中。
钒以固溶体形式存在于磁铁矿一钛铁晶石中,钒的品位相当稳定,钒基础储量为1200万吨,占世界钒总基础储量的31%,居世界第一位。
钛主要以固溶体存在于富钛磁铁矿相(钛铁晶石Fe2Ti04)中,很少以钛铁矿存在,钛磁铁矿的这种矿物组成使得它即使细磨至-320目后也仅有5%-6%的钛能被强磁选设备分选,很难选出单独的钛矿物。
马波茨(Mapochs)矿山是南非极具代表性的钒钛磁铁矿矿山,露天矿储量2亿吨以上,矿石含俄罗斯钒钛磁铁矿有低钛型和高钛型两种,俄罗斯拥有全世界约50%的钒钛磁铁矿储量,在俄罗斯全境发现了40多个钛磁铁矿矿床,主要矿物是钛磁铁矿、钛铁矿,有的矿点是钙钛矿和磁铁矿,矿物构成从带有钛铁矿、钛磁铁矿的钛磁铁矿逐渐变为带有磁铁矿、钛磁铁矿的钛铁矿。
俄罗斯钒钛磁铁矿实现了铁、钒、钛的全面回收利用。
加拿大的钒钛磁铁矿主要分布于马格皮、摩林、拉克圣乔等几个矿床。
加拿大钒钛磁铁矿以魁北克(Quebec)省七星岛东北部的马格皮矿床为代表,矿石主要是含钛磁铁矿,矿石的典型化学成分为:。
钒以固溶体形式存在于磁铁矿中。
加拿大钒钛磁铁矿除回收利用了钒、钛、铁的外,还实现了铬的回收利用,生铁中富集了矿石中绝大部分钒和铬,采用炼钢前吹炼钒铬渣的方法回收钒铬。
钒钛磁铁矿定义钒钛磁铁矿是一种重要的矿石,含有丰富的钒和钛元素。
它是一种黑色的矿石,磁性较强,可用于提取钒和钛等金属元素。
钒钛磁铁矿在工业生产中具有重要的应用价值,下面将从其性质、产地、提取方法和应用领域等方面进行介绍。
钒钛磁铁矿的主要成分是氧化铁、氧化钛和氧化钒。
它具有较高的磁性,可以通过磁选等方法进行提取。
钒钛磁铁矿的磁性是由其中的钛铁矿和钒铁矿等矿物所赋予的。
钛铁矿是一种含有铁和钛的氧化物矿石,而钒铁矿则是一种含有铁和钒的氧化物矿石。
这两种矿物在钒钛磁铁矿中的含量较高,因此钒钛磁铁矿可以作为钒和钛的重要来源。
钒钛磁铁矿主要产于我国的四川、广西、云南、辽宁等地。
这些地区的钒钛磁铁矿资源丰富,其中四川省的钒钛磁铁矿储量最为丰富。
此外,世界上还有一些其他国家和地区也有较大的钒钛磁铁矿资源,如南非、澳大利亚和巴西等。
钒钛磁铁矿的提取方法主要包括磁选、浮选和烧结等工艺。
磁选是钒钛磁铁矿提取的主要方法,通过磁选机将矿石中的磁性矿物与非磁性矿物进行分离,从而得到含有较高钒和钛的磁性矿精矿。
浮选是利用矿石中的物理和化学性质差异进行分离的方法,通过浮选机将矿石中的有用矿物与废石进行分离。
烧结是将磁性矿精矿进行烧结,得到含有较高钒和钛的烧结矿。
钒钛磁铁矿在工业生产中具有广泛的应用领域。
钒是一种重要的合金元素,可以与钢铁等金属进行合金化,提高其硬度和强度。
钛具有较高的耐腐蚀性和强度,广泛用于航空航天、化工、医疗器械等领域。
因此,钒钛磁铁矿的提取和加工对于钒和钛的生产具有重要的意义。
总结起来,钒钛磁铁矿是一种重要的矿石,含有丰富的钒和钛元素。
它具有较高的磁性,可以通过磁选等方法进行提取。
钒钛磁铁矿主要产于我国的四川、广西、云南、辽宁等地,世界上其他一些国家和地区也有较大的钒钛磁铁矿资源。
钒钛磁铁矿的提取方法包括磁选、浮选和烧结等工艺。
钒钛磁铁矿在工业生产中具有广泛的应用领域,对于钒和钛的生产具有重要的意义。
通过对钒钛磁铁矿的深入研究和开发利用,可以更好地满足社会和经济的需求,推动相关产业的发展。
四川攀枝花钒钛磁铁矿矿床该矿床位于攀枝花市。
矿床属于岩浆晚期分异矿床。
矿床产于侵入震旦系上统大理岩中的海西期辉长岩体中,岩体长19,宽5,因受断裂切割分为朱家包包、兰家火山、尖包包、倒马坎、公山、纳拉箐6个区段(图3.2.11) 。
其岩浆液体分异和结晶分异的韵律层发育,岩体层状构造清楚,出露厚度7002500m。
自上而下可划分为5个岩带(含矿层),9个含矿带:N.第三系;T3.上三叠统丙南组;Zb.上震旦统大理岩;γ15.印支期花岗岩;ζ15.印支期正长岩;V3.浅色中细粒辉长岩;V2.流层状辉长岩;V1.中粗粒辉长岩质钛磁铁矿带;1.矿体;2.逆断层;3.断层;4.剖面及编号浅色细粒角闪辉长岩带,厚度500~1500m,无工业矿体。
上部含矿层,为层状中粒辉长岩带,有Ⅰ、Ⅱ两个矿带,厚度10~120m,含矿率为26%。
中部暗色层状中粒辉长岩带,Ⅲ矿带产于其中,厚度160~600m,含矿率10%~20%。
下部含矿层为主要勘探与开采对象。
暗色流层状中粗粒辉长岩,厚度60~500m,有Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ等5个含矿带,其中Ⅵ、Ⅷ两个矿带中的主矿体厚度各为60m,含矿率60%~78%。
底部边缘带,为暗色细粒辉长岩,Ⅸ矿带产于其中,厚度0~40m,含矿率52%。
每个韵律层自下而上其基性程度降低,含矿层(体)分别赋存在各分异次级韵律层的下部,矿体也是层状岩体的组成部分。
分异作用愈彻底,含矿组分就愈富集。
各矿体形态与层状辉长岩韵律构造多保持一致,其总体走向为北东20°~40°,倾向北西,倾角30°~60°(图3.2.12)。
1.表内矿石;2.表外矿石;3.辉长岩;4.伟晶辉长岩;5.上震旦统大理岩金属矿物主要是含钒、钛磁铁矿(由钛铁矿、钛铁晶石、磁铁矿、镁铝尖晶石组成的复合矿物)、粒状钛铁矿及少量磁黄铁矿、黄铜矿、黄铁矿、镍黄铁矿。
脉石矿物以普通辉石、拉长石为主,有时见透闪石、绿泥石、蛇纹石、绢云母等。
钒钛磁铁矿定义钒钛磁铁矿是一种重要的矿石资源,具有广泛的应用价值。
本文将从矿石的形成、矿石的性质和用途等方面对钒钛磁铁矿进行介绍。
一、钒钛磁铁矿的形成钒钛磁铁矿是一种由钛铁矿和钒铁矿组成的矿石。
它主要形成于含有铁、钛和钒的岩石中,如火成岩和沉积岩。
这些岩石在地壳深部经过高温高压的作用,产生了一定的矿化作用,使得其中的铁、钛、钒等元素聚集形成了钒钛磁铁矿。
二、钒钛磁铁矿的性质钒钛磁铁矿的主要成分是二氧化钛和二氧化钒,同时还含有一定量的氧化铁和其他杂质。
它的颜色通常呈黑色或暗褐色,具有金属光泽。
钒钛磁铁矿的硬度较高,一般在5.5-6.5之间,密度约为4.5-5.0 g/cm³。
此外,钒钛磁铁矿还具有一定的磁性,在外加磁场作用下会表现出明显的磁性。
三、钒钛磁铁矿的用途钒钛磁铁矿是一种重要的工业原料,具有广泛的应用价值。
首先,钒钛磁铁矿是钛金属的重要原料之一。
钛金属具有良好的耐腐蚀性和高强度,广泛用于航空、航天、化工等领域。
其次,钒钛磁铁矿中的钒元素可用于生产合金钢。
合金钢具有优异的物理和化学性能,被广泛应用于机械制造、汽车制造等行业。
此外,钒钛磁铁矿还可以提取钛酸钾等化工原料,用于制备陶瓷、涂料等产品。
四、钒钛磁铁矿的开采与利用钒钛磁铁矿的开采是一个复杂而繁琐的过程。
首先,需要对矿床进行勘探和评估,确定矿石的储量和品位。
然后,通过露天开采或地下开采的方式将矿石提取出来。
接下来,对矿石进行破碎、磁选、浮选等工艺处理,提高矿石的品位和回收率。
最后,经过冶炼和精炼等工艺,将矿石中的有用成分提取出来,制备成工业产品。
钒钛磁铁矿的开采和利用对环境和资源的影响也需引起重视。
在开采过程中,需要合理规划矿区,减少生态破坏和土地占用。
同时,加强矿石资源的综合利用,提高资源利用效率,减少资源浪费。
此外,还需要加强环保措施,减少对水体和大气的污染。
钒钛磁铁矿是一种重要的矿石资源,具有广泛的应用价值。
它的形成与岩石中的矿化作用密切相关,具有一定的磁性和硬度。
矿床学实习报告矿床类型:岩浆矿床典型矿床:钒钛磁铁矿矿床班级:020151:勇辉实习日期:2017.09.29一、矿床地质背景简介1、构造位置省钒钛磁铁矿床位于境,在省渡口市东北12Km处,是我国最大的钒钛磁铁矿床。
构造位置属扬子准地台康滇地轴中段西缘的安宁河深大断裂带上,西邻台缘坳陷北段,西南接滇中坳陷,该区域岩浆活动非常活跃,构造极其复杂,是我国非常重要的岩浆-构造带。
(如图1中方框)2、区域主要地层、岩浆岩、构造(1)地层区中元古界、古生界、中生界及新生界地层均有出露,最古老的地层为上震旦系,分两层,下部是蛇纹石化岩;上部是透辉石和透辉石岩互层。
上三叠纪底层在本区最发育,分布在矿区北部和西北部,其底部是紫红色砂砾岩,上部为灰色砂岩与黑色砂页岩互层,含煤。
老第三系紫红色砂砾岩呈水平或近水平,不整合覆于老地层之上。
基底为下元古代早期的米易群,主要岩性为斜长角闪岩以及角砾状混合岩,夹少量的变粒岩;围岩地层为震旦系—寒图1(据25万综合)武系一套陆表海沉积[1],下部为观音崖组砂岩以及片岩,分布较少,上部主要为灯影组白云岩、夹硅质条带的白云岩,呈断层接触于基底地层之上。
矿区缺失寒武系—石炭系的地层,推测是由于基底地层的抬升,导致了寒武—石炭系地层变薄至消失[2],晚二叠世由于裂谷中裂隙构造发育到达顶峰,形成以峨眉山玄武岩为主的大陆溢流相火山岩,以及研究区层状含矿辉长岩体。
在晚三叠世-晚侏罗世的裂陷盆地中,堆积了厚度巨大的陆相类磨拉石—含煤建造,在矿区中主要以丙南组(T3b)和大荞地组(T3d)为代表,主要岩性为砂岩、砾岩以及上部的页岩和含煤层。
而到第三系主要为薄层砂页岩沉积,厚度巨大。
[3](2)岩浆岩该区位于康滇构造-岩浆带上,区岩浆岩十分发育,呈南北向分布于地轴,形成四川省著名的岩浆杂岩带[4]。
①侵入岩主要分布于含矿岩体以及研究区两侧的正长岩。
含矿辉长岩体呈北北东~南南西向展布,与上部(西侧)及东北端与三叠系地层及部分正长岩呈断层接触,与下部(南东侧)与震旦系灯影组地层呈侵入接触,西部局部地段见有角闪正长岩穿插于辉长岩体之中,东南侧局部见花岗岩与辉长岩产生同化混染作用。
2024年钒钛磁铁矿市场环境分析引言钒钛磁铁矿是一种重要的金属矿产资源,广泛应用于钢铁、化工、材料等多个领域。
本文将对钒钛磁铁矿市场环境进行分析,包括供需状况、价格趋势、政策法规等方面,以期为相关行业提供参考。
供需状况分析供给方面随着技术的不断进步,钒钛磁铁矿的开采难度逐渐降低,全球的钒钛磁铁矿储量较为丰富。
主要的产矿国家包括中国、南非、澳大利亚等。
中国是全球最大的钒钛磁铁矿生产国,占据了全球市场的重要份额。
需求方面钒钛磁铁矿的需求主要来自钢铁行业。
随着全球钢铁产能的不断扩大,钢铁行业对钒钛磁铁矿的需求也在增加。
同时,钒钛磁铁矿在化工、材料等领域也有一定的应用需求。
价格趋势分析国际市场价格钒钛磁铁矿的价格受到供需状况、全球经济形势、政策法规等多个因素的影响。
近年来,钒钛磁铁矿的价格呈现较大波动。
全球经济放缓、需求减少等因素可能导致价格下跌,而供给不足、政策支持等因素可能导致价格上涨。
国内市场价格中国是全球最大的钒钛磁铁矿生产国和消费国,国内市场价格受到国际市场价格、国内供需状况、政策法规等因素的综合影响。
近年来,国内钒钛磁铁矿的价格同样呈现较大波动。
政策法规分析国际政策法规钒钛磁铁矿作为一种重要的金属矿产资源,受到国际政策法规的监管。
各国政府通过限制出口、实行关税、加强环境保护等手段来控制钒钛磁铁矿的开采和流通。
国内政策法规中国政府对钒钛磁铁矿的开采和利用也有一系列的政策法规进行监管。
近年来,中国政府加大了对环境保护的力度,对违规开采、污染等行为进行了打击。
同时,政府还通过优惠税收、加强技术研发支持等手段来促进钒钛磁铁矿产业的健康发展。
结论钒钛磁铁矿市场环境受到多个因素的共同影响,供需状况、价格趋势、政策法规等都对市场产生着重要影响。
同时,全球经济形势、技术进步等因素也会对钒钛磁铁矿市场环境产生重要影响。
因此,相关行业应密切关注市场动态,制定合理的发展战略,以应对市场的变化。
四川攀枝花钒钛磁铁矿矿床浅析——020131 林少伟一、区域地质简介区内最古老的地层为上震旦系,分两层,下部是蛇绿岩石化大理岩;上部是透辉石和透辉石大理岩互层。
上三叠纪地层在本地区最发育,分布在矿区北部和西北部,其底部是紫红色砂砾岩;上部为灰绿色砂岩与黑色砂页岩互层,含煤。
老第三系紫红色砂砾岩呈水平或近水平,不整合覆盖于老底层之上。
(如图1-1)图1-1攀西地区位于峨眉山大火成岩省的内带,是世界上最大的V-Ti 磁铁矿矿集区, 其中多处为大型-超大型V-Ti 磁铁矿床(Zhou, 2005; 宋谢炎等, 2005; 张招崇等, 2007; 胡瑞忠等, 2010)。
沿南北向的磨盘山——元谋断裂和攀枝花断裂带发育一系列含Fe-Ti-V 矿的层状基性-超基性岩体,从北向南依次为太和岩体、白马岩体、新街岩体、红格岩体和攀枝花岩体。
攀枝花层状辉长岩体走向北东,倾向北西,倾角50°~ 60°,长19 km,宽2 km,厚2000~3000m, 出露面积约30 km2。
下部主要含矿带厚70~500 m,平均210 m,其中矿体累计厚度为20~230 m,平均130 m,沿倾向延伸850 m 未见变薄(李德惠等, 1982; 王正允, 1982; 宋谢炎等, 1994)。
后期由于受南北向反扭性平移断裂破坏,自北东向南西可将矿床划分为朱家包包、兰家火山、尖山、刀马坎、公山等赋矿地段(图1-2)。
岩体上盘因断层影响只见三叠纪地层与之呈断层接触。
下盘围岩争议较大,多认为靠近岩体底部的大理岩是岩体底板围岩,并认定属于上震旦统灯影灰岩(图1-2)。
攀枝花岩体自下而上可分为底部边缘带、下部含矿带、中部岩相带、上部含矿带和顶部岩相带等5个岩相带,可划分出五个旋回;上部岩相带则以磷灰石含量的突然增高为标志,韵律层理减弱(王正允, 1982; 宋谢炎等, 1994)。
攀枝花岩体中部岩相带火成韵律构造发育,富含斜长石的辉长岩和富含单斜辉石、橄榄石和钛铁氧化物(包括磁铁矿和少量钛铁矿)的暗色辉长岩交替出现(李德惠等, 1982; 王正允, 1982)。
原生火成韵律构造与岩体产状一致。
岩石中硅酸盐矿物常呈定向排列。
块状矿体主要产于下部岩相带,磁铁辉长岩则产于中部岩相带每个旋回的下部。
图1-2二、矿区地质概况该矿床位于康滇地轴中段西缘的安宁河深大断裂带中,受安宁河深大断裂次一级NE向控制。
含矿辉长岩体呈NE30°方向延展,长35km,宽2km,与震旦纪地层整合接触。
向北西倾斜,呈单斜状(实为务本-攀枝花岩盆状的东南部分)。
岩体内部层状构造明显,不同成分矿物构成的浅色岩和暗色岩相互更叠交替,岩层之间为过渡关系。
原生层状构造与围岩产状一致,硅酸盐矿物均作线状平行排列。
岩体自上而下大体分为五个相带(如图2-1):1、顶部浅色层状辉长岩带:厚800米左右,浅色矿物含量超过一半,暗色矿物条带稀疏穿插于其中,此岩层与顶部三叠系岩层呈断层接触关系,含矿性差。
2、上部暗色层状辉长岩含矿带(Ⅱ、Ⅰ带):厚10—100m,主要是铁辉长岩,夹有少量浸染状矿石。
其中磷灰石含量丰富,过15%。
3、中部暗色层状辉长岩带:主要是暗色矿物含量高,超过55%,形成密集条带状,夹有含铁辉长岩薄层纪钒钛磁铁矿石条带,共包括四个矿带(Ⅵ、Ⅴ、Ⅳ、Ⅲ带)。
厚度在150--600m之间。
4、下部中粗粒层状辉长岩含矿层:厚60--500m,这是主要含矿层。
由各种类型的钒钛磁铁矿矿石组成,夹有含层状暗色辉长岩,共包括四个矿带(Ⅵ、Ⅶ、Ⅷ、Ⅸ带)。
与边缘带成过渡关系。
5、边缘带:以暗色细粒辉长岩为主,厚度变化大,10--300m不等,其顶部为数米厚的橄榄岩及相应岩层,底部与大理石接触并变质为角闪片岩,含矿性差。
此外岩体各个岩相带、成矿带、铁矿石带岩层均与原生地层产状一致,大体NE60°,倾向NW,倾角较为陡。
图2-1三、矿床地质特征1.矿体特征主要是矿体呈层状,似层状,产于辉长岩中,可以划分两个含矿带。
上部含矿带:位于暗色层状辉长岩中部,分布稳定。
呈层状,似层状。
长15km,平均厚度60m,矿层累计平均厚度18m。
大部分为表外矿石和稀疏浸染状矿石。
倒马坎矿段矿石平均品位:TFe为24.82%、TiO2为7.20%、V2O5为0.08%。
其标准剖面为:上覆岩石:顶部层状辉长岩上矿层:富含辉石型稀疏浸染状矿层(1.71m)(Ⅰ矿体)含稀疏浸染矿带辉长岩(6.82m)层状辉长岩(30m)下矿层:富含辉石型稀疏浸染状矿层(5.07m)(Ⅱ矿体)层状辉长岩(2.10m)含铁层状辉长岩(表外矿)(5.75m)富含辉石型稀疏浸染状矿层(7.50m)下伏岩石:暗色层状辉长岩底部含矿带:矿床规模大,在整个辉长岩体下部稳定分布。
含矿层最后500m (朱家包包),矿层累计厚度230m。
公山段含矿层最薄(70m),矿层累计厚度20m。
整个含矿层平均厚度210m,矿层累计厚度130m,含矿率65% 。
该矿层带自下向上可分为7个矿体:粗粒辉长岩中的浸染状矿体(Ⅸ矿体),底部致密块状矿层(Ⅷ矿体),暗黑色层状中条带状矿层(Ⅶ矿体),稠密浸染状矿层(Ⅵ矿体),稀疏浸染状矿层(Ⅴ矿体),星散状矿层(Ⅳ矿体),表外条带状矿层(Ⅲ矿体)。
下面为部分围岩的照片及描述:PZH-1 角闪正长岩:灰白色,细粒,块状构造,主要矿物:角闪石、辉石、正长石、斜长石、少量磁铁矿。
局部可见褐铁矿假晶。
角闪石、辉石总约占35% ,长石占50% ,黄铁矿、磁铁矿占5%。
PZH-3 辉长岩:灰黑色,夹白色长石,块状构造,主要矿物:辉石、长石、少量磁铁矿。
长石呈柱状、针状。
辉石约占75% ,长石占15% ,磁铁矿占5%。
PZH-7 辉长岩:灰白色,细粒,块状构造,主要矿物:辉石、长石、石英,部分橄榄石,含少量磁铁矿,少部分褐色呈褐铁矿化。
辉石占55% ,斜长石占40% ,磁铁矿占5%。
PZH-4 辉石岩:深黑色,细粒,块状构造,主要矿物:辉石,极少量磁铁矿,有解理,表面风化成褐铁矿,还有少量黑云母。
辉石占75% ,黑云母占10% ,磁铁矿占5%。
2、矿石特征攀枝花式钒钛磁铁矿是一种伴生钒、钛、钴等多种元素的磁铁矿,其矿石储量居我国铁矿储量第二位(占15%左右),矿石可选性良好,其矿物组成、嵌布特性与一般磁铁矿有明显的差别。
矿石中主要金属矿物为含钒钛磁铁矿、钛铁矿,另外有极少量的磁铁矿、赤铁矿、褐铁矿、针铁矿等;硫化物以磁黄铁矿为主;脉石矿物以钛普通辉石、斜长石为主。
铁不但赋存于钒钛磁铁矿中,而且在钛铁矿、硅酸盐矿物和硫化矿物中都含一定数量的铁。
主要矿石有两种:氧化矿石和稠密浸染状磁铁矿。
下面分别描述:PZH-6 氧化矿石:褐黄色,中细粒,块状构造,它形粒状结构。
磁铁矿为灰黑色,中细粒,硬度6,含量70%,表面氧化成褐铁矿;辉石为黑色,中细粒,硬度5-6,含量25%;极少部分有黄铁矿。
PZH-2含星点状黄铁矿辉长岩:灰黑色,中细粒,它形粒状结构,浸染状构造,黄铁矿呈星点状分布,有部分褐铁矿化;可见橄榄石,部分蛇纹石化;有少量长石、大量辉石,少部分高岭土化,其中夹有磁铁矿分布。
辉石占70% ,黄铁矿占5% ,磁铁矿占10% ,斜长石占10% ,橄榄石占3%。
PZH-5稠密侵染状磁铁矿:深黑色,中细粒,它形粒状结构,稠密浸染状构造,主要矿石矿物为磁铁矿,含有少量黄铁矿。
磁铁矿,灰黑色,中细粒,硬度5.5以下,具有磁性,含量85% ;黄铁矿为黄色,自形粒状结构,硬度6,含量10% ;少部分橄榄石,有些蛇纹石化;表面有些氧化,部分褐铁矿化,绿帘石化。
脉石矿物:辉石,黑色,不发亮。
3、矿物组合与成矿期、成矿阶段按矿物共生组合及产出特点划分,矿石有以下组合:金属矿物(钒钛磁铁矿组合):钛磁铁矿、钛铁晶石、钛铁矿、尖晶石。
硫化物组合:磁黄铁矿、黄铜矿、镍黄铜矿。
氧化带矿物组合:磁赤铁矿、假像赤铁矿、褐铁矿。
非金属矿物:主要造岩矿物:拉长石、异剥辉石、角闪石、橄榄石、磷灰石。
次生硅酸盐矿物:透闪石、绿泥石、蛇纹石等。
矿石中有用组分为铁、钛、钒、锰、钴、镍、铜和铂族元素等。
钒主要赋存在钛磁铁矿中。
锰以类质同象替代存在于钛铁矿、钛磁铁矿,脉石矿物中。
其他元素均有类质同象替代进入矿石中。
钴、镍、铜以独立矿物形式为主,类质同象次之。
钪以类质同象方式取代普通辉石,钛角闪石、黑云母和钛铁矿中的Mg2+、Fe2+、Fe3+、Al3+。
根据攀枝花铁矿床特征,对矿体围岩岩石辉长岩、钛磁铁矿矿石进行了分析。
将攀枝花铁矿床的成岩-成矿过程可划分为4个期次:成岩期、主成矿期、次成矿期和表生期。
成岩期,主要是形成辉长岩体,主成矿期是为岩浆期形成的铁矿,次成矿期主要为热液期形成硫化物矿。
主成矿期形成的铁矿石层中的岩石、铁矿石和钛磁铁矿是同期产物。
热液期形成的黄铁矿与主成矿期相比,显示其为次成矿期的产物。
根据矿石的组构变化特征及金属矿物的结晶成矿作用过程,在一个矿层内,其底部铁钛金属矿物属早期结晶形成的,而上部却又晚于脉石矿物结晶;就多个矿层而言,后期岩浆贯入形成的底部早结晶的磁铁矿,虽然在该层内属早期结晶产物,但它的形成时间却晚于先期岩浆贯入形成的晚结晶的磁铁矿。
基于上述特征,攀枝花钒钛磁铁矿床金属矿物的形成没有绝对的时间早晚之分。
它是富铁钛氧化物熔融体多期次贯入,矿石矿物与脉石矿物韵律式交替成核结晶形成的。
总之过程有:1、在冷凝带形成后早期岩浆结晶;2、先后结晶的硅酸盐矿物因比重不同按重力关系占据各自的位置;3、富矿残浆通过粒间空隙向下集中,较晚结晶的比重较小的硅酸岩晶体上浮(此阶段冷凝结晶则形成层状矿体)4、在外力作用下富矿残浆经压滤作用沿裂隙贯入形成贯入矿体。
四、成矿浅析1、成矿条件据Rb—Sr法同位素测年资料,含矿岩体主要形成于海西晚期。
成矿岩体的Sr、Nd和Pb同位素组成特征表明成矿岩体与峨嵋大火成岩省有成因联系,岩浆来自于深部的地幔柱。
首先,岩浆中含有大量Fe,Ti,P,F和挥发性组分,在熔离作用下使部分铁质以富矿浆形式析离出来。
之后由于岩浆中存在稳定的铁钛氧化物的熔融体与硅酸盐熔融体,因密度的差异,铁钛氧化物熔融体下沉而硅酸盐熔融体相对上浮,造成原始岩浆中两种成分的相对集中,岩浆上部形成富硅酸盐熔融体,下部形成富铁钛氧化物熔融体。
随着构造活动的发生,岩浆房上部的富硅酸盐熔融体首先进入围岩,由于围岩温度很低,刚侵入的岩浆迅速冷却,在内接触带上产生结晶细小的冷凝边,形成岩体底部的细晶辉长岩;而后冷凝结晶作用自围岩底板向上推移,岩浆逐渐冷凝结晶形成上部辉长岩体。
而后期构造活动使岩浆房下部的富铁钛氧化物熔融体多期次贯入辉长岩体中形成韵律式层状矿体。
之后在多次构造作用下形成了庞大的矿体。
2、成矿作用及控矿要素首先是岩浆的熔离作用,使岩浆变为不同的熔体相,富含不同元素。