基于MATLAB的遥感图像SVM分类系统实现_蒋芳
- 格式:pdf
- 大小:8.66 MB
- 文档页数:45
基于Matlab的遥感数据处理与图像分析技术研究遥感技术是一种通过传感器获取地面、大气和水体等目标信息的技术,广泛应用于农业、林业、地质勘探、城市规划等领域。
而Matlab作为一种功能强大的科学计算软件,被广泛应用于遥感数据处理和图像分析中。
本文将探讨基于Matlab的遥感数据处理与图像分析技术研究。
1. 遥感数据处理遥感数据处理是指对通过遥感传感器获取的数据进行预处理、特征提取和信息提取的过程。
在Matlab中,可以利用各种工具箱和函数对遥感数据进行处理,包括但不限于:数据读取与显示:Matlab提供了丰富的函数用于读取各种格式的遥感数据,并可以通过图像显示函数展示数据。
数据预处理:包括去噪、辐射校正、几何校正等预处理步骤,可以有效提高后续分析的准确性。
特征提取:利用Matlab中的图像处理工具箱,可以提取各种地物特征,如植被指数、土地覆盖类型等。
分类与识别:通过机器学习算法,在Matlab环境下进行遥感影像分类与目标识别,实现自动化信息提取。
2. 图像分析技术图像分析技术是指对图像进行数字化处理和分析,从中获取有用信息的过程。
在遥感领域,图像分析技术可以帮助解译遥感影像,提取地物信息,进行环境监测等。
在Matlab中,可以结合图像处理工具箱和深度学习工具箱进行图像分析,包括但不限于:图像增强:通过直方图均衡化、滤波等方法增强遥感影像的对比度和清晰度。
目标检测:利用目标检测算法,在遥感影像中自动识别并标记出目标物体。
变化检测:通过对多时相遥感影像进行比对分析,检测地表变化情况,如城市扩张、植被覆盖变化等。
三维重建:基于多角度或多时相影像,使用立体视觉技术实现地形三维重建。
3. Matlab在遥感领域的应用案例3.1 遥感影像分类利用Matlab中的支持向量机(SVM)算法对高光谱遥感影像进行分类,实现土地覆盖类型的自动识别。
通过构建合适的特征空间和选择适当的核函数,提高分类精度和效率。
3.2 遥感变化检测结合Matlab中的差异图像分析方法和变化检测算法,对城市扩张、湖泊面积变化等进行监测与分析。
基于matlab的遥感图像处理程序报告南京理工大学电光学院,无履仙人一、程序简介基于matlab的GUI可视化遥感图像处理程序,界面布局如下图:菜单栏包括:文件,图像旋转,自动识别有效区域,获取有效区域,压缩,图像增强,伪彩色图像,还原重做,退出,关于等项。
主界面部分包含两个图像显示,和部分按钮及需要输入的参数。
由于界面大小有限,部分功能留在菜单栏中。
二、处理步骤及部分源码1、打开和保存文件首先是文件菜单,包含打开和保存,打开的文件将显示在原始图像和处理图像两部分中,在处理过程中,原始图像不变,以作为和处理图像对比,保存图片只保存处理后的图片,处理前的图片不做保存。
图片打开后如图所示,2、图像旋转由图可见图像有部分区域无有效信息,不利于处理和获得有效信息,故应去除,首先进行旋转,便于去除无效区域。
在旋转角度编辑栏内输入要旋转的角度然后点旋转按钮,进行旋转。
旋转后如图,图像旋转源码为:function imrotate_Callback(hObject, eventdata, handles)h=getappdata(handles.figure_demo,'img_2');x=get(handles.angle,'string');an=str2num(x);g=imrotate(h,an,'bilinear','crop');img_2=g;axes(handles.tag);imshow(img_2);setappdata(handles.figure_demo,'img_2',img_2);3。
、有效区域自动提取现在图中有效区域基本是在一个矩形内,可以通过算法将有效区域边界的坐标求出来,单击自动识别有效区域按钮,求出后显示在图片右边的静态文本框内。
如下图,图像自动识别有效区域源码如下,function auto_Callback(hObject, eventdata, handles)h=getappdata(handles.figure_demo,'img_2');[x,y]=size(h);flag=1;for i=1:xfor j=1:yif h(i,j)~=0&flag==1x1=i;flag=0;endif h(i,j)~=0x2=i;endendendfor j=1:yfor i=1:xif h(i,j)~=0&flag==0y1=j;flag=1;endif h(i,j)~=0y2=j;endendendset(handles.x_1,'String',num2str(x1));set(handles.x_2,'String',num2str(x2));set(handles.y_1,'String',num2str(y1));set(handles.y_2,'String',num2str(y2));y0=y2-y1;x0=x2-x1;rect=[y1,x1,y0,x0];setappdata(handles.figure_demo,'rect',rect);4、获取有效区域获得有效区域坐标后,就可以通过简单的命令获得遥感图像的有效区域了,单击菜单栏的“获取有效区域”按钮,就可获得。
如何使用MATLAB进行遥感图像处理近年来,遥感技术在地理信息系统、环境监测、资源调查等领域得到了广泛应用。
遥感图像处理是其中关键的环节之一,能够有效地提取和分析图像中的信息。
而MATLAB作为一款功能强大的科学计算软件,也被广泛运用于遥感图像处理。
本文就来探讨一下如何使用MATLAB进行遥感图像处理。
首先,我们需要了解一些基本的概念和原理。
遥感图像是通过航天器、飞机等载体获取的地面反射、辐射和散射的电磁能量记录。
常见的遥感图像类型有光学影像、雷达影像和卫星图像等。
这些图像包含了丰富的信息,如地表覆盖类型、地物高程、温度分布等。
而遥感图像处理的目标就是从这些图像中提取和分析所需的信息。
在MATLAB中,可以使用遥感工具箱(Remote Sensing Toolbox)来处理遥感图像。
这个工具箱提供了许多功能强大的工具和函数,用于读取、预处理、分析和可视化遥感图像数据。
例如,可以使用imread函数读取图像文件,imwrite函数保存处理结果。
还可以使用imadjust函数对图像进行亮度和对比度调整,使图像更加清晰明亮。
在进行遥感图像处理时,常见的一种操作是图像增强。
图像增强旨在改善图像的视觉效果、增强图像的特定特征或提高图像的质量。
在MATLAB中,可以使用各种滤波器对图像进行平滑、锐化、边缘检测等操作。
例如,可以使用imfilter函数对图像进行线性滤波,使用fspecial函数生成各种滤波核。
除了图像增强,遥感图像处理还包括特征提取和分类等操作。
特征是指图像中表达某一特定属性的数值或向量,如纹理特征、形状特征等。
提取图像的特征有助于分析图像内容和识别地物类型。
在MATLAB中,可以使用一些特征提取函数,如GLCM函数计算灰度共生矩阵纹理特征,regionprops函数计算图像的形状特征等。
分类是遥感图像处理的一个重要步骤,用于将图像中的像素划分为不同的类别。
常见的分类方法有有监督分类和无监督分类。
MATLAB中的遥感图像处理方法解析遥感图像处理是一项重要的技术,广泛应用于农业、环境保护、城市规划等领域。
MATLAB作为一种强大的科学计算软件,提供了许多有效的图像处理工具和算法,使得遥感图像的处理更加简便高效。
本文将通过几个实例,介绍MATLAB 中常用的遥感图像处理方法。
一、图像预处理遥感图像通常存在一些噪声和失真。
为了提高图像质量和后续分析的精确性,需要对图像进行预处理。
MATLAB提供了各种滤波器和降噪算法,如中值滤波、高斯滤波和小波变换。
这些方法可以降低图像中的噪声,并使细节更加清晰。
二、图像增强图像增强是提升图像视觉效果的重要方法。
在遥感图像处理中,一般采用直方图均衡化和对比度拉伸等方法。
直方图均衡化可以使图像的亮度分布更均匀,增强图像的视觉效果。
对比度拉伸则通过扩展图像的动态范围,使得图像中的细节更加丰富。
三、影像分割影像分割是将图像分割成不同的区域或目标的过程。
MATLAB提供了多种分割算法,如基于阈值的分割、基于区域的分割和基于边缘的分割。
这些方法可以帮助我们从遥感图像中提取出感兴趣的目标,为后续的分析提供有效的数据。
四、特征提取特征提取是从遥感图像中提取出有意义的特征信息的过程。
常用的特征包括纹理特征、形状特征和光谱特征等。
MATLAB提供了一系列用于特征提取的函数和工具箱,如灰度共生矩阵、哈尔小波变换和主成分分析等。
这些方法可以帮助我们从遥感图像中提取出有价值的特征,用于后续的分类和识别任务。
五、图像分类图像分类是将图像分成不同的类别或类别的过程。
在遥感图像处理中,一般采用监督学习和无监督学习的方法。
监督学习需要样本标注数据,可以通过支持向量机和随机森林等算法进行分类。
无监督学习则不需要标注数据,常用的方法有k均值聚类和自组织映射网络等。
MATLAB提供了这些算法的实现和函数,方便我们进行遥感图像的分类和识别。
六、图像融合图像融合是将多个传感器或多个波段的图像进行融合,得到更全面、更丰富的信息的过程。
基于MATLAB的遥感图像处理技术研究遥感是指利用卫星、飞机等高空平台获取地球上信息的一种技术。
遥感图像处理技术是指利用计算机对遥感图像进行数字处理、分析和解释,从中提取出有用的信息。
目前,在地球资源管理、自然灾害监测等领域,遥感技术得到越来越广泛的应用。
本文将从MATLAB的角度出发,探讨遥感图像处理技术的研究现状及未来发展方向。
一、遥感图像处理的研究现状1. 图像预处理遥感图像通常具有很高的空间分辨率和波段数量,但同时也存在一些因素干扰,例如云层、阴影和误差等。
预处理是遥感图像处理的重要环节,目的是提高图像质量,消除噪声和干扰。
MATLAB提供了许多有用的工具,如滤波器、算法等,可用于图像预处理。
例如,可以使用空域或频域滤波器来消除图像噪声,使用像素级、基于面的或基于边的分类器来分段图像等。
2. 特征提取特征提取是将图像块转换为数字向量的过程,以便进行分类、检测、跟踪等任务。
常见的特征包括纹理、形状、颜色和边缘等。
MATLAB提供了许多常用的特征提取算法,例如形态学、小波、LBP等。
基于这些特征,可以构建分类器来进行目标检测、分类、跟踪等任务。
3. 图像分类图像分类是对图像进行自动识别并将其归类的过程。
在遥感图像处理中,图像分类通常用于土地利用和覆盖、污染物监测、植被分析等领域。
还有许多方法可用于图像分类,例如基于像素的分类、基于对象的分类和基于规则的分类。
MATLAB中有许多算法可用于图像分类,例如支持向量机、决策树、神经网络等。
4. 图像特征融合图像特征融合是将来自不同源的信息组合在一起,以提高分类或目标检测的准确性。
例如,在遥感图像处理中,可以使用红外和可见光波段的信息来检测地面目标。
MATLAB提供了许多图像融合算法,包括小波变换、拉普拉斯金字塔、模糊逻辑等。
这些算法可以将不同来源的信息组合在一起,提高其在处理遥感图像时的效果。
二、基于MATLAB的遥感图像处理技术的未来发展方向随着科学技术的不断进步,遥感图像处理技术将不断改进并发展。
MATLAB语言在遥感影像处理中的应用研究遥感影像处理是利用遥感技术获取的影像数据进行信息提取、分析和应用的过程。
MATLAB作为一种强大的科学计算软件,被广泛应用于遥感影像处理领域。
本文将探讨MATLAB语言在遥感影像处理中的应用研究。
一、MATLAB在遥感影像预处理中的应用在遥感影像处理中,预处理是非常重要的一步,它可以有效地提高后续分析的准确性和效率。
MATLAB提供了丰富的图像处理工具和函数,可以对遥感影像进行去噪、辐射校正、几何校正等预处理操作。
通过编写MATLAB脚本,可以实现自动化的预处理流程,节省人力成本并提高处理速度。
二、MATLAB在遥感影像特征提取中的应用遥感影像中包含丰富的信息,如地物类型、覆盖范围等。
MATLAB 提供了各种图像分割、特征提取的函数,可以帮助从遥感影像中提取出所需的特征信息。
利用MATLAB进行特征提取可以帮助用户更好地理解影像数据,为后续的分类和识别工作奠定基础。
三、MATLAB在遥感影像分类识别中的应用遥感影像分类识别是遥感应用领域的重要研究内容,也是实际应用中常见的需求。
MATLAB提供了各种机器学习和深度学习工具,如支持向量机(SVM)、卷积神经网络(CNN)等,可以帮助用户进行遥感影像的分类识别任务。
通过在MATLAB环境下编写相应的算法,可以实现对遥感影像数据进行高效准确的分类识别。
四、MATLAB在遥感影像变化检测中的应用遥感影像变化检测是监测地表覆盖变化、资源利用变化等重要内容之一。
MATLAB提供了丰富的时间序列分析工具和图像配准算法,可以帮助用户检测出遥感影像中发生的变化。
利用MATLAB进行变化检测可以帮助用户及时发现潜在问题并采取相应措施。
五、MATLAB在遥感影像数据可视化中的应用数据可视化是将抽象数据转换为可视化图形的过程,有助于用户更直观地理解数据信息。
MATLAB提供了丰富的绘图函数和工具箱,可以帮助用户对遥感影像数据进行可视化展示。
运用MATLAB的遥感图像增强方法
蒋芳;汪权方
【期刊名称】《地理空间信息》
【年(卷),期】2011(009)001
【摘要】在遥感图像研究中,图像增强技术对于改善图像的对比度、突出某些局部细节等方面都起着积极的作用.详细介绍了灰度变换、直方图规定化、中值滤波器、Butterworth低通滤波器等多种图像增强的方法,原理及在Matlab中的实现过程,
并对各种方法的实现结果进行了比较.结果表明,上述图像增强方法,能够扩大地物之间的像元灰度差距,有助于图像中常绿林等典型地物的特征提取.
【总页数】3页(P57-59)
【作者】蒋芳;汪权方
【作者单位】湖北大学,资源环境学院,湖北,武汉,430062;湖北大学,资源环境学院,
湖北,武汉,430062
【正文语种】中文
【中图分类】P237.3
【相关文献】
1.一种高灰度级红外遥感图像的伪彩色增强方法 [J], 刘爱平;王稳平;谢海林;裴卫
军
2.基于NSCT和改进模糊的遥感图像增强方法 [J], 周飞;贾振红;杨杰;Nikola Kasabov
3.遥感图像城市道路细节特征提取及增强方法研究 [J], 孙海燕
4.一种自适应强度变换的彩色遥感图像增强方法 [J], 杨蕴; 李玉; 赵泉华
5.基于NSST域的引导滤波遥感图像增强方法 [J], 韩晶;贾振红;杨杰;Nikola Kasabov
因版权原因,仅展示原文概要,查看原文内容请购买。
前言........................................................................................................................................... - 1 - 1、多光谱图像的特征:............................................................................................................. - 2 -1.1 数字卫星影像的数据格式............................................................................................. - 2 -1.2失真与校正...................................................................................................................... - 2 -1.2.1复制校正................................................................................................................ - 2 -1.2.2去条纹复原处理校正............................................................................................ - 3 -1.2.3几何校正................................................................................................................ - 3 -2、MATLAB程序实现 ............................................................................................................... - 3 -2.1从多光谱图像中构建真彩色复合图像。
在当前数据挖掘和机器学习领域,最为热门的话题莫过于SVM和Boosting方法了。
只要是涉及到这两个主题,那么论文就会容易被杂志和会议接受了。
看来不管做什么,都讲究眼球效应啊。
搞研究其实也有点类似超级女声,呵呵。
以前我的论文中用的SVM Code都来自于台湾的林智仁教授的LibSVM。
真的是佩服有些大家,自己做出了重要的发现和成果,想到的不是把自己的成果保密起来(像C4.5一样),让自己独享自己的成果;而是让自己的成果最大程度的被人所利用,给后来的研究人员打下一个坚实的基础。
说实话,他的代码很好,用起来很方便,而且不同的语言版本实现都有,即使是对于初学者都很容易掌握。
不过用的久了,我就想自己也实现SVM,现在的数学计算工具太多了,而且功能齐全,用起来方便。
今天鼓捣了一会,终于用Matlab实现了第一个SVM。
虽然比较简单,但是包含了大多数SVM的必要步骤。
这个实现是线性可分支持向量分类机,不考虑非线性分类引入核函数的情况,也不考虑推广条件下引入Penalty Loss的情况。
问题描述:平面上有如下点A = [1 1.5;2 1.5;3 1.5;4 1.5;1 0.5;2 0.5;3 0.5;4 0.5]及其对应的标号flag = [1 1 1 1 -1 -1 -1 -1];用SVM方法构造一个决策函数实现正确分类。
如果我们在二维坐标上描点,就会发现这是个很简单的线性可分问题。
实现方法,用SVM 的对偶问题,转换为Matlab的有约束非线性规划问题。
构建m文件:function f = ffsvm(x)A = [1 1.5;2 1.5;3 1.5;4 1.5;1 0.5;2 0.5;3 0.5;4 0.5];flag = [1 1 1 1 -1 -1 -1 -1];for i=1:1:length(A)for j=1:1:length(A)normA(i,j) = A(i,:)*A(j,:)';normFlag(i,j) = flag(1,i)*flag(1,j);endendf = 0;for i=1:1:length(A)for j=1:1:length(A)f = f + 1/2*(normA(i,j)*x(i)*x(j)*normFlag(i,j));endf = f - x(i);end在命令窗口输入:Aeq = [1 1 1 1 -1 -1 -1 -1];beq = 0;lb = [ 0 0 0 0 0 0 0 0];调用MatLab内置优化函数fmincon;[x,favl,exitflag] = fmincon(@ffsvm,x0,[],[],Aeq,beq,lb,[])得到如下结果:Optimization terminated successfully:Magnitude of directional derivative in search directionless than 2*options.TolFun and maximum constraint violationis less than options.TolConActive Constraints:1x =0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000favl =-2.0000exitflag =1x的分量都不为0,说明这些点都是支持向量;计算w;w = [0 0];for i = 1:1:length(A)w = w + flag(i)*x(i)*A(i,:);end结果:w =[0,2];计算b;b = 0;for i=1:1:8b = b-flag(i)*x(i)*normA(i,1);endb = flag(1) + b;结果:b = -2;最终的决策函数为:f = sign([0, 2]*xT-2)可以验证,这个学习到的决策函数能够对这些平面上的点实现很好的分类;基本思路是这样的,如果要考虑引入核函数和Penalty Loss的情况,只需要修改优化函数和约束就可以实现。
基于matlab的遥感图像处理程序报告南京理工大学电光学院,无履仙人一、程序简介基于matlab的GUI可视化遥感图像处理程序,界面布局如下图:菜单栏包括:文件,图像旋转,自动识别有效区域,获取有效区域,压缩,图像增强,伪彩色图像,还原重做,退出,关于等项。
主界面部分包含两个图像显示,和部分按钮及需要输入的参数。
由于界面大小有限,部分功能留在菜单栏中。
二、处理步骤及部分源码1、打开和保存文件首先是文件菜单,包含打开和保存,打开的文件将显示在原始图像和处理图像两部分中,在处理过程中,原始图像不变,以作为和处理图像对比,保存图片只保存处理后的图片,处理前的图片不做保存。
图片打开后如图所示,2、图像旋转由图可见图像有部分区域无有效信息,不利于处理和获得有效信息,故应去除,首先进行旋转,便于去除无效区域。
在旋转角度编辑栏内输入要旋转的角度然后点旋转按钮,进行旋转。
旋转后如图,图像旋转源码为:function imrotate_Callback(hObject, eventdata, handles)h=getappdata(handles.figure_demo,'img_2');x=get(handles.angle,'string');an=str2num(x);g=imrotate(h,an,'bilinear','crop');img_2=g;axes(handles.tag);imshow(img_2);setappdata(handles.figure_demo,'img_2',img_2);3。
、有效区域自动提取现在图中有效区域基本是在一个矩形内,可以通过算法将有效区域边界的坐标求出来,单击自动识别有效区域按钮,求出后显示在图片右边的静态文本框内。
如下图,图像自动识别有效区域源码如下,function auto_Callback(hObject, eventdata, handles)h=getappdata(handles.figure_demo,'img_2');[x,y]=size(h);flag=1;for i=1:xfor j=1:yif h(i,j)~=0&flag==1x1=i;flag=0;endif h(i,j)~=0x2=i;endendendfor j=1:yfor i=1:xif h(i,j)~=0&flag==0y1=j;flag=1;endif h(i,j)~=0y2=j;endendendset(handles.x_1,'String',num2str(x1));set(handles.x_2,'String',num2str(x2));set(handles.y_1,'String',num2str(y1));set(handles.y_2,'String',num2str(y2));y0=y2-y1;x0=x2-x1;rect=[y1,x1,y0,x0];setappdata(handles.figure_demo,'rect',rect);4、获取有效区域获得有效区域坐标后,就可以通过简单的命令获得遥感图像的有效区域了,单击菜单栏的“获取有效区域”按钮,就可获得。
傻瓜攻略(十九)——MATLAB实现SVM多分类SVM (Support Vector Machine) 是一种常用的机器学习算法,广泛应用于分类问题。
原始的 SVM 算法只适用于二分类问题,但是有时我们需要解决多分类问题。
本文将介绍如何使用 MATLAB 实现 SVM 多分类。
首先,我们需要明确一些基本概念。
在 SVM 中,我们需要对每个类别建立一个分类器,然后将未知样本进行分类。
这涉及到两个主要步骤:一对一(One-vs-One)分类和一对其他(One-vs-Rest)分类。
在一对一分类中,我们需要对每两个类别都建立一个分类器。
例如,如果有三个类别 A、B 和 C,那么我们需要建立三个分类器:A vs B, A vs C 和 B vs C。
然后,我们将未知样本进行分类,看它属于哪个类别。
在一对其他分类中,我们将一个类别看作是“正例”,而其他所有类别看作是“负例”。
例如,如果有三个类别 A、B 和 C,那么我们需要建立三个分类器:A vs rest, B vs rest 和 C vs rest。
然后,我们将未知样本进行分类,看它属于哪个类别。
接下来,我们将使用一个示例数据集来演示如何使用MATLAB实现SVM多分类。
我们将使用鸢尾花数据集,该数据集包含了三个类别的鸢尾花样本。
首先,我们需要加载数据集。
在 MATLAB 中,我们可以使用`load`函数加载内置的鸢尾花数据集。
代码如下所示:```load fisheriris```数据集加载完成后,我们可以查看数据集的结构。
在 MATLAB 中,我们可以使用`whos`函数查看当前工作空间中的变量。
代码如下所示:```whos``````X = meas;Y = species;```然后,我们可以使用`fitcecoc`函数构建一个多分类 SVM 模型。
`fitcecoc`函数可以自动选择最佳的核函数,并训练多个二分类器来实现多分类。
代码如下所示:```SVMModel = fitcecoc(X, Y);```训练完成后,我们可以使用`predict`函数对未知样本进行分类。
利用Matlab进行遥感图像处理与遥感数据分析引言:遥感技术是获取地球表面信息的有效手段之一,广泛应用于农业、环境、地质、气象等领域。
遥感图像处理和遥感数据分析是遥感技术的重要组成部分,能够帮助我们更好地理解和研究地球表面的各种现象和特征。
本文将介绍如何利用Matlab进行遥感图像处理和遥感数据分析。
一、Matlab在遥感图像处理中的应用1. 图像预处理遥感图像通常存在噪声、亮度不均匀、边缘模糊等问题,影响了后续的图像分析和信息提取。
利用Matlab可以对遥感图像进行预处理,包括噪声去除、直方图均衡化、边缘增强等。
其中,噪声去除可以使用中值滤波、均值滤波等方法,直方图均衡化可以提高图像的对比度,边缘增强可以利用拉普拉斯算子或索贝尔算子等进行边缘检测和增强。
2. 图像分类与分割遥感图像分类是分析遥感图像中不同地物类型的过程。
利用Matlab,可以使用传统的像元级分类方法,如最小距离分类法、最大似然分类法等。
此外,还可以使用机器学习算法,如支持向量机分类器、随机森林分类器等,提高分类的准确性和效果。
图像分割是将图像划分为不同的区域或对象的过程,常用的方法包括区域生长、分水岭算法等。
3. 特征提取与目标检测图像特征提取是从图像中提取具有代表性的特征,即反映某一特定属性的图像信息。
利用Matlab,可以提取纹理特征、频谱特征、形状特征等。
目标检测是在遥感图像中检测和定位感兴趣的目标,如建筑物、道路等。
常用的目标检测方法包括基于特征的方法、基于模型的方法等。
二、Matlab在遥感数据分析中的应用1. 遥感数据读取与处理遥感数据通常以多光谱数据或高光谱数据的形式存在,其中包含了地表覆盖类型、植被指数、水中深度等信息。
利用Matlab,可以读取遥感数据,并进行数据处理,如去除无效数据、填补缺失值等。
此外,还可以进行数据融合,将多个遥感数据集合并成一个。
2. 遥感数据可视化利用Matlab,可以对遥感数据进行可视化,以直观地观察地表特征。
使用Matlab进行遥感图像分类的方法研究引言遥感图像分类是一项重要的研究领域,它的应用涉及到农业、城市规划、环境监测和自然资源管理等多个领域。
然而,由于遥感图像具有较高的维度和复杂的信息,对图像进行准确的分类成为一项具有挑战性的任务。
近年来,Matlab作为一种强大的图像处理工具,被广泛应用于遥感图像分类的研究中。
本文将探讨使用Matlab进行遥感图像分类的方法。
方法一:预处理在进行遥感图像分类之前,首先需要对图像进行预处理。
预处理的目的是去除杂音并增强图像的特征。
常见的预处理方法包括图像增强、图像平滑和图像滤波等。
在Matlab中,可以使用imadjust函数进行图像增强,使用imsmooth函数进行图像平滑,使用imfilter函数进行图像滤波。
通过这些预处理方法,可以使得图像的特征更加明显,有利于后续的分类工作。
方法二:特征提取特征提取是遥感图像分类的核心步骤之一。
通过提取图像中的有效特征,可以更好地描述图像的内容。
在Matlab中,可以使用各种特征提取方法,比如纹理特征、形状特征和频谱特征等。
其中,纹理特征是一种常用的特征提取方法,可以通过计算图像的灰度共生矩阵、灰度共生矩阵对比度和灰度共生矩阵能量等来获取图像的纹理信息。
形状特征可以通过计算图像的几何矩、边界曲率等来获取图像的形状信息。
频谱特征可以通过进行傅里叶变换、小波变换等来获取图像的频域信息。
通过这些特征提取方法,可以得到具有较高区分度的特征向量,为后续的分类做准备。
方法三:分类算法在得到了特征向量之后,就可以使用分类算法对图像进行分类。
常用的分类算法包括支持向量机、朴素贝叶斯、人工神经网络和决策树等。
在Matlab中,可以使用相应的函数来实现这些分类算法。
例如,可以使用svmtrain函数和svmclassify 函数来实现支持向量机分类算法。
可以使用bayes函数来实现朴素贝叶斯分类算法。
可以使用patternnet函数和train函数来实现人工神经网络分类算法。
LANZHOU UNIVERSITY OF TECHNOLOGY毕业设计题目基于SVM的图象分类系统学生姓名学号专业班级计算机科学与技术3班指导教师学院计算机与通信学院答辩日期摘要支持向量机(SVM)方法是建立在统计学习理论基础之上的,克服了神经网络分类和传统统计分类方法的许多缺点,具有较高的泛化性能。
但是,由于支持向量机尚处在发展阶段,很多方面尚不完善,现有成果多局限于理论分析,而应用显得较薄弱,因此研究和完善利用支持向量机进行图像分类对进一步推进支持向量机在图像分析领域的应用具有积极的推动作用。
本文通过支持向量机技术和图像特征提取技术实现了一个图像分类实验系统。
文中首先引入了支持向量机概念,对支持向量机做了较全面的介绍;然后,讨论了图像特征的描述和提取方法,对图像的颜色矩特征做了详细的描述,对svm分类也做了详细的说明;最后讨论了由分类结果所表现的一些问题。
测试结果表明,利用图像颜色矩特征的分类方法是可行的,并且推断出采用综合特征方法比采用单一特征方法进行分类得到的结果要更令人满意。
关键词:支持向量机图像分类特征提取颜色矩AbstractThe support vector machine (SVM) method is based on statistical learning theory foundation, overcome the neural network classification and traditional statistical classification method of faults, and has high generalization performance. But, because the support vector machine (SVM) is still in the development stage, many still not perfect, the existing results more limited to the theoretical analysis, and the use of appear more weak and therefore study and improve the use of support vector machines to image classification support vector machine to further advance in the application of image analysis play a positive role in promoting.In this paper, support vector machine (SVM) technology and image feature extraction technology implements a image classification experiment system. This paper first introduces the concept of support vector machine (SVM), the support vector machine (SVM) made a more comprehensive introduction; Then, discussed the image characteristics of description and extraction method, the image color moment features described in detail, also made detailed instructions for the SVM classification; Finally discussed the classification results of some problems. Test results show that using the torque characteristics of the image color classification method is feasible, and deduce the comprehensive characteristic method than using single feature method to classify the results are more satisfactory.Keywords: support vector machine image classification feature extraction Color Moment目录摘要 (I)Abstract (II)第一章前言 (1)1.1本课题的研究意义 (1)1.2本论文的目的、内容 (1)1.3开发技术介绍 (1)1.3.1 SVM技术及其发展简史 (1)1.3.2 java技术简介 (2)第二章系统分析 (3)2.1 系统需求分析 (3)2.2 系统业务流程分析 (3)第三章系统总体设计 (4)3.1 分类系统的结构 (4)3.2 图像数据库 (4)3.3 特征提取模块 (4)3.4 svm分类模块 (4)第四章系统详细设计 (6)4.1 特征提取模块 (6)4.1.1 颜色矩 (6)4.2 SVM分类模块 (7)4.2.1 svm的算法简介 (7)4.2.2 svm的核函数选择 (8)4.2.3 svm的核函数 (8)4.2.4 svmtrain的用法 (9)4.2.5 svmpredict的用法 (10)第五章系统测试 (11)5.1 图像数据 (11)5.2 提取颜色矩特征 (11)5.3 svm分类 (12)5.4 测试结果分析 (13)第六章软件使用说明书 (14)设计总结 (16)参考文献 (17)外文翻译 (18)原文 (18)Abstract (18)1 Introduction (18)2 Support vector machines (19)3 Co-SVM (20)3.1 Two-view scheme (20)3.2 Multi-view scheme (20)3.3 About SVM (21)4 Related works (23)译文 (24)摘要 (24)1 前言 (24)2 支持向量机 (24)3 合作支持向量机 (25)3.1 双试图计划 (25)3.2 多视图计划 (26)3.3 SVM 简介 (26)4 相关作品 (27)致谢 (29)第一章前言1.1本课题的研究意义随着信息社会的到来,人们越来越多的接触到大量的图像信息。
利用Matlab进行遥感图像处理和地理信息系统分析遥感图像处理和地理信息系统(GIS)已经成为现代地球科学和环境研究中不可或缺的工具。
对于研究者和科学家来说,能够利用Matlab这样强大的软件进行遥感图像处理和GIS分析是一种巨大的优势。
本文将介绍如何利用Matlab进行遥感图像处理和GIS分析,并展示一些实际案例。
首先,让我们来了解一下遥感图像处理和GIS分析的基本概念。
遥感图像是通过遥感技术获取的地球表面的图像,它可以提供关于地表物体和现象的大量信息。
遥感图像处理是对这些图像进行处理和分析,以提取有用的信息。
GIS是一种以地理空间数据为基础的信息系统,它可以用来管理、处理和分析地理空间数据。
在利用Matlab进行遥感图像处理方面,首先要了解如何读取和显示遥感图像。
Matlab提供了一系列的函数和工具箱,可以读取各种格式的遥感图像,并对其进行处理和分析。
通过使用这些函数,可以轻松地读取和显示遥感图像,以便进一步处理和分析。
接下来是遥感图像处理的一些常见任务,如图像增强、分类和变换。
图像增强是提高图像质量和细节的过程,可以通过调整对比度、亮度和色彩来实现。
分类是将图像中的像素划分为不同的类别,例如土地类型、植被覆盖等。
常用的分类方法包括监督分类和无监督分类。
变换是将图像从一个域转换到另一个域,例如从时域到频域或从空间域到频域。
这些任务都可以通过Matlab提供的函数和工具箱来实现。
除了遥感图像处理,Matlab还提供了丰富的功能和工具箱,用于GIS分析。
这包括地图数据的读取和显示、空间分析和地理编码等。
地图数据可以是矢量数据或栅格数据,可以通过使用Matlab的地图数据处理函数来读取和显示。
空间分析是对地理空间数据进行统计和分析的过程,可以用来研究地理现象的分布和关联。
地理编码是将地理空间数据与行政区划或其他地理实体进行对应的过程,例如将地址转换为经纬度。
接下来,让我们看一些实际的案例,以展示Matlab在遥感图像处理和GIS分析方面的应用。
利用Matlab进行遥感图像处理和解译的技术摘要:遥感图像处理和解译技术是遥感科学领域中的重要研究方向之一。
利用Matlab 进行遥感图像处理和解译能够提高图像处理和解译的效率和精度。
本文将介绍利用Matlab进行遥感图像处理和解译的技术,并展示其在地质灾害识别、土地利用变化监测和环境监测等领域的应用。
1. 引言遥感图像处理和解译技术是利用航空遥感、卫星遥感等技术获取大范围地表信息的一种方法。
它可以提供大量的遥感图像数据,为环境监测、资源调查和地质灾害预警等方面提供支持。
利用Matlab进行遥感图像处理和解译可以充分发挥Matlab强大的图像处理和数据分析功能,提高图像处理和解译的效率和精度。
本文将介绍利用Matlab进行遥感图像处理和解译的技术,并展示其在地质灾害识别、土地利用变化监测和环境监测等领域的应用。
2. 遥感图像处理技术遥感图像处理技术是指对获取的遥感图像数据进行预处理、增强、分类等的过程。
利用Matlab进行遥感图像处理可以利用其丰富的图像处理函数库,实现对图像的去噪、边缘检测、直方图均衡化等操作。
例如,在进行地质灾害识别时,可以利用Matlab进行遥感图像的去噪处理,去除图像中的噪声干扰,提高遥感图像的质量。
此外,还可以利用Matlab进行边缘检测,提取出地质灾害区域的边界,为后续的分类和识别提供基础。
3. 遥感图像解译技术遥感图像解译技术是指对处理后的遥感图像进行目标提取、分类和解译的过程。
利用Matlab进行遥感图像解译可以利用其强大的数据分析和模型建立能力,实现对遥感图像的分类和解译。
例如,在进行土地利用变化监测时,可以利用Matlab进行遥感图像的分类和解译,将图像中的不同地物进行分类并提取出其变化信息。
通过建立合适的分类模型和利用高分辨率遥感图像的特征,可以实现对土地利用变化的精确监测。
4. 应用案例4.1 地质灾害识别地质灾害是一种自然灾害,具有突发性和破坏性。
利用遥感图像进行地质灾害识别可以提前发现并预警地质灾害,减少人员伤亡和财产损失。