零起点学开关电源设计基础篇
- 格式:docx
- 大小:36.70 KB
- 文档页数:1
开关电源基础引言电源发展是趋于轻小。
而关键是既要小又要高效。
近几年的优秀半导体、磁材和无源器件,使得功率变换的选择余地越来越大。
线性和开关电压线性电源和开关电压都是把不稳定的输入变换成稳定的输出,但是却是完全不同的技术,它们各有优缺点。
线性电源只能是降压型的。
它们是用双极型晶体管或MOSFET 的线性工作,保持输出电压的稳定。
半导体调整器件上的电压就是输入输出电压差,半导体损耗就是调整器件上的电压乘负载电流,即V dr I o 。
所以,变换效率只在35-65%。
例如,把12V 输入变换成5V 输出,输出电流100mA ,输出功率只有500mW ,而损耗是700mW ,效率是42%。
所以,散热片的体积大成本高。
但是线性电源在输入电压变化范围小的小功率应用场合,也有它的优点,比如电路简单,没有开关电压的开关噪音。
开关电压的开关器件,只工作在截止和饱和导通状态,损耗低,效率可到65-95%。
开关电压即可降压也可升压。
但是,开关电压电路复杂,输出电压包含着开关噪音,必须虑除。
开关电源基础PWM 开关电压有两种基本结构,即正激型和升压型。
正激型变换器正激变换器的输出LC 滤波器给出DC 输出电压。
输出电压为D VV ino(1)降压变换器是最简单的正激型变换器,如图1所示。
图1 基本正激型(降压)变换器及其波形它的工作可以分成两个不同的方式,即开关导通和关断。
当开关导通时,输入电压加到LC滤波器的输入端。
假设变换器工作在稳态,滤波器输出端的电压就是输出电压。
电感电流开始由开关周期开始时的初始值线性上升。
电感电流为ti VVioninit oin Lontt L≤≤+ -=(2)在这个时期里,电感磁芯里存储能量。
当功率开关关断时,磁芯存储的能量传输到负载。
当功率开关关断时,电感输入端的电压被拉到地,被正向偏置的二极管D而箝位。
电感磁芯储能通过续流二极管D传向负载。
电感电流由初始的峰值i pk而减小为t Vi ioff opk Lofftt L≤≤-=(3)关断阶段一直持续到开关在控制电路控制下开启,下一个开关周期开始。
初学者学习和研发开关电源的方式(实例技术和方案分析)关于学习开关电源,大家都很清楚,要学好电路,模数电,自控,工程电磁场这些大学专业课,甚至还要看一些开关电源设计之类的专业书籍,如果能学好以上书籍,电路一类的基本知识就算了解了,但是要学好开关电源,单单有以上理论是不够的,还要深入实践,并且还要有一套行之有效的学习研发方式,也就是说拼命苦干是不会起很大作用的,最重要的是高效的方法。
下面我选择一款简单的电源设计方案,来谈一下怎样去思考,去分析,去设计;要注意什么,要学习那些,要总结那些,也就是“边练边学边讲解”这种思维吧。
现在要设计一款如下规格的开关电源:1.输入电压范围(InputVoltage Range):90~264Vac (100-240Vac典型输入电压)2.输入频率范围(InputFrequency Range ):47~63Hz (50-60Hz典型输入频率)3.输出电压和电流(OutputVoltage and Current):+12V,2.5A4.输出电压范围(Output Voltage Rating):+11.4V~+12.6V(±5%)5.负载调整率(Output Voltage Load Regulation):5%6. 线性调整率(Output Voltage Line Regulation):1%7.Rippleand Noise:120mVPk to Pk8.效率:83% (At typical voltage Full Load at least 10 minut)9.平均效率:84.8% (Averageefficiency of 25%, 50%, 75% and 100% load at115Vac /60Hz and 230Vac/50Hz.)10.待机功耗:0.3W (At typical voltage)11.过流保护 (Over Current Protection):4Amax (1.2~1.5倍输出电流)12.过压保护(Over Voltage Protection):18Vmax (1.2~1.5倍输出电压)以上规格是一款电源最基本的电气特性(另外还有开机时间,保持时间,上升时间,过温保护等电气特性;Hi-pot, surge, EMI, ESD, EFT 等重要安规管控特性,这些特性我会在下面的设计中提到并作分析),设计之初首要要了解以上基本要求,通过规格找设计元素,这样才能慢慢拿出方案。
超详细!开关电源基础知识讲解一、前言:PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。
本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。
●线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。
线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。
最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。
对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。
由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。
此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。
由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。
详解一步一步设计开关电源【开篇】针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进展解答。
设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。
希望大家喜欢大家一起努力!!【第一步】开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮助分析。
我只带大家设计一款宽围输入的,12V2A 的常规隔离开关电源1. 首先确定功率,根据具体要求来选择相应的拓扑构造;这样的一个开关电源多项选择择反激式(flyback) 根本上可以满足要求备注一个,在这里我会更多的选择是经历公式来计算,有需要分析的,可以拿出来再讨论【第二步】2.当我们确定用flyback 拓扑进展设计以后,我们需要选择相应的PWM IC 和MOS 来进展初步的电路原理图设计(sch)无论是选择采用分立式的还是集成的都可以自己考虑。
对里面的计算我还会进展分解分立式:PWM IC 与MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长〔仅从设计角度来说〕集成式:就是将PWM IC 与MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境集成式,多是指PWM controller 和power switch 集成在一起的芯片不限定于是PSR 还是SSR【第三步】3. 确定所选择的芯片以后,开场做原理图(sch),在这里我选用ST VIPer53DIP(集成了MOS) 进展设计,原因为何(因为我们是销售这一颗芯片的).设计之前最好都先看一下相应的datasheet,自己确认一下简单的参数无论是选用PI 的集成,或384x 或OB LD 等分立的都需要参考一下datasheet一般datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据【第四步】4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCB Layout当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进展计算一般有芯片厂家提供相关资料【第五步】5. 确定开关频率,选择磁芯确定变压器芯片的频率可以通过外部的RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。
零起点开始学习开关电源上次发了一篇介绍开关电源的文章,因为没有编辑好就发出去了,有点乱,这次应大家要求,从基础开始,介绍开关电源,我知道这方面高手多,但我追求的是面向对这方面有求知欲的基础不高的大众学习讨论,大家可以讨论。
我拆了一个旧电脑上的开关电源,作为切入点,先做介绍,如果大家喜欢的话然后再一步步深入讨论各电路模块,再更详细分享更多的开关电源电路方面的文章。
(貌似有点脏,不过贵在真实,请各位就不要纠结在此了)一:电源工作的原理交流220V电压输入,经EMI滤波后,经整流电路升压为310伏左右的直流电,或者到了主动PFC这里升为约400伏左右的高压直流电之后,经过开关变压器降压,最后再经过整流稳压电路,得以输出纯净的供负载使用的低压直流电。
二:结构以变压器为界,变压器之前的电路称之为初级电路,电路内都是几百伏的高压电(热地);变压器之后到输出端截止的电路称之为次级电路,这一部分内都是直流低压电了(冷地)。
a,初级电路,这基本都是EMI电路,EMI电路主要作用就是滤除干扰。
EMI分一二级电路。
简单的方法就是看电容,还有绕着线的环形线圈,这是电感(滤波电感,在昨天的文章中介绍过),有差模电感和共模电感b:整流电路,整流电路在原理在昨天也介绍过,一般在PFC和EMI电路之间,把交流电整流,变成成直流电。
(半波整流,桥式整流。
)C:PFC。
PFC就叫做功率因数校正电路,它分为主动和被动两种。
被动PFC是一个大电感,串在桥堆前面,起到平滑输入电流的作用,但是比较笨重,功率因数也很低,所以,比较好的开关电源一般不用它。
主动PFC,也叫有源PFC。
因为其转换效率相对高,省电,所以现在比较知名的品牌电源就采用这种方式,其实PFC主动和被动,对于懂其原理来说,根本不是那么回事,这里先不讨论。
d:开关管,开关管就有很多种,后面在做介绍或讨论,电流经过开关管后,波形成了脉动电流,波形就是方波,再经过开关变压器,输出低压。
零起点学开关电源设计基础篇
开关电源是一种高效、稳定、小型化的电源供应器,广泛应用于现代电子设备中。
想要学习开关电源设计基础知识,需要掌握以下几个方面的内容:
1. 开关电源的基本原理
开关电源是一种能够将交流电转化为直流电的电源供应器。
它通过开关管对输入电压进行开关控制,使交流电的平均值变为直流电。
整个开关电源由输入滤波电容、整流电路、开关变换器、输出滤波电容、稳压电路等部分组成。
2. 开关电源的分类
开关电源可以根据输入电压的不同,分为交流输入型和直流输入型;根据输出功率的不同,分为低功率(小于100W)、中功率(100W-1KW)和高功率(大于1KW);根据拓扑结构的不同,分为Buck型、Boost型、Buck-Boost型、Cuk型、Sepic型、Flyback型、Forward 型等。
3. 开关电源的主要元器件
开关电源的主要元器件包括开关管、二极管、电感、电容、变压器、稳压管等。
4. 开关电源的设计步骤
开关电源的设计步骤主要包括:计算输入电容、整流电路的设计、选择开关变换器拓扑结构、计算开关变换器元器件参数、稳压电路的设计、确定滤波电容电感的参数、进行仿真和优化。
5. 开关电源的性能指标
开关电源的主要性能指标包括输出电压、输出电流、输出功率、效率、稳定性、负载调整能力、温度特性等。
以上是零起点学开关电源设计基础的一些内容,希望对初学者有所帮助。