代入消元法解二元一次方程组的步骤
- 格式:docx
- 大小:36.66 KB
- 文档页数:3
消元—解二元一次方程组知识点教案1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K 知识参考答案:1.消元 2.加减法一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y =ax +b (或x =ay +b ),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y x x y =-⎧⎨-=⎩时,代入正确的是 A .x -2-x =4B .x -2-2x =4C .x -2+2x =4D .x -2+x =4 【答案】C【解析】124y x x y =-⎧⎨-=⎩①②,把①代入②得:x -2(1-x )=4,整理得:x -2+2x =4.故选C . 二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:6936416x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.。
消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等. 二、化归思想 所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为则21x y =⎧⎨=-⎩,,这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
《代入法解二元一次方程组》教案教学目标1.使学生会用代入消元法解二元一次方程组;2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.教学重点和难点重点:用代入法解二元一次方程组.难点:代入消元法的基本思想.课堂教学过程设计一、从学生原有的认知结构提出问题1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考) 教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?(4)能否由方程组中的方程②求解该问题呢?(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y 用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得 x=30.将x=30代入方程③,得y=20.即鸡有30只,兔有20只.本节课,我们来学习二元一次方程组的解法.二、讲授新课例1 解方程组分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?3.只求出一个未知数的值,方程组解完了吗?4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2 解方程组分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)2(8-3y)+5y=-21,-y=-37,所以y=37.(问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.(本题可由一名学生口述,教师板书完成)三、课堂练习(投影)用代入法解下列方程组:四、师生共同小结在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.五、作业用代入法解下列方程组:5.x+3y=3x+2y=7.。
代入消元法解二元一次方程组》教学设计安宁市第一中学 邹敏、教学目标: 知识目标(1)通过探索,领会并总结解二元一次方程组的方法 .根据方程组的情况, 能恰当地应用“代入消元法”解方程组;(2)会借助二元一次方程组解简单的实际问题;(3)提高逻辑思维能力、计算能力、解决实际问题的能力 . 能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法 情感目标体会解二元一次方程组中的 “消元” 思想,即通过消元把解二元一次方程组 转化成解两个一元一次方程 .由此感受“化归”思想的广泛应用 .二、教学重难点教学重点:熟练地用代入法解二元一次方程组三、教学流程 (一)旧知回顾,引出新课 问题 1:解一元一次方程的基本步骤是什么? 答:去分母;去括号;移项;合并同类项;系数化为 问题 2:二元一次方程组的概念是什么? 答:把具有相同未知数的两个二元一次方程合在一起, 次方程组。
问题 3:什么叫做二元一次方程组的解? 答:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图】让学生复习已有知识,为新知识的学习打好基础。
二)探索新知,解决问题1. 消元思想的引入问题 1:引言问题用二元一次方程组如何解决?引言问题:篮球联赛中,每场比赛都要分出胜负,每队胜 1场得2分,负 1 场得 1 分,某队为了争取较好名次, 想在全部 22场比赛中得到 40 分,那么这个 队胜负场数应分别是多少?解:设该队胜 x 场,负 y 场,根据题意,可得x y 222x y 40教学难点:探索如何用代入法将“二元”转化为“一元的消元过程1. 就组成了一个二元问题2:上述问题能否用一元一次方程解决?若能,如何列方程?解:设该队胜x 场,根据题意,可得2x (22 x) 44问题3:上面的二元一次方程组和一元一次方程有什么联系?答:二元一次方程组中方程①变形可得到:y 22 x③,把方程②的y替换为22 x,方程②就化为了一元一次方程2x (22 x) 44 .解这个方程可得,x 18,把x 18代入变形方程式③中,得y 4 .由此得到方程组的解.问题4:方程①变形为方程③的目的是什么?答:用x表示y,消去一个未知数,减少未知数个数.【设计意图】该环节通过一个实际问题的两种不同解法,让学生对比观察后发现其中的联系,由此引出消元的思想,初步让学生认识到解二元一次方程组的基本方法是消元后转化为已学过的一元一次方程.引入新概念:消元思想:将未知数的个数由多化少、逐一解决的思想,叫做消元思想代入消元法:把二元一次方程组中的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.实例讲解例:用代入法解方程组2xx23yy810思考:(1)变形时是将方程①变形好,还是将方程②变形好,为什么? 答:方程①变形好,未知数系数较简单.(2)变形时,是用含x的代数式表示y好,还是用y表示x好,为什么? 答:用含y的代数式表示x好,x的系数较简单.(3)如何检验所得的结果是否正确?答:将所得的x、y 的值代入方程组,看是否同时满足两个方程,若是,则是方程组的解,若不是,则不是方程组的解.引导学生思考,边讲解边进行板书书写,规范书写格式.】解答过程:解这个方程,得 把y 6代入③, 所以这个方程组的解是结合第3个思考题,带着学生一起验证解的正确性, 以验证结果说明方法 本环节通过例题讲解,让学生进一步清楚的认识到如何解决二元一次方程 组求解问题,同时教师的规范板书,也为学生的书写规范了格式 •其中思考题的设置,引导学生独立思考,自己摸索解决问题的方法,再由教师讲解,可以加深学生的理解.(三)巩固训练,熟练技巧1•把下列方程改写成用含x 的式子表示y 的形式:(1)2x-y=3; (3)x-2y+5=0;解:【表格填完之后,提出思考,两种不同的表示方法,各在什么类型的题目中 更为简洁•】 【设计意图】该练习的训练,可以让学生快速地对方程进行变形,同时用 x 表示y 和用y 表示x ,两种不同的方法以表格的形式陈列,能让学生轻易地比较 出哪一种表示方法更简洁更便于之后的计算•解: 由①,得x 82y ③把③代入②,得2(8 2y ) 3y 10【得出解后, 的正确性•】【设计意图】 把下列方程改写成用含y 的式子表示x 的形式: 3x+y-1=0; 5y-x+3=0.2.用代入法解下列方程组:(1)x y 10; (2)2x y 34x y 203x 2y 8思考:(1)变形时是将方程①变形好,还是将方程②变形好?答:方程①变形好,未知数系数较简单.(2)变形时,是用含 x 的代数式表示 y 好,还是用 y 表示 x 好?答:(1)中用含x 的代数式表示y 好,y 的系数较简单.(2)中用含x 的代 数式表示 y 好,y 的系数较简单 .【引导学生进行思考之后,请两位同学到黑板上做题,然后再统一订正讲 解.】解答过程:⑴解:由①,得y 10解这个方程, 把x 6代入③,得所以这个方程组的解是⑵解:由①,得y 2x 3③解这个方程,得 x 2 把x 2代入③,得y 所以这个方程组的解是【设计意图】 本题通过实际训练增强学生解二元一次方程组的能力, 思考题的设置也给 学生做题时提供了解题的思路和方向, 由学生到黑板上做题再由教师订正, 既给了学生展示 自我的机会,同时也可以在当堂课上解决一些学生暴露出来的问题 .四) 合作交流,归纳方法【提出问题:通过刚才的例题和练习,我们知道了怎么解二元一次方程组, 请同学们思考, 刚才的解题过程中, 我们是根据怎样的步骤做出来的?请大家按 四人小组进行讨论,然后回答 .】代入消元法解二元一次方程组的基本步骤:把③代入②, 得 4x (10 x) 20把③代入②,得3x 2(2x 3) 81.消元:从方程组中选择系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.把所得方程代入另一方程中,消去一个未知数,变为一元一次方程;2.求解:解所得的一元一次方程,求得一个未知数的值;3 .回代:把所求得的一个未知数的值代入第一步中所得方程,求出另一个未知数的值,从而确定方程组的解.【设计意图】本环节由教师引导提示,学生讨论总结之后,再由教师修正补充,充分让学生自己体会到知识的形成过程,由自己探讨得出的结论,也让学生记忆更深刻.五)课堂小结1.什么是消元思想?2.什么是代入消元法?3.用代入消元法解二元一次方程组的基本步骤是什么?【设计意图】本环节在课程结束后,由学生回答小结的内容,当堂复习回顾本节所学内容,加深学生对新知识的印象.六)布置作业书P98 练习2书P103 2训练案P108 1.2.3.4。
《代入法解二元一次方程组》讲课设计讲课目的1.使学生会用代入消元法解二元一次方程组;2.理解代入消元法的基本思想表现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;3.在本节课的讲课过程中,逐渐浸透朴实的辩证唯心主义思想.讲课要点和难点要点:用代入法解二元一次方程组.难点:代入消元法的基本思想.讲堂讲课过程设计一、从学生原有的认知构造提出问题1.谁能造一个二元一次方程组?为何你造的方程组是二元一次方程组?2.谁能知道上述方程组 ( 指学生提出的方程组 ) 的解是什么?什么叫二元一次方程组的解?3.上节课我们提出了鸡兔同笼问题:( 投影 )一个农民有若干只鸡和兔子,它们共有50 个头和 140 只脚,问鸡和兔子各有多少?设农民有 x 只鸡, y 只兔,则获得二元一次方程组关于列出的这个二元一次方程组,我们如何求出它的解呢?( 学生思虑 )教师指引并提出问题:若设有x 只鸡,则兔子就有 (50-x) 只,依题意,得2x+4(50-x)= 140进而可解得, x=30,50-x=20 ,使问题得解.问题:从上边一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步指引学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系能否同样?(4)能否由方程组中的方程②求解该问题呢?(5)如何使方程②中含有的两个未知数变成只含有一个未知数呢?( 以上问题,要修业生独立思虑,想出消元的方法)联合学生的回答,教师作出解说.由方程①可得 y=50-x ③,即兔子数 y 用鸡数 x 的代数式 50-x 表示,因为方程②中的y 与方程①中的y 都表示兔子的只数,故可以把方程②中的y 用(50-x) 来代换,即把方程③代入方程②中,得2x+4(50-x)=140 ,解得x=30 .将x=30 代入方程③,得 y=20.即鸡有 30 只,兔有 20 只.本节课,我们来学习二元一次方程组的解法.二、解说新课例 1解方程组解析:若此方程组有解,则这两个方程中同一个未知数就应取同样的值.因此,方程②中的 y 即可用方程①中的表示 y 的代数式来取代.解:把①代入②,得3x+2(1-x)=5 ,3x+2-2x=5 ,所以x=3 .把x=3 代入①,得 y=-2 .( 此题应以教师解说为主,并板书,同时教师在最后应提示学生,与解一元一次方程同样,要判断运算的结果能否正确,需查验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边能否相等.查验可以口算,也可以在底稿纸上验算)教师解说完例 1 后,联合板书,就此题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为何能代入?3.只求出一个未知数的值,方程组解完了吗?4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简单?在学生回答完上述问题的基础上,教师指出:这类经过代入消去一个未知数,使二元方程转变成一元方程,进而方程组得以求解的方法叫做代入消元法,简称代入法.例 2解方程组解析:例 1 是用 y=1-x 直接代入②的.例 2 的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数) ,所以不可以直接代入.为此,我们需要想方法创办条件,把一个方程变形为用含x 的代数式表示 y( 或含 y 的代数式表示 x) .那么采用哪个方程变形较简单呢?经过察看,发现方程②中x 的系数为 1,所以,可先将方程②变形,用含有y 的代数式表示 x,再代入方程①求解.解:由②,得x=8-3y ,③把③代入①,得 ( 问:能否代入②中? )2(8-3y)+5y=-21 ,-y=-37 ,所以y=37 .( 问:此题解完了吗?把y=37 代入哪个方程求x 较简单? )把 y=37 代入③,得x= 8-3 ×37,所以x=-103 .( 此题可由一名学生口述,教师板书达成)三、讲堂练习 ( 投影 )用代入法解以下方程组:四、师生共同小结在与学生共同回首了本节课所学内容的基础上,教师重视指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即便“代入”成为可能.而代入的目的就是为了消元,使二元方程转变成一元方程,进而使问题最后获得解决.五、作业用代入法解以下方程组:5.x+3y=3x+2y=7.。
代入法解二元一次方程组教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!代入法解二元一次方程组教案代入法解二元一次方程组教案(通用5篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。
消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等.二、化归思想所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为21xy=⎧⎨=-⎩,,则这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
代入消元法解二元一次方程组步骤代入消元法是解二元一次方程组的一种常用方法。
下面是代入消元法的步骤:
1. 给定二元一次方程组:
ax + by = c
dx + ey = f
2. 从其中一方程中解出其中一个变量(通常选择其中一个系数较小的方程):
例如,从第一个方程中解出x:
x = (c - by) / a
3. 将解出的x代入另一个方程中,并解出另一个未知数(y):
把x代入第二个方程:
d((c - by) / a) + ey = f
4. 求解y:
dy + (ae / a) * y = f - dc / a
(d + ae) * y = af - dc
y = (af - dc) / (d + ae)
5. 现在我们已经得到y的值,将其代入步骤2中解出的x的公式,求解x:
x = (c - by) / a
6. 得到x和y的值,即为方程组的解。
请注意,代入消元法适用于线性方程组,其中方程组的系数a、b、c、d和e都是已知的常数,而x和y是未知数。
如果方程组的解不存在或者无穷多个解,则相应地进行判断。
1/ 1。
二元一次方程组的解法步骤二元一次方程组的解法步骤第 1 篇代入消元法(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;(5)把这个方程组的解写成x=c y=d的形式。
换元法解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。
该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。
加减消元法(1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值;(5)把这个方程组的解写成x=c y=d的形式。
二元一次方程组的解法步骤第 2 篇教学目的1、使学生巩固等式与方程的概念。
2、使学生掌握等式的*质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。
教学分析重点:熟练掌握一元一次方程的解法。
难点:灵活地运用一元一次方程的解法步骤,计算简化而准确。
突破:多练习,多比较,多思考。
教学过程一、复习1、什么是一元一次方程?一元一次方程的标准形式是什么?它的解是什么?2、等式的*质是什么?(要求说出应注意的两点)3、解一元一次方程的基本步骤是什么?以解方程-2x+=为例,说明解一元一次方程的基本步骤与注意点,并口头检验。
二、新授1、已知方程(n+1)x|n|=1是关于x的一元一次方程,求n 的值。
代入消元法解二元一次方程组的步骤代入消元法是解二元一次方程组的一种有效方法,下面将介绍具体的步骤:
1. 确定两个方程中要消去的未知量
通过观察两个方程,找到其中一个未知量的系数相同的两项,以此为目标要消去的未知量。
例如,方程组
2x + 3y = 7
4x - y = 1
要消去的未知量可以是y,因为第一条方程的系数为3,而第二条方程中的系数为-1。
2. 将其中一个方程针对目标未知量进行变形
以要消去的未知量为目标,将其中一个方程进行变形,使其系数与另一个方程中的系数相同。
例如,对于上述方程组,可将第一条方程变形为:
6x + 9y = 21
使其y的系数和第二条方程中的一致。
3. 将变形后的方程和另一个方程组成新的方程组
将变形后的方程和另一个方程组成新的方程组,例如:
4x - y = 1
6x + 9y = 21
4. 将新方程组中的一个方程中的目标未知量代入到另一个方程中
将新方程组中的一个方程中的要消去的未知量按照目标未知量的系数代入到另一个方程中。
例如,将第一条方程中y的代入到第二条方程中,有:
6x + 9(4x-1) = 21
5. 解方程得到目标未知量的值
根据新的方程,可以解出目标未知量的值,例如:
6x + 36x - 9 = 21
42x = 30
x = 30/42 = 5/7
6. 将求得的未知量的值代入到原方程中求出另一个未知量
将求得的未知量的值代入到任意一个原方程中,求出另一个未知量的值,例如:
2x + 3y = 7
2×(5/7) + 3y = 7
3y = 49/7 - 10/7
y = 39/21
7. 检验解的正确性
将求得的两个未知量的值代入到原方程组中,检验解的正确性。
如果两个方程都成立,那么该解就是正确的。
通过以上步骤,可以使用代入消元法解二元一次方程组。