教育培训机构奥数题--五年级分解质因数的应用
- 格式:doc
- 大小:41.50 KB
- 文档页数:12
五年级奥数题及答案:质数、合数和分解质因数问题3第一篇:五年级奥数题及答案:质数、合数和分解质因数问题3 五年级奥数题及答案:质数、合数和分解质因数问题3编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:质数、合数和分解质因数问题3,可以帮助到你们,助您快速通往高分之路!例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。
如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。
综上所述,连续九个自然数中至多有4个质数。
例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。
解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。
这样14×15=210=5×6×7。
这五个数可以分为14和15,5、6和7两组。
第二篇:五年级质数与合数奥数教案质数与合数第一部分知识梳理1、自然数按照能被多少个不同的自然数整除可以分为三类:第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1。
第二类:只能被两个不同的自然数整除的自然数。
因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。
质数、合数与分解质因数知识讲解:例题讲解:【例1】试写出1 —-100中的所有质数,并将111111分解质因数.【例2] 2004个连续自然数的和是“a×b×c×d,若出a、b、c、d都是不同的质数,则a+b+c+d 最小值应是____(全国第二届“创新杯”数学邀请赛试题)【例3】两个质数的和是39.这两个质数的积是多少?【例4】在三张纸片上分别写上三个最小的奇质数,如果随意从其中至少取出一张组成一个数,其中有几个是质数,将它们写出来。
【例5] 2002=2×7×11×13,其特点是4个不相等的质数之积.20世纪(1901—2000年)具有相同特点(即可以分解成4个小同质数的积)的所有年份为_______________。
【例6】将2l、30、65、126、143、169、275分成两组,使两纽数的积相等。
【例7】边长是自然数,面积是165的形状不同的长方形共有多少种?【例8】用216元去买一种钢笔,正好将钱用完,如果每支钢笔便宜1元.则可以多买3支钢笔,钱也正好用完.问共买了多少支钢笔?【例9】小兰家的电话号码是个七位数,它恰好是几个连续质数的乘积,这个积的末4位数是前3位数的1 0倍,小兰家的电话号码是多少?【例10】一个自然数可以分解为3个质因数的积,如果这3个质因数的平方和为3 9 6 30,求这个自然数.【例1l】求3 6 0有多少个因数?其因数和是多少?【例12】问:100以内有6个因数的数有哪些?基础训练:1。
165有多少个因数?这些因数的和是多少?2.已知自然数a有两个因数,那么3a有几个因数?3.两个质数的和是1995,这两个质数的乘积是多少?4.两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少? 5.两个相邻的自然数积是1980,求这两个相邻的自然数.6.某四年级学生参加数学竞赛,他获得的名次,他的年龄,他得的分数的乘积是2910。
第二十七讲长方体和正方体我们已经学习了长方体和正方体的有关知识,如长方体和正方体的特征,长方体和正方体表面积、体积的计算。
在数学竞赛中,有许多问题涉及到长方体和正方体的知识,这些问题既有趣,又具有一定的思考性,解答这些问题,不仅需要我们具备较扎实的基础知识和较强的观察能力、作图能力和空间想象能力,还要能掌握一此致解题的思路的技巧。
通过本讲的学习,同学们将从解题的过程中得到一些启示,悟出一些道理,从而提高空间想象能力和分析推理能力。
例题与方法例 1.一个长方体,前面和上面的面积之和是209 平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。
这个长方体的体积和表面积各是多少?例 2.在一个长 15 分米,宽 12 分米的长方体水箱中,有 10 分米深的小。
如果在水中沉入一个棱长为 30 厘米的正方体铁块,那么,水箱中水深多少分米?例 3.一个长方体容器内装满水,现在有大、中、小三个铁球。
每一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次把中球取出,把小球和大球一起沉入水中。
已知每次从容器中溢出的水量的情况:第二次是第一次的 3 倍,第三次是第一次的 2.5 倍。
问:大球的体积是小球的多少倍?例 4.一个长方体容器的底面是一个边长60 厘米的正方形,容器里直立着一个高 1 米,底面边长15 厘米的长方体铁块。
这时容器里的水深0.5 米。
如果把铁块取出,容器里水深多少厘米?练习与思考1.一个长方体棱长的总和是 48 厘米,已知长是宽的 1.5 倍,宽是高的2 倍,求这个长方体的体积。
2.用 2100 个棱长是 1 厘米的正方体木块堆成一个实心的长方体。
已知长方体的高是 10 厘米,并且长和宽都大于高。
这个长方体的长和宽各是多少厘米?3.在一个长 20 分米,宽 15 分米的长方体容器中,有20 分米深的水。
现在在水中沉入一个棱长 30 厘米的正方体铁块,这时容器中水深多少分米?4.把一个长 9 厘米,宽 7 厘米,高 3 厘米的长方体铁块和一块棱长 5 厘米的正方体铁块熔铸成一个底面积是 20平方厘米的长方体。
小学数学奥数基础教程(五年级)分解质因数自然数中任何一个合数都可以表示成若干个质因数乘积的形式,如果不考虑因数的顺序,那么这个表示形式是唯一的。
把合数表示为质因数乘积的形式叫做分解质因数。
例如,60=22×3×5, 1998=2×33×37。
例1 一个正方体的体积是13824厘米3,它的表面积是多少?分析与解:正方体的体积是“棱长×棱长×棱长”,现在已知正方体的体积是13824厘米3,若能把13824写成三个相同的数相乘,则可求出棱长。
为此,我们先将13824分解质因数:把这些因数分成三组,使每组因数之积相等,得13824=(23×3)×(23×3)×(23×3),于是,得到棱长是23×3=24(厘米)。
所求表面积是24×24×6=3456(厘米2)。
例2 学区举行团体操表演,有1430名学生参加,分成人数相等的若干队,要求每队人数在100至200之间,共有几种分法?分析与解:按题意,每队人数×队数=1430,每队人数在100至200之间,所以问题相当于求1430有多少个在100至200之间的约数。
为此,先把1430分解质因数,得1430=2×5×11×13。
从这四个质数中选若干个,使其乘积在100到200之间,这是每队人数,其余的质因数之积便是队数。
2×5×11=110,13;2×5×13=130,11;11×13=143,2×5=10。
所以共有三种分法,即分成13队,每队110人;分成11队,每队130人;分成10队,每队143人。
例3 1×2×3×…×40能否被90909整除?分析与解:首先将90909分解质因数,得 90909=33×7×13×37。
用分解质因数法解决问题用分解质因数的方法解决有关数学问题应用广泛,且趣味性强。
在解决有关整除问题时,一般先把数分解成质因数的连乘积,然后根据需要把某些质因数组合得到所需的因数,在组合时千万不要漏掉满足要求的解。
例1:有三个学生,他们的年龄恰好一个比另一个大2岁,而他们的年龄的乘积为2688.那么他们的年龄各是多少?变式训练:把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920,这篮苹果共有几个?例2:王老师带领同学们去种树,学生的人数恰好等分成四组。
已知老师和学生共种树539课,老师与学生每人中的树一样多,并且不少于10棵。
每人种了几棵树?变式训练:植树节那天,学校要求两位老师组织五年级的同学将893棵植栽完。
要求全部同学平均分成5组,老师和同学所种植的数量相同。
如果你是校长你会怎样安排植树。
你知道一共去植树的同学有多少位吗?例3:马鹏和李虎计算甲、乙两个大于1的自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407.那么,甲、乙两数的乘积应是多少?变式训练:甲、乙两个人计算自然数A和B的乘积,甲把B的个位数字看错了,得到的积是522;乙把B的十位数字看错了,得到的积是667.那么A,B两数的乘积是多少?例4:育才小学师生为贫困地区捐款1995元,这所学校共有35名教师,14个教学班,各班的学生人数相同,且多于30人,不超过45人。
如果每人平均捐款的钱数都是整元数,那么该校有学生多少人?平均每人捐款多少元?变式训练:有3250个橘子,平均分给一个幼儿园的小朋友,剩下10个。
已知每个小朋友分得的橘子数接近40个。
求这个幼儿园有多少名小朋友?提高训练:1.四年级某学生参加数学竞赛,他获得的名次、他的年龄、他得的分数的乘积是2910,这个学生得第几名,成绩是多少分?2.李老师带领同学去种树,学生恰好平均分成三组。
如果老师比每个学生多种5棵,则师生共种树511棵。
例一:(1)用一个数去除30、60、75,都能整除,这个数最大是多少?(2)一个数用9、15、20除都能整除,这个数最小是多少?练习1○1(1)求48和64的最大公约数,(2)求8和12的最小公倍数。
○2求42、168、252的最大公约数和最小公倍数。
○3希望小学买来360个苹果,480个桔子,400个梨,带这些水果去慰问敬老院的老人们,最多可以分成多少份同样地礼物?每份中苹果、桔子、梨各有多少个?例二:有三根铁丝,长度分别是12厘米,18厘米和24厘米,现在要把它们截成相等的小段,每根都不许有剩余。
每小段最长是多少厘米?一共可以截成多少段?练习2○1有3根铁丝,长度分别是12厘米,18厘米和54厘米。
现在要把它们截成相等的小段,梅根都不许有剩余。
每小段最长是多少厘米?一共可以截成多少段?○2有三根钢管,分别长200厘米、240厘米和360厘米,现要把这三根钢管截成尽可能长而且相等的小段,一共能截成多少段?○3五年级三个班分别有24人,36人、42人参加体育活动,要把他们分成人数相等的小组,但各班同学不能打乱,每组最多多少人?每个班可以分几组?例三:一张长方形纸长112厘米,宽80厘米,把它剪成若干个同样大的正方形,使边长是整厘米,且不能有剩余,最少能剪多少个?练习3○1一张长方形纸长96厘米,宽60厘米,把它剪成同样大的正方形,且不能有剩余,最少可以裁多少张?○2有一块试验基地,长75米,宽60米,现要将这块土地划分成面积相等的小正方形土地,那么,小正方形土地的面积最大是多少平方米?○3用长16厘米,宽14厘米的长方形木板来拼成一个正方形,最小需要用这样的木板多少块?例四:张妮有若干张画片,7张一数还余4张,5张一数又少3张,3张一数正好。
问:张妮至少有多少张画片?练习4○1一批书大约300到400本,若每包12本,还剩11本;每包18本,还缺1本;每包15本,有7包,每包各多2本,这批书有多少本?○2某班学生列队,3人一排多1人,5人一排多3人,7人一排多2人,这个班至少有多少人?○3五年级两个班的同学一起排队出操,如果9人排一行,多出1个人,如果10人排一行,同样多出1人,问这样两个班至少共有多少人?例五:将长宽高分别是120厘米,90厘米,60厘米的长方体木料锯成同样大小的正方体木块,而没有剩余,锯成的木块棱长最长是多少?共可以锯成多少块?练习5○1有一块长方形木料,长325厘米,宽175厘米,厚75厘米,把它锯成相等的正方体木块,最少可以锯多少块?每块的棱长是多少厘米?○2一间长5.6米,宽3.2米得小阳台,现要在它的水泥地面上划成正方形的格子,这种方格面积最大是多少平方米?○3长180厘米、宽45厘米、高18厘米的木料,能锯成尽可能大的正方体木块(不余料)多少块?例六:两个数的最大公约数是6,最小公倍数是144,这两个数各是多少?有几组这样的数?○1两个数的最大公约数是12,最小公倍数是60,求这两个数。
第二讲质数、合数和分解质因数一、基本概念和知识1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了1和它本身,还有别的约数,这个数叫做合数。
要特别记住:1不是质数,也不是合数。
2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例:把30分解质因数。
解:30=2×3×5。
其中2、3、5叫做30的质因数。
又如12=2×2×3=22×3,2、3都叫做12的质因数。
二、例题例1 三个连续自然数的乘积是210,求这三个数.解:∵210=2×3×5×7∴可知这三个数是5、6和7。
例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。
∵17×23=391>11×29=319>3×37=111。
∴所求的最大值是391。
答:这两个质数的最大乘积是391。
例3 自然数123456789是质数,还是合数?为什么?解:123456789是合数。
因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。
例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。
如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。
综上所述,连续九个自然数中至多有4个质数。
例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。
解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。
五年级奥数集训专题讲座(四)——分解质因数把一个合数,用质因数相乘的形式表达出来,叫做分解质因数。
我们课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。
例1:把18个苹果平均分成若干份,每份大于1个,小于18个,一共有多少种不同的分法?分析:18的约数有1、2、3、6、9、18。
除去1和18,还有4个约数,所以,一共有4种不同的分法。
例2:写出若干个连续的自然数,使它的积是15120。
分析:先把15120分解质因数,进而组合因数,使几个因数成为连续的自然数。
15120=2×2×2×2×3×3×3×5×7=5×(2×3)×(2×2×2)×(3×3)=5×6×7×8×9【巩固练习】:有四个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?解:3024=2×2×2×2×2×3×3×3×7=8×6×9×7答:这四个孩子中年龄最大的是9岁。
例3:将2、5、×14、24、27、55、56、99八个数平均分成两组,使这两组数的乘积相等。
分析:14=2×7 24=2×2×2×3 27=3×3×3 55=5×1156=2×2×2×7 99=3×3×11 2 5可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11,如果要把这八个数分成两组且积相等,那么,每组数中应含有四个2,三个3,一个5,一个7,一个11。
【原创】奥数解析(三⼗五)分解质因数五年级奥数解析(三⼗五)分解质因数《奥赛天天练》第三⼗五讲《分解质因数》。
如果⼀个整数的因数是质数,为质数的因数就叫做这个数的质因数。
把⼀个合数表⽰成⼏个质数相乘的形式,叫做分解质因数。
如果不考虑质因数的排列顺序,任意⼀个合数分解质因数的结果是唯⼀的。
常⽤的分解质因数的⽅法主要有两种:短除法和塔形分解。
如下图,给⼀个合数分解质因数,短除法就是利⽤短除式,按从⼩到⼤的顺序依次⽤这个数的质因数去除这个合数,⼀直除到结果为质数为⽌,找出这个合数所有的质因数;塔形分解就是先把这个合数写成两个因数的积,如果其中某个因数是合数,则继续上⾯的过程,⼀直分解到每个因数都是质数为⽌。
通过分解质因数,可以把对⾃然数的研究归结为质数的研究,从⽽找到解答相关数学问题的⽅法。
《奥赛天天练》第35讲,模仿训练,练习1【题⽬】:⼀个筐⾥共有72个梨,如果不⼀次拿出,也不⼀个⼀个拿出,但每次拿出的个数要相等,最后⼀次正好拿完,共有⼏种拿法?【解析】:72个梨每次拿出的个数相等,最后⼀次正好拿完,不能⼀次拿出,也不⼀个⼀个地拿,根据这些条件可知,每次拿出的个数⼀定是72的因数且不包括1和72本⾝。
对72分解因数,找出72所有⼤于1、⼩于72的因数(去掉1,最⼩的因数从2开始):72=2×36﹦3×24﹦4×18﹦6×12﹦8×9符合条件的72的因数有10个:2、3、4、6、8、9、12、18、24、36。
所以共有10种拿法。
《奥赛天天练》第35讲,模仿训练,练习2【题⽬】:将8个数14,30,33,75,143,169,4445,4953分成两组,每组四个数,要使各组四个数相乘的积相等,其中⼀组中有14,另⼀组中四个数是多少?【解析】:要使各组四个数相乘的积相等,则两组所包含的质因数情况必然完全相同。
可以先对这8个数分解质因数,再根据相同质因数的分布情况进⾏分组。
1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分数的拆分【例 1】 算式“1希+1望+1杯=1”中,不同的汉字表示不同的自然数,则“希+望+杯”= 。
【考点】分数的拆分 【难度】1星 【题型】填空【关键词】希望杯,五年级,初赛,第19题,6分【解析】 三个分数中一定有大于三分之一的,那个数是二分之一,剩下的两个数必有一个大于四分之一,即例题精讲知识点拨教学目标5-3-4.分解质因数是三分之一,那么剩下的只能是六分之一.希+望+杯=2+3+6=11【答案】11【例 2】 3个质数的倒数之和是16611986,则这3个质数之和为多少. 【考点】分数的拆分 【难度】3星 【题型】解答【解析】 设这3个质数从小到大为a 、b 、c ,它们的倒数分别为1a 、1b 、1c,计算它们的和时需通分,且通分后的分母为a b c ⨯⨯,求和得到的分数为F abc,如果这个分数能够约分,那么得到的分数的分母为a 、b 、c 或它们之间的积.现在和为16611986,分母198623331=⨯⨯,所以一定是2a =,3b =,331c =,检验满足.所以这3个质数的和为23331336++=.【答案】23331336++=【例 3】 一个分数,分母是901,分子是一个质数.现在有下面两种方法:⑴ 分子和分母各加一个相同的一位数;⑵ 分子和分母各减一个相同的一位数.用其中一种方法组成一个新分数,新分数约分后是713.那么原来分数的分子是多少. 【考点】分数的拆分 【难度】3星 【题型】解答【解析】 因为新分数约分后分母是13,而原分母为901,由于90113694÷=,所以分母是加上9或者减去4.若是前者则原来分数分子为7709481⨯-=,但4811337=⨯,不是质数;若是后者则原来分数分子是6974487⨯+=,而487是质数.所以原来分数分子为487.【答案】487【例 4】 将1到9这9个数字在算式()()()()()()1-=的每一个括号内各填入一个数字,使得算式成立,并且要求所填每一个括号内数字均为质数?【考点】分数的拆分 【难度】4星 【题型】填空【解析】 本题中括号内所填的数字要求为个位质数,那么只能是2,3,5,7.将原始代入字母分析有1b d cb ad a c a c a c--==⨯⨯,即有1cb ad -=,那么很容易发现只有3×5-2×7=1。
五年级奥数到课本讲义:利用分解质因数解题我们平时做题目时,是不是有时候会遇到一些与乘积有关的应用题,乍看起来很难,用一般的方法不是很好解答,但仔细思考后,你会发现题目里充满了玄妙,解起来还蛮有趣味性的(这也是奥数的魅力所在,会让人爱上数学的原因)。
这就是今天要讲的用分解质因数的方法来求解这一类的问题。
一般情况下,是转化为关于整除的问题(用到化归思想),然后把数分解成质因数的连乘积,再根据条件或需要把某些质因数重新组合,得到答案所需要的因数,在组合时一定要注意考虑全面(用到分类讨论的思想),可能满足要求的解不是一个,而是多个,千万不能漏掉哪一个。
那么,与这一节相关的基础知识、概念必须先掌握好。
首先,简单回忆复习一下常识:什么叫质数?就是除去他自己和1不能被其他的数整除;那什么叫合数?合数与质数恰恰相反,即自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数;质因数又是什么意思呢?在一个自然数的因数中,为质数的因数叫做这个数的质因数。
按此逻辑,我们把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如:36=2×2×3×3,45=3×3×5。
这一方法或过程可以通过短除法来实现,并且可以快速求出最大公因数和最小公倍数。
另外,还要记住一些特殊的情况,1既不属于质数也不属于合数;2是最小的质数,也是唯一的偶质数;最小的合数是4,也是最小的偶合数;最小的奇合数为9;所有大于2的偶数都是合数。
在这个阶段的数学学习中,所介绍的分解质因数,目的在于求出最大公约数和最小公倍数。
所谓最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。
a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。
与最大公约数相对应的概念是最小公倍数,顾名思义,两个或多个整数的公倍数里最小的那一个就叫做它们的最小公倍数。
例一:
(1)用一个数去除30、60、75,都能整除,这个数最大是多少?
(2)一个数用9、15、20除都能整除,这个数最小是多少?
练习1
○1(1)求48和64的最大公约数,(2)求8和12的最小公倍数。
○2求42、168、252的最大公约数和最小公倍数。
○3希望小学买来360个苹果,480个桔子,400个梨,带这些水果去慰问敬老院的老人们,最多可以分成多少份同样地礼物?每份中苹果、桔子、梨各有多少个?
例二:
有三根铁丝,长度分别是12厘米,18厘米和24厘米,现在要把它们截成相等的小段,每根都不许有剩余。
每小段最长是多少厘米?一共可以截成多少段?
练习2
○1有3根铁丝,长度分别是12厘米,18厘米和54厘米。
现在要把它们截成相等的小段,梅根都不许有剩余。
每小段最长是多少厘米?一共可以截成多少段?
○2有三根钢管,分别长200厘米、240厘米和360厘米,现要把这三根钢管截成尽可能长而且相等的小段,一共能截成多少段?
○3五年级三个班分别有24人,36人、42人参加体育活动,要把他们分成人数相等的小组,但各班同学不能打乱,每组最多多少人?每个
班可以分几组?
例三:
一张长方形纸长112厘米,宽80厘米,把它剪成若干个同样大的正方形,使边长是整厘米,且不能有剩余,最少能剪多少个?
练习3
○1一张长方形纸长96厘米,宽60厘米,把它剪成同样大的正方形,且不能有剩余,最少可以裁多少张?
○2有一块试验基地,长75米,宽60米,现要将这块土地划分成面积相等的小正方形土地,那么,小正方形土地的面积最大是多少平方米?
○3用长16厘米,宽14厘米的长方形木板来拼成一个正方形,最小需要用这样的木板多少块?
例四:
张妮有若干张画片,7张一数还余4张,5张一数又少3张,3张一数正好。
问:张妮至少有多少张画片?
练习4
○1一批书大约300到400本,若每包12本,还剩11本;每包18本,还缺1本;每包15本,有7包,每包各多2本,这批书有多少本?
○2某班学生列队,3人一排多1人,5人一排多3人,7人一排多2人,这个班至少有多少人?
○3五年级两个班的同学一起排队出操,如果9人排一行,多出1个人,如果10人排一行,同样多出1人,问这样两个班至少共有多少人?
例五:
将长宽高分别是120厘米,90厘米,60厘米的长方体木料锯成同样大小的正方体木块,而没有剩余,锯成的木块棱长最长是多少?共可以锯成多少块?
练习5
○1有一块长方形木料,长325厘米,宽175厘米,厚75厘米,把它锯成相等的正方体木块,最少可以锯多少块?每块的棱长是多少厘米?
○2一间长5.6米,宽3.2米得小阳台,现要在它的水泥地面上划成正方形的格子,这种方格面积最大是多少平方米?
○3长180厘米、宽45厘米、高18厘米的木料,能锯成尽可能大的正方体木块(不余料)多少块?
例六:
两个数的最大公约数是6,最小公倍数是144,这两个数各是多少?有几组这样的数?
○1两个数的最大公约数是12,最小公倍数是60,求这两个数。
○2两个数的最大公约数是18,最小公倍数是180,两个数相差54。
求这两个数各是多少。
○3两个数的最大公约数是8,最小公倍数是160,其中的一个数是32,另一个数是多少?
例七:
琦琦、梦梦、妮妮、浩浩四位小朋友,每隔不同的天数去敬老院做好事一次,琦琦3天去一次,梦梦4天去一次,妮妮5天去一次,浩浩
6天去一次,有一次四位小朋友是星期一在敬老院相逢,至少要过多少天四位小朋友才会在敬老院再次相逢?相逢时是星期几?
练习2
○1小明和小军每人隔不同的天数到图书馆去看书,小明每6天去一次,小军每8天去一次。
这个星期天,他们在图书馆相遇,至少再过多少天,他们又在图书馆相遇?
○2公共汽车站友三条线路通往不同的地方。
第一条线每隔5分钟发车一次,第二条线路每隔6分钟发车一次,第三条线路每隔10分钟发车一次。
三条线路在同一时间发车后,再过多少分钟又同时发车?
○3某旅社有甲、乙、丙三位客人星期二晚上同住在一间房,已知甲3天来住一次,乙4天来住一次,丙5天来住一次,问下一次再来同住
一房间要过多少天(假设只有一个房间)?
例八:
有一批图书,总数在1000本以内,若按24本书包一捆,最后一捆差2本;若按28本书包一捆,最后一捆还是差2本;若按32本书包一捆,最后一捆也是差2本。
这批图书有多少本?
练习3
○1有一篮鸡蛋,按每四个一堆分多一个;按每五个一堆分多一个;按每六个一堆分也多一个。
这篮鸡蛋至少有多少个?
○2有一盒小花,每次8个8个地数、10个10个地数、12个12个地数,最后总是剩下3朵。
这盒小花至少有多少朵?
○3一个数,不论是被10除,被4除,还是被15除,最后都少3,这个数最小是多少?
例九:
公路上一排电线杆,共25根,,每相邻2根间的距离原来都是45米,现在要改成60米,可以有几根不移动?
练习4
○1在长廊两侧每隔4米种一棵枫树,结果第一棵与最后一棵相距48米。
现在将树移栽成每隔6米种一棵,其中有几棵树不需要移动?
○2AB两地有一段公路长72000米,路旁有路标,原来每300米有一个(起点终点各一个),现在要改为800米一个,有多少个旧路标可以利用?。