大区域内的无线数据采集系统
- 格式:docx
- 大小:10.32 KB
- 文档页数:2
无线传感网络及工业测量装置Wireless sensor network &industrial measure deviceⅠ类采集设备——无线数据采集装置【FW-VI-MLKZ】一、概述无线数据采集监测系统是工业数据无线监测中最典型的应用,也是工业物联网在工业生产中最直接的表现形式。
作为科学生产、科学管理的辅助措施,将分散于企业内各数据监测点的数据、状态等以无线方式进行采集、远程集中显示、分析、处理,能起到生产事故的提前预防、提高生成效率等功能。
无线数据采集系统组网简单,无线通信基于433Mhz开发免申请ISM频段传输数据,传输距离远,抗干扰能力强。
系统组成结构简单,扩展方便。
通常系统由采集设备、信号接收设备组成,也可根据需求加入无线网络中继设备。
二、系统设计依据➢《GB50198-94计算机系统安全准则》➢《HG20507-92工业自动化仪表工程施工及验收规范》➢《GB 50194-93建设工程施工现场供用电安全规范》➢《GB/T 29261.4-2012 无线电通信》三、系统组网结构无线数据采集系统通常包括2种组网形式:1)多点对一点星型网络结构——现场多点数据采集、中控室无线中心接收站接收数据,配合PC机上位机软件组成数据监控系统(图一);2)点对点网络结构——现场数据采集,中控室无线数据还原装置将数据还原,可配合用户PLC、DCS等(图二)。
一类 网络拓扑图(图一)在同一组网结构内,现场无线数据采集器采集现场数据数据:液位,流量,压力,电流等4-20ma 信号,同时可采集现场设备如电机等设备的状态信号。
无线数据采集器将采集到的信号通过无线网络发送至中心接收站,中心接收站通过与PC 机RS232串口将数据上传至上位机软件系统,同时处理上位机软件发送的控制命令,将控制命令发送至现场,实现对现场设备的启停控制。
4-20ma 信号现场供电本地数据显示参数配置433Mhz 无线通讯4路4-20ma无线数据采集器无线中心接收站上位机系统企业网络数据系统TCP/IP局域网二类 网络拓扑图用户DCS/PLC/MCC4-20ma 信号现场供电本地数据显示参数配置433Mhz 无线通讯4路4-20ma无线数据采集器无线信号还原装置(图二)在此类网络结构中,现场无线数据采集器采集现场数据数据:液位,流量,压力,电流等4-20ma 信号,同时可采集现场设备如电机等设备的状态信号。
无线传感网络中的能耗优化与数据采集无线传感网络是一种由大量分布在空间中的微小无线传感器节点组成的网络系统。
这些节点能够感知、测量和收集环境中的各种信息,例如温度、湿度、压力等。
然而,由于节点通信和数据采集的需求,无线传感网络往往面临能耗限制的挑战。
因此,如何优化无线传感网络的能耗并高效地进行数据采集是一个重要的研究领域。
能耗优化是无线传感网络设计和管理中的一个关键问题。
由于节点通常都是由电池供电,能耗必须被严格控制以延长网络寿命。
因此,研究者们提出了许多方法来优化能耗,其中包括以下几个方面:首先,通过优化无线传感器节点的通信协议,可以显著减少能耗。
传统的协议通常使用固定功率进行通信,而现代的协议可以根据通信距离动态调整功率。
此外,采用低功耗的睡眠模式来减少节点通信的时间,也是降低能耗的有效方法。
其次,采用数据压缩和聚合技术可以减少无线传感节点的数据传输量,从而降低功耗。
数据压缩技术可以通过消除数据中的冗余信息来减少数据量,而数据聚合技术可以将多个节点的数据合并为一个单一的数据包进行传输,减少通信次数。
另外,能耗优化还可以通过优化路由算法来实现。
传感器节点之间的通信通常是通过多跳方式进行的,而合理的路由选择可以减少通信的距离和功耗。
一些优化算法,如最短路径算法、贪心算法和基于启发式的算法,可以帮助确定最佳的通信路径。
此外,数据采集是无线传感网络中另一个重要的问题。
在大规模无线传感网络中,节点通常分布在广阔的地理区域内,因此数据采集需要有效地协调大量节点之间的数据传送。
以下是一些常用的数据采集方法:首先,时间同步是数据采集中的一个关键问题。
由于节点的时钟可能不同步,数据的时间戳无法准确对齐,导致数据的不一致。
为了解决这个问题,研究者们提出了各种同步协议和算法,如基于GPS的同步、时钟偏差估计和校正算法等。
其次,数据聚集是一种有效的数据采集方法。
它通过将多个节点的数据集中到一个或少数几个节点上,减少了网络的通信负载。
大型超市商场环境温湿度无线监测系统解决方案一、概述根据无线生态系统,无线类的变送器和记录仪可以将数据上传到采集终端,如现场有电脑,可以在现场通过485总线通讯(单条总线最长1200米有线)采集所有点温度及温湿度,可以实际终端监控所有参数。
每一个记录仪可以离线记录温度及温湿度值,定期采集记录,方便日后查看,数据可以通过USB直接导出到电脑上。
这样做对超市及经营性场所起到了巡检的目的又省去了人员成本,实际使用效果良好,从巡查变抽查会让管理更加有针对性,适合推广使用。
无线传输仪表方便布线。
无需连线便可以完整采集超市内各种环境数据。
系统可随意扩展,经营面积变大变小随意增减采集点数。
不浪费任何资源。
性价比高,本公司仪器已经达到计量级别,高于市场同类型产品。
可抽样送检保证仪表整体精度。
免费云端接入,通过无线WIFI可保存云端,方便数据保护防止数据丢失。
二、方案及实施由于超市及营业性环境的特殊性,深圳信立科技环境温湿度无线监测系统解决方案主要采用无线记录类产品与无线终端采集器作为主要互联产品进行配置。
单节点拥有离线记录能力,可以使用户在现场减少不必要的测量及记录。
目前对于超市而言,主要监测的温度、温湿度点有如下几类:<1>收银台区域温度及温湿度<2>货架区环境温度及温湿度<3>冷藏柜环境温度<4>库房存储环境温度及温湿度目前的这几类都是需要重点关注的。
对于收银台区域温度及温湿度而言,监测的目的在于用户停留时的环境舒适度。
如果温度不合适,会有可能引起客户的情绪焦虑,并不利于收银员结账收款。
货架区环境温度及温湿度主要针对客户购物体验,良好的温度及温湿度会大大增长客户的停留时间,以增加实际的销售额。
作为超市环境,温度及温湿度影响销售额也是日后研究的课题之一,为日后调研提供数据模型。
冷藏柜等环境温度及温湿度监测可以良好的管理冷藏货品提高冷藏质量。
减少人员记录带来的误差及劳动成本。
基于蓝牙的无线数据采集系统设计毕业论文目录摘要 ................................................. 错误!未定义书签。
第一章绪论 (2)1.1课题研究相关背景 (2)1.2课题研究的目的及意义 (2)1.3蓝牙技术的发展状况 (3)第二章无线数据采集系统硬件设计 (4)2.1系统的整体设计方案 (4)2.2系统的整体结构 (4)2.3系统的整体功能设计图 (5)第三章温度传感器模块 (6)3.1温度传感器的分类及其型号 (6)3.1.1 接触式温度传感器 (6)3.1.2非接触式温度传感器 (7)3.1.3 常见温度传感器 (8)3.2 温度传感器的选型 (9)第四章 STM32F103处理器 (11)4.1 STM32处理器简介: (11)4.2 STM32重要参数: (12)4.3 STM32性能特点: (12)第五章 TFT彩色液晶显示屏 (12)5.1 TFT LCD介绍 (13)5.2TFT特点 (13)5.3驱动芯片 (13)第六章 HC-05蓝牙模块 (15)6.1HC-05蓝牙模块介绍 (15)6.2 蓝牙配置 (15)第七章无线数据采集系统软件设计 (18)7.1 数据采集部分软件设计与实现 (18)7.2控制部分程序设计及实现 (19)7.3系统的软件调试 (20)结论 (24)致谢 (25)参考文献 (26)附录 (27)第一章绪论1.1课题研究相关背景蓝牙是一种支持设备短距离通信的无线电技术。
可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换,蓝牙的标准是IEEE802.15,工作在2.4GHz 频带,带宽为1Mb/s。
蓝牙技术最初由电信巨头爱立信公司于1994年创制,当时是作为RS232数据线的替代方案。
蓝牙可连接多个设备,克服了数据同步的难题。
如今蓝牙由蓝牙技术联盟(Bluetooth Special Interest Group,简称SIG)管理。
智能电表系统中的数据采集与监控方法综述智能电表系统作为现代化电能计量设备,由于其具备高精度、长寿命、低功耗等特点,被广泛应用于能源管理、电力调度以及用户用电行为分析等领域。
在智能电表系统中,数据采集与监控是保证系统正常运行和数据准确性的关键环节。
本文将对智能电表系统中的数据采集与监控方法进行综述,以便更好地了解和应用这些方法。
1. 数据采集方法1.1 有线数据采集有线数据采集是传统的数据采集方式,通过串口、以太网等有线通信方式,将电表中的数据传输到集中管理系统。
优点是传输稳定可靠,但缺点是布线复杂、成本高,在大规模部署时需要考虑布线的难度和成本。
1.2 无线数据采集无线数据采集是近年来兴起的一种数据采集方式,通过无线通信技术,将电表中的数据传输到集中管理系统。
无线数据采集具有布线简单、成本低、易于部署的优点,可以在不破坏原有线路的情况下进行数据采集,适用于复杂环境和大规模部署。
常用的无线数据采集技术包括无线传感网络(WSN)、蓝牙、ZigBee等。
2. 数据监控方法2.1 实时监控实时监控是对电表系统中数据进行实时监测和分析的方法。
通过对数据的及时采集和处理,可以实时监测电能使用情况、电压、电流等参数的变化,及时发现并解决问题。
实时监控可以采用集中管理系统对数据进行实时显示和报警处理,也可以通过远程监控平台实现对数据的实时监控。
这种方法可以帮助用户及时了解用电情况,合理规划用电策略,提高用电效率。
2.2 故障监测故障监测是通过对电表系统中的数据进行分析,及时发现故障,并采取相应的措施进行处理的方法。
通过对电表数据的分析,可以判断电网的稳定性和安全性,如功率因数超过设定范围、电压异常波动等。
一旦出现故障,集中管理系统会发出警报,通知相关人员进行处理。
这种方法可以有效地避免电网事故的发生,保障电能供应的稳定性和可靠性。
2.3 能耗分析能耗分析是对电表系统中的数据进行统计和分析,以了解用户的用电情况、发现能源浪费和异常情况,并提出相应的改进措施的方法。
无线传感器网络数据融合算法无线传感器网络(Wireless Sensor Network,WSN)是一种由大量分布在监测区域内的无线传感器节点组成的网络系统。
这些节点能够感知环境中的各种参数,并将采集到的数据进行处理和传输。
然而,由于资源受限以及节点之间的通信受限等问题,WSN中的数据往往存在着不可避免的噪声、丢包和不一致等问题,因此需要数据融合算法来对这些数据进行处理与融合,以提高数据的准确性和可靠性。
数据融合算法是将来自不同传感器节点的原始数据进行处理与融合,生成更可靠、准确和一致的信息的过程。
通过合理选择、分析和利用数据,数据融合算法可以剔除错误数据,降低不确定性,并提供更准确的监测结果。
对于无线传感器网络而言,数据融合算法可以帮助减少能源消耗、延长网络寿命、提高数据传输效率等。
一种常用的无线传感器网络数据融合算法是卡尔曼滤波算法。
卡尔曼滤波算法在多传感器的情况下,通过递归地估计系统状态和观测噪声协方差来实现数据融合。
该算法利用线性动力学系统的状态估计和观测数据的线性关系,通过最小均方误差准则对系统状态进行估计。
卡尔曼滤波算法的优点是能够充分利用各传感器的信息,融合后的结果比单一传感器产生的信息更准确。
除了卡尔曼滤波算法,还有其他一些常用的无线传感器网络数据融合算法。
例如,加权平均算法(Weighted Average)可以根据传感器的可靠性对数据进行加权平均,提高了数据融合结果的准确性。
最大值算法(Maximum)将多个传感器采集到的数据中的最大值作为融合结果,适合于对数据极值感兴趣的应用场景。
而最小值算法(Minimum)则是将多个传感器采集到的数据中的最小值作为融合结果,适用于对数据安全性要求较高的场景。
此外,还有一些高级的无线传感器网络数据融合算法,如粒子滤波算法、神经网络算法等。
这些算法可以更加精确地处理融合的数据,提高数据的可信度和精确度。
然而,这些算法往往需要更高的计算资源和较大的存储开销,因此在实际应用中需要根据具体需求进行选择。
大区域内的无线数据采集系统
用户需要一个户外军用设备测试系统,可在大区域的恶劣环境下测试。
数
据要求同步传输到中央数据库进行存储及后续观测。
为了实现这个,我们设计
了便携式的无线接入点(APs),通过高速无线LOEA 电与网络及中央数据处理中心的数据库进行通信,速度可达1 Gb/s。
每个AP 又包含独立的本地802.11g 无线网络,同数个数据采集单元(DCUs)进行通信。
LabVIEW 的易用型使得我们在短时间内完成高速无线网络的框DCU 由笔记本电脑或平板电脑与USB NI DAQPad-6015 及无线802.11g 天线连接组成。
DAQPad 性能突出,并具有便携性、各类相关高速信号、低成本等优势。
LabVIEW 用于在短时间内开发灵活的模块化硬件。
软件能够测量多达8 个模拟电压,读取或输出8 数字通道,实现2 个计数/ 定时通道,用于事件计数、频率测量或脉冲列输出,还能读取RS232 串口数据。
LabVIEW 数据库连通性工具包与Microsoft SQL Server 结合,可直接将数据存储到数据库,无需复杂的网络连接。
每个AP 组成包括高速LOEA 无线电、802.11g 本地网络、电源(由大型太阳能板及丙烯生成器提供)及健康监测系统(保障AP 正常工作)。
PXI/SCXI 机箱的紧凑型及器件高密度性使其成为健康监测系统的最佳选择。
每个CXI 机箱包含:一块1162HV 模块,用于读取高压数字信号;一块1102 热电偶模块,与NI PXI-6251 M 系列MIO DAQ 模块连接,用于读取2 个热电偶数据。
一台pan-tilt-zoom 摄像头与每个AP 连接,允许中央数据处理中心的用
户实时观察每个AP 及其周围环境。
实际上,我们采用NI PXI-1411IMAQ 模块从摄像头采集图像,通过PXI 8421/4 RS485 卡控制摄像头的全方位旋转变焦。