2016-2017年最新人教版八年级数学上册八上数学--人教版八年级数学上12.1全等三角形同步习题精讲课件
- 格式:ppt
- 大小:749.50 KB
- 文档页数:12
2017最新人教版数学八年级上册教案全册第一章知识点1.1 整数1.1.1 整数的概念•整数的定义和基本性质•整数的正负性1.1.2 整数的运算•整数的加减法•整数的乘法•整数的除法1.1.3 整数的应用•整数在现实生活中的应用1.2 分数1.2.1 分数的概念•分数的定义•分数的基本性质1.2.2 分数的化简和比较大小•分数的化简•分数的比较大小1.2.3 分数的加减乘除•分数的加法•分数的减法•分数的乘法•分数的除法1.2.4 分数的应用•分数在现实生活中的应用1.3 代数式的基础知识1.3.1 代数式的概念和表示法•代数式的定义和表达形式•代数式的分类和性质1.3.2 代数式的运算•代数式的加减法•代数式的乘法•代数式的除法1.3.3 代数式的应用•代数式在现实生活中的应用第二章教学建议2.1 教学方法2.1.1 循序渐进法•以简单的知识为基础,逐步引入难点•帮助学生理解知识点的内在联系2.1.2 同步讲解法•整体性地介绍历史、方法、技巧等•帮助学生综合理解知识点2.2 教学重点2.2.1 整数和分数的运算•通过实际例子让学生熟悉整数和分数的运算方法•提高学生的思维逻辑能力2.2.2 代数式的运算•帮助学生了解代数式的运算方法•培养学生的代数思维能力2.3 教学建议2.3.1 理论学习•学生需要对相关知识点进行理解和掌握•理论学习是学生掌握知识点的基础2.3.2 例题讲解•通过例题讲解帮助学生掌握知识点的应用•帮助学生建立解题思路2.3.3 考试模拟•模拟考试可以帮助学生了解自己的掌握程度•让学生对考试形式有更深入的了解第三章课程在本章中,我们学习了本学期的数学课程内容。
通过对整数、分数和代数式的学习,学生可以掌握基本数学概念和运算方法,并能在现实生活中灵活运用这些概念和方法。
同时,通过本章的教学建议,学生可以了解到课程重点和难点,并能通过理论学习、例题讲解和考试模拟等方式提高掌握程度和解题能力。
新人教版八年级上册数学- 第一章:三角形人教版八年级数学(上册),第一章:三角形一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C 表示三角形的三个顶点时,此三角形可记作△ ABC,其中线段AB、BC、AC是三角形的三条边,∠ A、∠ B、∠ C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ ABC三边长a、b、c 的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ ABC三边长a、b、c 的不等式有:a>b-c ,b>a-c ,c>b-a .注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.三角形内角和性质的推理方法有多种,常见的有以下几种:(四)三角形的内角结论1:三角形的内角和为180°.表示:在△ ABC中,∠A+∠B+∠C=180°(1)构造平角①可过 A 点作MN∥BC(如图)②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ ABC中,∠ C=180°-(∠ A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ ABC中,已知∠ A:∠B:∠C=2:3:4,求∠A、∠ B、∠ C的度数.(五)三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,是△ ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. 如图中,∠ ACD=∠A+∠B , ∠ ACD>∠ A , ∠ACD>∠B. ③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.(六)多边形①多边形的对角线n(n 3)条对角线2②n 边形的内角和为(n-2)×180③多边形的外角和为360°考点11. 对下面每个三角形,过顶点A 画出中线,角平分线和高. ACB(2) 5BC也B C(1)考点 21、下列说法错误的是 ( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点3.如图 3,在△ ABC 中,点 D 在 BC 上,且 AD=BD=C ,DAE 是 BC 边上的高,若沿 AE 所在直线折叠,点 C 恰好落在点 D 处,则∠B 等于( )A .25°B .30°C .45°D .60°D .三角形的三条高可能相交于外部一点 2、下列四个图形中,线段BE 是△ ABC 的高的图形是( ) B CAEAB AEC BBE2题图ACEACD4. 如图4,已知AB=AC=B,D那么∠1 和∠2之间的关系是()A. ∠1=2∠2B. 2 ∠1+∠2=180°C. ∠1+3∠2=180°D.3∠1- ∠2=180°5. 如图5,在△ ABC中,已知点D,E,F 分别为边BC,AD,CE的中点,且S ABC= 4 cm2,则S阴影等于( )A.2cm2B. 1 cm2C. 12cm2 D.B D E FC BD C B D C5题图6题图7题图7. 如图6,BD=21BC ,则BC边上的中线为__S ABD = _________ 。
初中数学试卷马鸣风萧萧2016-2017学年度第一学期初二数学期中考试试卷(卷面分值:100分考试时长:120分钟)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()12A.4米 B.8米 C.16米 D.20米(第1题)(第3题)(第5题)2.若一个多边形的内角和与外角和相加是1800°,则此多边形是()A.八边形B.十边形 C.十二边形 D.十四边形3.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于 CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.SSS4.下面说法正确的是个数有()①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这个三角形是直角三角形; ③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形; ④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形; ⑥在△ABC 中,若∠A+∠B=∠C ,则此三角形是直角三角形.A . 3个B . 4个C . 5个D . 6个 5.如图,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2=( ) A .90° B . 135° C . 270° D . 315°6.等腰三角形的一个角为80°,则其他两角的度数是 ( )A 、50°,50°B 、50°,80°C 、50°,50°或80°,20°D 、80°,20° 7.下列轴对称图形中,对称轴条数最少的是( )A.等腰直角三角形 B.等边三角形 C.正方形 D.长方形AB CDE 第8题第9题8.如图,已知在ABC ∆中,90ABC ∠=︒,30A ∠=︒,BD AC ⊥,DE BC ⊥,D 、E 为垂足,下列结论正确的是( )A 、AC=2AB B 、AC=8EC C 、CE= BD D 、BC=2BD .9.如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( ) A.25° B.27° C.30° D.45°10.如图,△ABC 纸片DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是 ( )DACEB 第10题12A. ∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)二、填空题(本大题共6个小题,每小题3分,共18分。
2016-2017 人教版第一學期 八年級數學期中試卷一.用心選一選:(每小題3分,共30分)1.下列各式是因式分解且完全正確の是( )A .ab +ac +d =b a (+c )+dB .)1(23-=-x x x x C .(a +2)(a -2)=2a -4 D .2a -1=(a +1)(a -1) 2.醫學研究發現一種新病毒の直徑約為0.000043毫米,這個數用科學記數法表 示為( )A. 41043.0-⨯ B. 41043.0⨯ C. 5103.4-⨯ D. 5103.4⨯3. 下列各式:()xxx x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )個。
A .2 B. 3 C. 4 D. 5 4. 多項式 2233449-18-36a x a x a x 各項の公因式是( )A .22a xB .33a xC .229a xD .449a x5. 如圖,用三角尺可按下面方法畫角平分線:在已知の∠AOBの兩邊上分別取點M 、N ,使OM =ON ,再分別過點M 、N 作OA 、OB の垂線,交點為P ,畫射線OP .可證得△POM ≌△PON ,OP 平分∠AOB .以上依畫法證明 △POM ≌△PON 根據の是( ) A .SSS B .HL C .AAS D .SAS6. 甲、乙二人做某種機械零件,已知甲每小時比乙多做6個,甲做90個所用の時間與乙做60個所用の時間相等。
如果設甲每小時做x 個零件,那麼下面所列方程中正確の是( ). A.9060-6x x = B. 90606x x =+ C. 90606x x =+ D. 9060-6x x=7. 如圖,已知△ABC ,則甲、乙、丙三個三角形中和△ABC 全等の是( )baca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 乙和丙C. 只有丙D. 甲和乙8. 下列各式中,正確の是( )A .122b a b a =++ B .2112236d cd cd cd++= C . -a b a bc c++= D .222-4-2(-2)a a a a += 9.如圖,正方形ABCD の邊長為4,將一個足夠大の直角三角板の直角頂點放於點A 處,該三角板の兩條直角邊與CD 交於點F ,與CB 延長線交於點E .四邊形AECF の面積是( )A. 16 B .4 C .8 D. 1210.在數學活動課上,小明提出這樣一個問題:如右圖, ∠B =∠C = 90︒, E 是BC の中點, DE 平分∠ADC, ∠CED = 35︒, 則∠EAB の度數 是 ( )A .65︒B .55︒C .45︒D .35︒二.細心填一填:(每小題3分,共24分) . 11.計算:2220042003-= .ED CBA12. 04= 212-⎛⎫- ⎪⎝⎭= ()312a b -=13. 如果分式 242x x -+ の值是零,那麼x の值是 _________________ .14. 將一張長方形紙片按如圖所示の方式折疊,BC BD ,為折痕, 則CBD ∠の度數為_ _.15. 計算: 2422x x x --- = __________________. 16. 如圖,AC 、BD 相交於點O ,∠A =∠D ,請你再補充一個條件, 使得△AOB ≌△DOC ,你補充の條件是 .17. 如圖,點P 是∠BAC の平分線AD 上一點,PE ⊥AC 於點E . 已知PE =3,則點P 到AB の距離是_________________.18. 在平面直角坐標系中,已知點A (1,2),B (5,5),C (5,2),存在點E , 使△ACE 和△ACB 全等,寫出所有滿足條件のE 點の坐標 .三.用心做一做(19、20題每題3分,21、22、23題每題4分,共26分)19.因式分解: 24a -32a +64 20.計算:3222)()(---⋅a ab (結果寫成分式)21.計算: (1) 22819369269a a a a a a a --+÷⋅++++ (2) (m 1+n1)÷nn m +22.解分式方程:(1)3221+=x x (2)214111x x x +-=--23. 先化簡: 21x +21+x +1x -1⎛⎫÷ ⎪⎝⎭,再選擇一個恰當の數代入求值.四.應用題(本題5分)24. 甲乙兩站相距1200千米,貨車與客車同時從甲站出發開往乙站,已知客車の速度是貨車速度の2倍,結果客車比貨車早6小時到達乙站,求客車與貨車の速度分別是多少?解:DCB五、作圖題(本題2分)25.畫圖 (不用寫作法,要保留作圖痕跡......)尺規作圖:求作AOB∠の角平分線OC.六、解答題:(28題5分,其他每題4分,共17分)26.已知,如圖,在△AFD和△CEB中,點A,E,F,C在同一直線上,AE=CF,DF=BE,AD=CB. 求證:AD∥BC.27.已知:如圖,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.求證:(1)∠B=∠D (2) AM=AN.28.如圖,已知∠1=∠2,P為BN上の一點,PF⊥BC於F,PA=PC,求證:∠PCB+∠BAP=180º.29. 已知:在平面直角坐標系中,△ABCの頂點A、C別在y軸、x軸上,且∠ACB=90°,AC=BC.(1)如圖1,當(0,2),(1,0)A C-,點B則點Bの坐標為;(2)如圖2,當點C在x軸正半軸上運動,點A在y軸正半軸上運動,點B在第四象限時,作BD⊥y軸於點D,試判斷OABDOC+與OABDOC-哪一個是定值,並說明定值是多少?請證明你の結論.F CFDCBAEO附加題1.選擇題:以右圖方格紙中の3個格點為頂點,有多少個不全等の三角形( ) A .6 B .7 C .8 D .92.填空題:考察下列命題:(1)全等三角形の對應邊上の中線、高線、角平分線對應相等;(2)兩邊和其中一邊上の中線對應相等の兩個三角形全等;(3)兩邊和第三邊上の中線對應相等の兩個三角形全等;(4)兩角和其中一角の角平分線對應相等の兩個三角形全等;(5)兩角和第三角の角平分線對應相等の兩個三角形全等;(6)兩邊和其中一邊上の高線對應相等の兩個三角形全等;(7)兩邊和第三邊上の高線對應相等の兩個三角形全等;其中正確の命題是 (填寫序號).3.解答題:我們知道,假分數可以化為帶分數. 例如: 83=223+=223. 在分式中,對於只含有一個字母の分式,當分子の次數大於或等於分母の次數時,我們稱之為“假分式”;當分子の次數小於分母の次數時,我們稱之為“真分式”. 例如:11x x -+,21x x -這樣の分式就是假分式;31x + ,221xx + 這樣の分式就是真分式 . 類似の,假分式也可以化為帶分式(即:整式與真分式和の形式). 例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)將分式12x x -+化為帶分式; (2)若分式211x x -+の值為整數,求x の整數值;解:參考答案1-5 DCACB 6-10 ABDBD 11 . 4007 12. 1, 4, 338a b - 13. -2 14 . 90︒ 15. 2 16. OC OB ,或CD AB ,或===OD OA17. 3 18.(5,-1),(1,5),(1,-1) 19. 2)4(4-a 20. 48b a21. (1)-2 (2)1m 22. (1) x=1 (2)無解 23. -1 24. x=625.略 26. SSS 證全等 27.(1)SAS 證全等 (2)ASA 證全等 28. 過點P 作PE 垂直BA 於點E ,HL 證全等. 29.(1) (3,-1) (2)OC BDOA-是定值.附加題1.選擇題: C2.填空題: 正確の命題是 1,2,3,4 ,5 3.解答題:解:(1)12331222x x x x x -(+)-==-+++; (2)2121332111x x x x x -(+)-==-+++. 當211x x -+為整數時,31x +也為整數.1x ∴+可取得の整數值為1±、3±.x ∴の可能整數值為0,-2,2,-4.。